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Abstract: Strategic bidding in joint energy and spinning reserve markets is a challenging 
task from the viewpoint of Generation Companies (GenCos). In this paper, the interaction 
between energy and spinning reserve markets is modeled considering a joint probability 
density function for the prices of these markets. Considering pay-as-bid pricing mechanism, 
the bidding problem is formulated and solved as a classic optimization problem. The results 
show that the contribution of a GenCo in each market strongly depends on its production 
cost and its level of risk-aversion. Furthermore, if reserve bid acceptance is considered 
subjected to winning in the energy market, it can affect the strategic bidding behavior. 
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1 Introduction1 
An electricity market is a system for effecting 
purchases, through offers and bids. The market 
operation is implemented competitively based on 
auctions. In a single-sided electricity auction, the 
Independent System Operator (ISO) procures the energy 
and reserve on behalf of the energy and reserve 
customers. The ISO aggregates the generation bids and 
clears the auction based on GenCos’ bids and the system 
requirements, such as load level, requested reserve and 
etc. In this structure, the competition is established 
between GenCos. 

GenCos participate in the market through bidding 
generation capacities and corresponding prices. From 
GenCo’s point of view, designing proper bid functions 
is economically a challenging task to make more profit. 
In a joint energy and reserve market, the interaction 
between energy and reserve prices forces the GenCos to 
compromise between their bids in the submarkets. In the 
simultaneous markets, GenCos must bid in all 
submarkets at the same time. Consequently, the bidding 
problem is important and risky for GenCos while joint 
bidding in energy and reserve markets. 

Many literatures can be found which consider the 
bidding problem in only-energy markets such as [1, 2]. 
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However, there are a few literatures which considered 
the joint bidding problem. In [3] and then in [4, 5] 
utilizing a bi-level optimization model, a bidding 
problem is presented in separate energy and spinning 
reserve markets. It was assumed that the bidding 
coefficients of rivals obeyed a joint normal distribution.  

Bidding in separate uniform-priced energy and 
spinning reserve markets, is presented in [6]. Bidding 
parameters of the rivals are forecasted. The bidding 
parameters of the GenCos are calculated using the 
evolutionary programming approach. 

In [7, 8], optimal allocation of resources to variety of 
markets is presented, but the strategic bidding problem 
is not considered. 

Reference [9] presented a scenario generation 
technique for bidding and scheduling in Italian 
sequential power market using a multi-stage mixed-
integer stochastic programming model with linear 
constraints. 

References [10, 11] used game theoretic approaches 
in bi-level optimization problems, creating optimal 
bidding strategies at one level by a GenCo, while 
searching Nash equilibrium of the hybrid markets at the 
other level. 

Simultaneous bidding problem into the separate 
German energy and reserve markets is introduced in 
[12]. Some probability distribution functions for market 
prices, based on the previous finding in [13] are defined 
for energy market and two independent reserve markets, 
and a stochastic optimization problem has been solved. 

The bidding problem of Virtual power plant (VPP) 
in a day-ahead joint market of energy and spinning 
reserve service is investigated in [14] and a model based 
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on the deterministic price-based unit commitment is 
presented for bidding strategy of VPP. 

Reference [15] proposed a quadratic mixed-integer 
stochastic programming model to solve the optimal 
bidding strategy problem in sequentially cleared Iberian 
day-ahead market. 

In [16], the authors of this paper formulated the joint 
bidding problem in energy and spinning reserve 
markets, from the viewpoint of a GenCo considering a 
joint Probability Density Function (PDF) for the market 
clearing prices in a PAB pricing mechanism. 
Participation and acceptance in reserve market is 
assumed independent of the energy bid acceptance. In 
other words, it is assumed that the generating unit can 
be dispatched as a reserve provider even if its energy 
bidding price is rejected. The mean-variance portfolio 
theory is utilized for consideration of the risk. 

In this paper, a joint PDF for the energy and 
spinning reserve marginal accepted bidding prices is 
utilized to formulate the strategic biding problem. In the 
field of simultaneous bidding in the energy and spinning 
reserve markets, considering the portfolio theory in 
order to risk management, the GenCo is a portfolio 
manager that wants to distribute its production capacity 
between energy and spinning reserve markets. To find 
the optimal bidding parameters from a price-taker 
GenCo’s point of view, a mathematical approach is 
applied with or without considering the risk. The 
method, which is generalization of a previously 
presented only-energy market bidding method [2], has 
been developed similar to the method presented in [16] 
to model and to solve the joint energy and spinning 
reserve bidding problem. The reserve provision is 
considered subjected to energy bid acceptance. 
Definitely, this technical constraint makes the model 
more realistic and more complex. It is shown that, 
considering this condition as a market rule, GenCos 
have more tendencies to bid in the energy market. 

In the rest of the paper, using a model-based 
approach, the optimal bidding prices for the energy and 
spinning reserve markets and optimal reserve bidding 
capacity are extracted numerically. In addition, the 
effects of GenCos’ production cost and risk-aversion 
degree and the correlation value between energy and 
spinning reserve prices on the optimal values and on 
GenCos’ bidding strategies are analyzed. 
 
2 The Market Structure 

To study bidding problem, a one-hour-ahead single-
sided and single-node wholesale electricity market is 
considered. The environment consists of the energy and 
spinning reserve (from now on, referred to as “reserve”) 
markets. The main agents of the market are GenCos and 
the independent system operator, as seen in Fig. 1. 

In this paper, the step-wise bidding protocol is 
selected. The method can be applied in linear bidding 
protocol. 
 

Fig. 1 The joint market structure 
 

As like some of electricity markets, for example 
New York and California electricity markets, the GenCo 
submits two stepwise functions, including capacities 
and corresponding prices, to the joint energy and 
reserve market for the next hour. The two markets are 
cleared simultaneously by the ISO under PAB pricing 
mechanism through a joint optimization program. Then 
the ISO informs each GenCo of its contribution to 
energy and reserve markets. According to market rules, 
the spinning reserve can be provided by energy market 
winners. 
In the following, the strategic bidding problem in a 
single-sided auction is formulated from the viewpoint of 
a GenCo. The proposed method can be easily extended 
to a multi-unit bidding problem. Moreover, double sided 
auction can be considered and the assumption of a 
single-sided auction does not affect the generality of the 
method. 
 
3 Price Modeling 

Similar to [16], the interaction between energy and 
reserve market prices is considered assuming a joint 
PDF for these prices, in order to model the strategic 
bidding problem, mathematically. 

In pay-as-bid auctions, after clearing the market in 
each trading period, each GenCo is informed by its own 
accepted bidding prices in the energy and reserve 
markets. The GenCo can construct a joint PDF of its 
Marginal Accepted Bidding Prices (MABPs), in order to 
design its bidding strategy utilizing the method that will 
be presented in the next section. Therefore, it is 
reasonable to assume a joint PDF in order to model the 
energy and reserve prices. This joint PDF is constructed 
using historical accepted and/or rejected bidding prices, 
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from the viewpoint of the GenCos. The construction of 
the stated above joint probability density function is 
beyond the scope of this paper. The joint PDF of 
MABPs is assumed to be known as , ( , )m m

e r

m m
e rfρ ρ ρ ρ , 

where m
eρ  and m

rρ  are energy and reserve marginal 
accepted bidding prices, respectively. 
 
4 Problem Description 

In order to simplify the analysis of GenCos’ bidding 
behavior with different production costs, a linear cost 
function as Cj(pj)=cjpj is assumed for the jth GenCo, 
where pj (MWh) and cj ($/MWh) are the generated 
power by the jth GenCo and its average cost, 
respectively. It is clear that the average cost of each 
GenCo depends on technical and economical 
characteristics of the generating unit. Similar to [3-7, 9, 
10], it is assumed that the GenCo does not bear any cost 
for the reserve provision. 
 

4.1.  Interpretation of The Electricity Market 
Bi-Level Problem 

The process of bidding and market clearing in joint 
energy and reserve PAB markets can be modeled as a 
bi-level optimization problem [9] which consists of 
GenCos’ level and ISO’s level. In order to simplicity, 
transmission system is ignored and one-step bidding in 
each market is assumed in the following bi-level 
formulation. 
 
GenCos’ level: 

In this level, the GenCos try to maximize their 
profit. The objective function of the jth GenCo can be 
formulated as: 

max ( )

subject to:
j ej j ej j rj rj

ej e

rj r

u c p u pρ ρ

ρ ρ

ρ ρ

− +

≤

≤

 (1) 

where, ρej and ρrj are the GenCo’s energy and reserve 
bidding prices, respectively. pei and pri are dispatched 
capacities of the GenCo in the energy and reserve 
markets and eρ  and rρ  are energy and reserve markets 
ceiling prices, respectively. Since the provision of 
spinning reserve requires the unit to be committed, the 
binary variable uj is used which determines that the 
GenCo is dispatched in the energy market (uj=1) or not 
(uj=0). 
 
ISO’s level: 

ISO minimizes the total procurement cost by solving 
the following market clearing problem at this level: 
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In the above formulations, the maximum and 
minimum generation capacities of the jth GenCo are 
Gjmax and Gjmin, respectively. n is the number of GenCos 
and the reserve production capability of the jth GenCo, 
Rj, is determined according to its generating unit’s 
ramp-rate. 

In practical markets, the information of cost and 
bidding parameters of the rivals is not publicly 
available. Therefore, solving the stated-above bi-level 
problem is not possible for GenCos to make strategic 
bidding functions. Therefore, it is reasonable to develop 
a method based on the practically available information. 
In the following, utilizing the previously discussed joint 
PDF of the MABPs, a model-based approach is 
developed. This method uses the price information, 
which is the only available information of the electricity 
market. 
 

4.2.  The Proposed Bid Functions 
In this section, two step-wise functions are proposed 

for energy and reserve bids. Based on the proposed bid 
functions, the optimal energy and reserve bidding prices 
and also the optimal reserve bidding capacity are 
determined. 

It is assumed that a GenCo designs two step-wise 
functions for the energy and reserve bidding prices. 
Clearly, G-R, i.e. total capacity minus the reserve 
capability, is a fraction of the total capacity that can be 
offered only to the energy market. Thus, the GenCo 
should allocate the rest of its capacity, which is equal to 
R, to energy and reserve markets. Let x be the reserve 
capacity bid, which is a fraction of R that the GenCo 
expects to sell it in the reserve market. As Fig. 2-a 
shows, the reserve offered price is ρr. Likewise, R-x is 
the remainder of the reserve capability that the GenCo 
prefers to offer it to the energy market. Consequently, 
G-x will be the part of GenCo’s capacity that can be 
sold in the energy market. ρe1 and ρe2 are the offered 
prices for this part, ρe1 for G-R and ρe2 for R-x. 
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4.4.  GenCo’s Objective Function 
In order to make the optimal decision, the GenCo 

faces with the following problem without considering 
the risk: 

1 2

max { }
. .

0
energy market ceiling price

reserve market ceiling price
e e

r

E
s t

x R G

π

ρ ρ
ρ

≤ ≤ ≤
≤ ≤
≤

 (9) 

The optimal value of the above objective function 
and its corresponding optimal bidding parameters can 
be calculated numerically. The numerical results will be 
presented and analyzed in the next section. However, a 
discussion about reserve allocated capacity is presented 
here. 

Rearranging Eq. (8), it can be shown that the 
expected profit, E{π}, is a linear function of variable x. 
Therefore, without considering the risk, the GenCos 
with different production costs can be classified into 
two groups. The expected profit of selling the total 
reserve capability in the energy market is more than 
selling it in the reserve market, in the first group. This 
group comprises low cost GenCos. The other group is 
composed of the high cost GenCos which prefer to sell 
their total reserve capabilities in the reserve market. It 
should be noted that by taking the risk into 
consideration, a third group can be observed; in which 
the GenCos tend to sell their reserve capability in both 
the energy and reserve markets. 
 

4.4.1.  Consideration of the Risk 
In this case, the effect of risk on capacity allocation 

to energy and reserve markets is considered. To make 
trade-off between profit and risk, the mean-variance 
approach is applied using a utility function in the form 
of U{π}=E{π}-ωVar{π}. In this form, profit variance is 
used as a measure of risk [17-20]. ω is a weighting 
factor, specified based on risk-aversion degree of the 
investor. The objective of a GenCo is: 

1 2

max { } { } { }
. .

0
energy market ceiling price

reserve market ceiling price
e e

r

U E Var
s t

x R G

π π ω π

ρ ρ
ρ

= −

≤ ≤ ≤
≤ ≤
≤

 (10) 

 
5 Numerical Results 

In this section, considering a joint normal 
probability density function for energy and reserve 
MABPs, the effect of GenCo’s production cost and risk-
aversion degree, and correlation between the energy and 
reserve MABPs on bidding behavior of the GenCos is 
analyzed utilizing the proposed bid function. 

In real markets, GenCos bid in a joint energy and 
reserve market, not only based on their expected profit, 
but also they usually consider the risk, and thus they bid 
based on their utility function in order to compromise 
between their expected profit and the risk. In the 
following subsections the GenCos’ bidding behavior is 
analyzed based on the mentioned objective function 
shown in Eq. (10). 
 

5.1.  The Effect of Production Cost 
In order to analyze the bidding behavior of different 

cost GenCos in the simultaneous energy and reserve 
market, the total generation capacity, G, and reserve 
capability, R, are selected, among all the GenCos, to be 
200 MW and 100 MW, respectively. 

Fig. 3 shows the reserve optimal bidding capacity of 
GenCos with different production costs. In this figure 
the statistical parameters of MABPs, according to [8, 
12, 15], are selected as μe=40, μr=5, σe=5, σr=1 and 
ρ=0.2, where ρ is the correlation coefficient of energy 
and reserve prices. Also, the risk aversion degree among 
GenCos is assumed to linearly decrease from 0.0098 at 
marginal cost of 20 $/MWh to 0.001 at 40 $/MWh 
marginal cost. 

The three previously stated groups of the GenCos 
can be observed in Fig. 3. It can be concluded that the 
more marginal costs, the more the producer preference 
to bid in the reserve market. The lower cost GenCos can 
success in the energy market, by bidding lower prices. 
However, increasing the generation cost results in 
decreasing the winning chance in the energy market. 
Therefore, the GenCos with higher production costs 
prefer to bid most of their reserve capability in the 
reserve market. 

The dashed curve in Fig. 3 presents the reserve 
optimal bidding capacity of GenCos when the reserve 
bid acceptance is assumed independent of GenCos’ 
energy market participation, based on the formulations 
developed in [16]. It is can be seen that considering the 
reserve market participation independent of energy bid 
acceptance, deceptively increases the GenCos’ tendency 
to bid in the reserve market. This is an important result 
of this paper. It says that it is essential to consider the 
energy bid acceptance as a necessary condition for 
reserve market participation, in modeling the electricity 
market bidding problems. 

Comparing the optimal energy and reserve bidding 
prices, it can be seen that if the production cost grows, 
the energy bidding prices also grows. It is clear that the 
reserve bid price decreases slowly, while the generation 
cost increases. That is because the acceptance 
probability in the energy market is decreased while 
increasing the production cost and the GenCo must 
decrease the reserve bid price to increase the probability 
of reserve acceptance. This concept is compatible with 
the model presented in [12]. 
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