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Abstract: This paper introduces a new method for improving wireless communication 
systems by employing beyond diagonal reconfigurable intelligent surfaces (BD-RIS) and 
unmanned aerial vehicle (UAV) alongside deep reinforcement learning (DRL) 
techniques. BD-RIS represents a departure from traditional RIS designs, providing 
advanced capabilities for manipulating electromagnetic waves to optimize the 
performance of communication. We propose a DRL-based framework for optimizing the 
UAV and configuration of BD-RIS elements, including hybrid beamforming, phase shift 
adjustments, and transmit power coefficients for non-orthogonal multiple access 
(NOMA) transmission by considering max-min fairness. Through extensive simulations 
and performance evaluations, we demonstrate that BD-RIS outperforms conventional 
RIS architectures. Additionally, we analyze the convergence speed and performance 
trade-offs of different DRL algorithms, emphasizing the importance of selecting the 
appropriate algorithm and hyper-parameters for specific applications. Our findings 
underscore the transformative potential of BD-RIS and DRL in enhancing wireless 
communication systems, laying the groundwork for next-generation network 
optimization and deployment. 
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1 Introduction 

1.1 Motivation 

ECONFIGURABLE intelligent surfaces (RIS) 
represent a promising technology, and the evolution 

towards beyond-diagonal RIS (BD-RIS) signifies a 
ground breaking departure from traditional RIS 
architectures. BD-RIS introduces innovative 
opportunities for manipulating electromagnetic waves, 
endowed with advanced signal processing capabilities. 
These intelligent surfaces harbor the potential to 
revolutionize communication systems by augmenting 
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link quality and optimizing data rates, thereby enhancing 
wireless communication. Conversely, unmanned aerial 
vehicles (UAVs) have emerged as dynamic and 
adaptable solutions to tackle the challenges of 
conventional ground-based networks. Serving as aerial 
communication platforms, UAVs possess the ability to 
swiftly navigate diverse terrains, delivering on-demand 
connectivity and extending coverage to remote or 
disaster-stricken area [1]. 

Non-orthogonal multiple access (NOMA) emerges as a 
pivotal facilitator for boosting data rates in wireless 
networks. By enabling multiple users to utilize the same 
time-frequency resource, NOMA initiates a paradigm 
shift in multiple access schemes, opening avenues for 
heightened system throughput and enhanced user 
experience. In NOMA, intra-cell interference can be 
mitigated using multi-user detection (MUD) and 
successive interference cancelation (SIC) techniques [2]. 
Millimeter-wave (mmWave) communications leverage 

R 
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higher frequency bands to unlock unparalleled data rates, 
fostering the evolution of ultra-fast and low-latency 
networks. This technology plays a vital role in 
addressing the exponentially increasing demand for data-
intensive applications and services [2]. In mmWave 
communications, directional antennas and beamforming 
significantly enhance transmission quality. Various types 
of beamforming, including analog, digital, and hybrid 
beamforming, contribute to this enhancement. Hybrid 
Beamforming represents a sophisticated signal 
processing technique that amalgamates the benefits of 
digital and analog beamforming. This approach 
augments the flexibility and efficiency of beamforming 
operations, optimizing signal coverage and quality in 
intricate communication scenarios. The fusion of 
NOMA and mmWave transmissions augments the 
network's capacity [3].  

Reinforcement Learning (RL), a subset of artificial 
intelligence, introduces autonomous decision-making 
capabilities to wireless communication networks. By 
enabling systems to learn and adapt in real-time, RL 
empowers networks to optimize resource allocation, 
adjust to dynamic environments, and elevate overall 
system performance [4]. 

1.2 Related Works 

As previously discussed, advancements in RIS 
architectures have surpassed conventional diagonal 
phase shift matrices, with recent endeavors aiming to 
enhance their adaptability in shaping the wireless 
channel. In [5], the authors tackled the challenge of 
optimizing the signal-to-noise ratio (SNR) in both single 
and multiple antenna links with the aid of a group-
connected BD-RIS. They addressed the Max-SNR 
problem by deriving a closed-form solution, relying on 
the Takagi factorization of a specific complex and 
symmetric matrix. In [6], scientists investigated 
optimizing both the transmit precoder and the BD-RIS 
matrix jointly to enhance the total data transmission rate 
in a system utilizing RIS technology. They employed 
Lagrangian dual transform and Quadratic transform 
techniques to address the optimization problem. 
Efficient BD-RIS architectures were proposed in [7], 
utilizing group- and fully-connected reconfigurable 
impedance networks. The authors provided a closed-
form solution for the globally optimal scattering matrix, 
enabling the attainment of theoretical performance upper 
bounds across various channel configurations. 
Furthermore, in [8], a dynamically group-connected BD-
RIS was investigated, employing a dynamic grouping 
strategy to categorize RIS antennas into multiple subsets 
based on channel state information (CSI). This led to the 
creation of a permuted block-diagonal scattering matrix, 
and an efficient algorithm was introduced to enhance the 

total data transmission rate for multiuser multiple-input 
single-output (MU-MISO) systems. In [9], an RIS 
architecture was presented, allowing a signal received at 
one element to be redirected by another element by 
adjusting phase shift. The authors tackled the challenge 
of maximizing attainable rates within this new RIS 
framework by concurrently optimizing non-diagonal 
phase shift matrix and active beamforming. This 
optimization was conducted for both single-user MISO 
systems and multi-user multiple-input multiple-output 
(MU-MIMO) systems using alternating optimization 
techniques and SDR methods, respectively. The study 
outlined in [10] explores a unified methodology for 
optimizing BD-RIS configurations under various non-
convex constraints. The authors introduced an approach 
capable of addressing energy efficiency maximization 
problem in BD-RIS system considering multiple QoS 
constraints. Additionally, their methodology efficiently 
tackles the challenge of maximizing sum-rate in BD-RIS 
assisted systems. Moreover, the study highlights the 
notable advantages of BD-RIS compared to conventional 
diagonal RIS (D-RIS) configurations. 

In [11], researchers investigated an innovative wireless 
powered communication network enabled by RIS and 
UAVs. The primary goal was to improve the minimum 
throughput for all ground users by concurrently 
optimizing several factors, including the user transmit 
power, horizontal placement of UAVs, passive 
beamforming vectors at the RIS, and transmission time 
allocation. To tackle this intricate optimization problem, 
the researchers introduced an algorithm that decomposes 
the issue into sequentially solved four subproblems. 
Their findings highlighted the superiority of the RIS-
assisted UAV-enabled network over traditional networks 
in terms of enhancing minimum throughput. In another 
study, discussed in [12], the focus was on a UAV-
enabled wireless system where hybrid active-passive 
RIS aided the communication between UAV and users. 
The objective revolved around achieving fairness in the 
system by maximizing the minimum rate of users. To 
achieve this, the researchers conducted jointly 
optimizing the transmit beamformer, UAV’s trajectory, 
and RIS coefficients. To address these complex 
optimization challenges, efficient algorithms based on 
block coordinate ascent and successive convex 
approximation (SCA) were devised by the researchers, 
enabling effective problem-solving in an iterative 
manner. 

In [13], researchers tackled the joint optimization 
challenge of power allocation and hybrid beamforming 
to enhance the minimum user signal-to-leakage-and-
noise ratio (SLNR), with the aim of balancing 
computational complexity and ensuring fair treatment of 
users. Meanwhile, in [14], the emphasis was placed on 
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the coordinated optimization of power allocation and 
beamforming within a multi-cell multiuser MIMO-
NOMA network. The objective was to maximize the 
total data transmission rate for users while ensuring that 
their target rates are preserved. The authors proposed an 
iterative sub-optimal algorithm based on SCA to 
synchronize base stations (BSs) and address the 
optimization task. The study discussed in [15] 
investigated the max-min fairness problem in a downlink 
(DL) MIMO mmWave-NOMA system, incorporating 
user clustering, power allocation, and hybrid 
beamforming. Here, the SLNR metric served as a focal 
point, guiding the development of user clustering 
strategies, hybrid beamforming matrices, and power 
allocation schemes. Similarly, [16] explored power 
allocation, hybrid precoding, and user clustering for 
massive MIMO in the mmWave-NOMA setup. The 
paper introduced a clustering technique to designate 
initial cluster heads and iteratively incorporate users into 
clusters while managing intrabeam interference. 
Furthermore, it transformed the non-convex data rate 
maximization problem into a convex inter-cluster 
problem to address hybrid precoding and power 
allocation. 

In [17], hybrid beamforming techniques for UAV-
assisted communications employing massive MIMO 
systems were investigated. The authors derived an 
approximate closed-form expression for data rate 
through the application of hybrid beamforming 
methodologies and formulated a power allocation 
strategy tailored for line-of-sight (LoS) channels. 
Furthermore, the study explored optimal UAV location 
designs. In [18], researchers studied a mmWave DL 
communication system assisted by RIS, with hybrid 
beamforming implemented at the BS. They tackled a 
power minimization challenge by concurrently 
optimizing the response matrix at the RIS and the hybrid 
beamforming at the BS, while ensuring all users signal-
to-interference-plus-noise ratio (SINR) constraints. 
Manifold optimization techniques were utilized to 
manage the non-convex constraints. Furthermore, the 
research explored the interplay between the max-min 
fairness problem and power minimization, underscoring 
the pivotal contribution of the RIS in decreasing power 
consumption across the system. 

1.3 Contributions 

The main objective of this study is to examine the 
overall performance of the system with a particular focus 
on the contributions of BD-RIS and UAVs. This 
integration aims to jointly optimize phase shift matrix at 
the BD-RIS, hybrid beamforming at the UAV, and 
NOMA power gains in a mmWave-NOMA system, with 
the overarching goal of max-min rate fairness as a α-fair 

utility function. To tackle this optimization problem, we 
leverage deep reinforcement learning (DRL) techniques. 
We demonstrate that BD-RIS and fairness optimization 
can substantially enhance system performance and 
elucidate the specific contributions of BD-RIS to these 
improvements. Therefore, the main contributions of this 
paper can be categorized as follows: 
 We propose a novel system architecture that 

combines BD-RIS with UAVs in mmWave-NOMA 
systems. This innovative integration aims to 
leverage the unique capabilities of BD-RIS and 
UAVs to enhance the efficiency and performance of 
wireless communication networks. 

 In practical scenarios, NOMA transmission may 
suffer from imperfect SIC. We incorporate this 
aspect into our system model to accurately reflect 
real-world conditions, ensuring the robustness and 
reliability of our proposed solution. 

 We propose an optimization problem that jointly 
designs the BD-RIS phase shift matrix, UAV hybrid 
beamforming, and power allocation. Our objective 
is to maximize the max-min rate fairness, which is 
represented by an α-fair utility function. This 
comprehensive optimization framework accounts 
for the diverse characteristics and requirements of 
modern wireless communication systems. 

 To tackle the complex optimization problem, we 
employ DRL algorithms. These algorithms offer a 
powerful and adaptive approach to optimizing 
system parameters in dynamic and uncertain 
environments, enabling efficient and effective 
decision-making. 

 Through extensive simulations, we showcase that 
our proposed BD-RIS architecture combined with 
DRL algorithms outperforms conventional D-RIS 
architectures with DRL in terms of max-min rate 
fairness.  

 We conduct a thorough analysis to investigate the 
impact of varying the number of UAV transmit 
antennas on the performance of the DRL algorithm. 
This analysis provides valuable insights into the 
scalability, adaptability, and robustness of our 
proposed solution, offering guidance for practical 
deployment and optimization of mmWave-NOMA 
systems. 

The remainder of this paper is structured as follows: 
Section II delineates the proposed mmWave-NOMA 
transmission system model. Section III elucidates the 
proposed design of RIS phase shift matrix, hybrid 
beamforming, and power allocation to users. Numerical 
results are presented Section IV, and lastly, Section V 
offers concluding remarks. 
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2 System Description 

As illustrated in Fig. 1, we examine a communication 
system at mmWave frequencies using NOMA with the 
assistance of a RIS and an UAV. The unmanned aerial 
vehicle (UAV) is outfitted with M  antennas, catering to 
K  single-antenna user equipment’s (UEs), and engages 
in collaboration with an RIS consisting N elements. The 

RIS is forming an 
x z

N N N   uniform rectangular 

array (URA) and includes a controller capable of 
intelligently adjusting the phase shift of each element 
[15]. Employing a hybrid beamforming structure with 

RF
N  radio frequency (RF) chains (where 

RF
N M ), the 

UAV transmits 
s

N  independent data streams to the UE 

terminals. To maximize multiplexing gain, we assume 
the data streams undergo initial precoding through 

digital beamforming denoted as RF s
N ND   in the 

baseband. Following the relevant RF processing, the 
digitally processed signal traverses M  phase shifters 
with a constant modulus for analog beamforming, 

utilizing the beamforming matrix RF
M NA  . 

Consequently, the hybrid beamforming matrix is 

expressed as 
1 2
, , ,

RF
N

    W AD w w w , with each 

column having a unit norm, i.e., 1,1
n RF

n N  w‖ ‖ . 

Additionally, the locations of the UEs, RIS, and UAV 
are denoted by [ , , ]

i i i i
x y zU , [ , , ]

r r r
x y zR , and 

[ , , ]
q q q

x y zQ , respectively. 

 
Fig. 1 System model for UAV-assisted BS using NOMA and 
hybrid beamforming 

In traditional RIS configurations, each RIS element 
functions independently. Put differently, the incoming 
signal aimed at the i -th element is exclusively reflected 
by that same i -th element, undergoing a phase shift 
adjustment. However, in our approach, we assume the 
establishment of interconnections among RIS elements, 
enabling the signal arriving at the i -th element to be 
redirected by other elements. This interconnected 

arrangement provides greater flexibility in crafting the 
RIS phase shift matrix, offering enhanced 
configurability that can potentially result in improved 
performance. Our research presents an innovative RIS 
scheme where the signal received by the i -th element 

can be redirected to another element, indicated as the i  -
th element, after undergoing a phase shift adjustment, as 
detailed below [20]: 
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Here, the phase shift matrix assumes a non-diagonal 

structure. It's crucial to highlight that the RIS phase shift 
matrix comprises just N  non-zero elements. In the 
context of NOMA transmission, K  UEs are categorized 

into 
RF

N  clusters (for simplicity in Fig. 1, we show one 

cluster), where each cluster corresponds to an 
independent data stream. Within each cluster, UEs can 
leverage NOMA and successive interference 
cancellation (SIC) techniques to address intra-cluster 
interference, while inter-cluster interference is alleviated 
through beamforming. As 

RF
N  RF chains can 

accommodate up to 
RF

N  data streams, ensuring at least 

one UE in each cluster is necessary to prevent idle RF 
resources. The proposed system operates in a DL mode, 
with the UAV transmitting to the UEs through BD-RIS. 

2.1 Channel Model 

We adopt a Rician fading channel model for all 
communication links in our analysis. Consequently, the 
channel between the UAV-RIS, UAV-UE (

k
u ), and 

RIS-UE (
k

u ) are respectively denoted by N MG  , 

1k M

U

h   and 1k N

R

h  , which can be mathematically 

expressed as [19]: 

0
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where 
0

  denotes the path loss at the reference distance 

of one meter,   and   represent the azimuth and 

elevation angles of the LoS component, respectively, d  
is the antenna separation, and   is the carrier 

wavelength. 
U

  and 
R

  represent the path loss 

exponents for the UAV-UE and RIS-UE links, 
respectively. Additionally, 

U
  and 

R
  indicate the 

Ricean factors, while G , 
k

Uh , and 
k

Rh  signify the 
deterministic LoS components and defined similar to (3) 

for 
k

Uh , and 
k

Rh . The random Rayleigh distributed non-

LoS (NLoS) components are represented by 
k

Uh , 
k

Rh . 
Based on the previously discussed channel models, the 

effective channel power gain between the UAV and the 
k -th UE with the assistance of the RIS, denoted as 

1 M

k

H  , is expressed as 
2

( ( ) )k k H

k U R
  H h h G W , 

where (.)H  is the Hermitian. 

2.2 Signal to Interference and Noise Ratio (SINR) 

Here, we assume that each UAV employs NOMA to 
provide communication service for UEs. Therefore, two 
UEs are grouped to perform NOMA transmission. 

Without loss of generality, we assume that 
i j
H H . In 

the NOMA scheme, SIC is applied at the receiver, 
allowing the UE with a higher channel gain to eliminate 
or reduce the interference from UEs with lower channel 
gains. Hence, the SINR of j -th UE at the i -th UE  

( j i

j
  ), can be expressed as: 

2

2 2

( ( ) )

( ( ) )

i i H

j U Rj i

j
i i H

i U R

P

P




 


 


  

h h G W

h h G W
   (6) 

where 
i

  is the transmit power coefficient for the i -th 

UE and 
1

1
K

i

i




 . The SINR of i -th UE can be 

expressed as: 
2

2 2

( ( ) )
,

( ( ) )

i i H

i U R

i
i i H

j U R

P

P




 

 


  

h h G W

h h G W
   (7) 

where   represents the imperfect SIC coefficient, e.g., 

1   for no SIC and 0   for perfect SIC. Also, the 

SINR of j -th UE can be written as [2, 21]: 
2

2 2

( ( ) )

( ( ) )

j j H

j U R

j
j j H

i U R

P

P




 

 


  

h h G W

h h G W
   (8) 

2.3 Date Rate and Fairness Function 

Data rate refers to the information rate that can be 
transmitted over a given bandwidth. Hence, the data rate 

of k -th UE (
kR ) is obtained as: 

 2
log 1 , { , }.k

k
R k i j       (9) 

Therefore, the sum-rate of users ( R ) can be obtained 
as follows: 

 2

1 1

log 1 .
K K

k

k

k k

R R 
 

        (10) 

In wireless communication, users with better channel 
conditions typically achieve higher data-rate compared 
to those with poorer channels, leading to unfairness 
among users. To address this issue, we propose defining 
utility function that incorporates various levels of 
fairness. In this paper, we consider max-min fairness  

(  ) as a  -fair utility function as follows [22]: 

1

( ) , 1, 0.
1

R
R



  




   


 (11) 

where   refers to the different levels of rate-fairness. 

2.4 Problem Formulation 

In the system under consideration, the UAV aims to 
maximize the utility function which is defined as a max-
min fairness in (11). To this end, we need to optimally 
design the hybrid beamforming matrix ( W ) at the UAV, 
passive beamforming matrix ( Θ ) at the RIS, and power 

allocation coefficients (
k

 ). Therefore, the optimization 

problem is formulated as:  

   
, ,

max ( )
k

R



W Θ

 (12) 

 
subject to: 
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According to the constraint 
1

S  each UE SINR must be 

higher than the predefined threshold value (
th

 ) to 

satisfy the minimum QoS requirements. The constraint 

2
S  ensures successful SIC performance. Sum of 

transmission power gains of NOMA clusters must be 
one according to constraint

3
S . The constraint 

4
S  and 

5
S  denotes the phase shift constraints of each RIS sub-

surface. Finally, constraints 
6

S  and 
7

S  are the 

restriction of the power for hybrid beamforming matrix 
and restriction of constant modulus in the analog 
domain, respectively. 

2.5 Proposed Solution 

In this context, in this scenario, we present a method to 
ascertain the hybrid beamforming matrix at the UAV, 
the phase shift matrix at the BD-RIS, and the power gain 
coefficients for NOMA, as depicted in equation (10). 
Given the non-convex characteristics of the objective 
functions involved, traditional approaches designed for 
convex problems prove inadequate. Hence, we advocate 
for the application of DRL algorithms, incorporating the 
following parameters: 

Agent: The UAV operates as the agent in our system 
setup. It takes actions based on its observations and aims 
to optimize its performance over time. 

Action: The action (
t

a ) refers to the set of feasible 

choices available to the UAV regarding hybrid 
beamforming configuration, RIS phase shift matrix 
adjustments, and power gain coefficients for NOMA 
transmission. 

State: The state at time t  (
t

s ) represents the current 

status of the system, specifically the SINR of the most 
recent communication link. 

Reward: The reward function (
t

r ) is a pivotal element 

of the DRL framework, serving as feedback for the 
agent's actions. In our proposed framework, the reward 

function is formulated as a weighted sum of the 
objective function and various constraints. It guides the 
agent's learning process by providing a quantitative 
measure of performance, incentivizing actions that lead 
to improved system behavior while penalizing deviations 
from desired outcomes. 

Soft Actor-Critic (SAC) Method 

The soft actor-critic (SAC) algorithm represents a 
online, off-policy, model-free actor-critic RL technique. 
It seeks to compute an optimal policy that not only 
maximizes the long-term expected reward but also 
increases the entropy of the policy. Entropy here serves 
as a gauge of policy uncertainty given a certain state, 
with higher entropy values encouraging more 
exploration. By simultaneously maximizing both the 
expected cumulative long-term reward and policy 
entropy, SAC strikes a balance between exploiting 
known strategies and exploring new possibilities within 
the environment. 

SAC differs from its predecessors in its approach to 
policy optimization, blending stochastic policy 
optimization with elements of deep deterministic policy 
gradient (DDPG)-style methods. One key aspect of SAC 
is its incorporation of entropy regularization. The policy 
is trained to navigate a trade-off between expected return 
and entropy, where entropy represents the level of 
randomness in the policy. This linkage to the 
exploration-exploitation trade-off implies that higher 
entropy fosters greater exploration, thus potentially 
hastening learning processes. Moreover, it helps prevent 
the policy from prematurely converging to suboptimal 
solutions. The pseudo-code for the SAC method can be 
found in Algorithm (1). 

Softmax Deep Double Deterministic Policy Gradients 
(SD3) Algorithm 

SD3 represents a continuous control DRL algorithm 
that updates both the optimal  -value and policy 
functions iteratively using the actor-critic method [19]. It 
utilizes neural networks, specifically the critic and actor 
networks, to approximate the policy function ( )s  and 

 -value function ( , )s a , respectively. The actor 

network is responsible for selecting actions, while the 
critic network estimates the  -value to guide the actor 

toward maximizing them. To address continuous action 
spaces and minimize discretization errors, SD3 
integrates techniques from deep  -networks (DQN) and 

double  -learning. The methodology incorporates dual-
actor and dual-critic approaches, along with target 
network techniques. 
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Algorithm 1: Pseudo-code of SAC method 
1: Initial  -function parameters 

1
 , 

2
 , policy 

parameters  , empty replay buffer   
2: Set main parameters into target parameters 

,1 1targ
  , 

,2 2targ
   

3: repeat 
4: Select action (. | )a s by observing state s  

5: Execute a  in the environment 
6: Observe reward r , next state s 

, and done signal 

d   
7: Store a tuple ( , , , , )s a r s d  in replay buffer   

8: If s 
 is terminal, reset environment state. 

9: if it's time to update then 
10
: 

for j  in range (update) do 

11
: 

Sample a batch of transitions, randomly, 

{( , , , , )}B s a r s d  from   

12
: 

Compute targets: 

1,2

( , , ) (1 ) min ( , )

log ( | ) , (. | )

(

)
ii

y r s d r d s a

a s a s



 



  

  



  

   





 



 
13
: 

Update  -functions:  

2

( , , , , )

1
( , ) ( , , )

| |
( )

i i

s a r s d B

s a y r s d
B

 






  

 
14
: 

Update policy: 

1,2

1

| |

min ( , ( )) log ( ( ) | )(
ii

s B

B

s a s a s s



    






  

, where ( )a s
  is a sample from (. | )s . 

15
: 

Update target networks:  

, ,
(1 )

targ i targ i i
       for 1, 2i   

16
: 

end for 

17
: 

end if 

18
: 

until Convergence 

The SD3 learning framework employs eight neural 
networks, with only the critic and actor networks 
undergoing training. The target networks are updated 
through soft copying. SD3 utilizes experience replay for 
training, where interaction samples are stored in an 
experience buffer and randomly sampled mini-batches 
are used for network training. This enhances sample 
utilization and reduces sample correlation. In SD3, the 
critic network employs clipped double  -learning 

integrated with the Boltzmann softmax operator to 
approximate  -values and create temporal difference 
(TD) errors [23]. The pseudo-code for the SD3 method 
is provided in Algorithm (2). 

Algorithm 2: Pseudo-code of SD3 
1: Input: Initial critic networks 

1
 , 

2
 , and actor 

networks 
1

 , 
2

  with random parameters 
1
 , 

2
 , 

1
 , 

2
  

2: Input: Initial target networks 
1 1

  , 
2 2

  , 

1 1
  , 

2 2
   

3: Input: Initialize replay buffer   
4: for 1, ,t T   do 

5: Based on 
1

  and 
2

 , select action a  with 

exploration noise (0, )    

6: Observing reward r and new state s 
 by executing 

action a , and done d  
7: Store transition tuple ( , , , , )s a r s d  in / /d   

8: for 1, 2i   do 

9: Sample a mini-batch of N  transitions 

{( , , , , )}s a r s d  from   

10: Sample K  noises (0, )   

11: ˆ ( ; ) clip( , , )
i i

a s c c      

12: 
1,2

ˆ ˆ( , ) min ( ( , ; ))
j j j

s a s a    


   

13: Compute: 

 
ˆ ˆ( ( , )) ( ( , ))

ˆ ˆ

softmax ( , .)

ˆ( , )
/

ˆ ˆ( ) ( )

s a s a

a p a p

s

e s a e

p a p a



    

 



 

  



   
   
   

 




 

 





 
14:  (1 ) softmax ( , .)

i
y r d s      

15: Update the critic 
i

 :  

 21
( , ; )

i i i

s

s a y
N

    

16: Update actor 
i

 :  

( ; )

1
( ( ; )) ( , ; ) |

i i
i a i i a s

s

s s a
N

    


      

17: Update target networks: (1 )
i i i

      , 

(1 )
i i i

       

18: end for 
19: end for 
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2.6 Complexity Analysis 

The computational complexity of DRL algorithms can 
vary significantly based on several factors, including the 
intricacy of the environment, the size of the state and 
action spaces, and the underlying algorithm. In our 
proposed method, which utilizes the DDPG, TD3, and 
SAC algorithms, the complexity order differs among 
them. DDPG generally has a lower computational 
complexity compared to TD3 and SAC. This is because 
TD3 and SAC incorporate additional components that 
increase their computational cost. For example, TD3 
employs two critic networks and takes the minimum 
value between them to reduce overestimation bias, 
adding complexity to the learning process. Similarly, 
SAC, with its entropy-regularized objective, introduces 
further computational overhead, particularly in 
environments with large state-action spaces or more 
complex dynamics. Despite the higher complexity of 
TD3 and SAC, there are techniques that can mitigate 
their computational demands. For instance, experience 
replay allows for more efficient learning by reusing past 
experiences, and prioritized experience replay further 
optimizes this process by focusing on more valuable 
experiences. Additionally, parallelization strategies can 
distribute the computation across multiple processors or 
GPUs, helping to alleviate some of the computational 
load. 

It is important to note that the complexity order 
mentioned here serves as a rough estimate of 
computational cost. The actual execution time can be 
influenced by a variety of factors, such as the hardware 
being used (e.g., CPUs vs. GPUs), implementation 
optimizations, and other specifics related to how the 
algorithm is applied. Therefore, while DDPG may 
typically have a lower complexity, real-world 
performance can vary depending on these additional 
considerations. 

3 Performance Evaluation 

In this section, we assess the effectiveness of the 
algorithms we have put forward for beamforming design 
at the UAV, BD-RIS phase shift matrix, and power 
allocation. The value of the parameters used in the 
simulation are listed in Table I.  

Table 1 Simulation Parameters 

Parameter Value 

Carrier frequency 28 GHz 

Bandwidth 100 MHz 

Max transmission power 30, 35, 40 dBm 

Number of UAV transmit antennas 8, 16, 32, 64 

Number of RIS elements 16 

Number of RF chains 3 

Number of data streams 3 

Number of clusters 3 

Number of UEs 6 

Noise power -174 dBm/Hz 

Minimum rate 2 bps/Hz 

3.1 Sum Rate 

Fig. 2 illustrates the sum rate of the proposed network 
across various maximum transmit power settings. It's 
evident that as the transmit power increases, the sum rate 
of clusters also rises. This escalation is attributed to the 
heightened SINR experienced by each user. 
Additionally, we conducted a comparative analysis of 
different DRL methods. Our findings indicate that the 
SAC algorithm consistently outperforms the TD3 and 
DDPG algorithms in terms of network performance. 

Fig. 3 depicts the relationship between the sum rate 
and the number of UAV antennas across various DRL 
methods. We observe a notable trend: as the number of 
UAV antennas increases, the sum rate also rises. This 
phenomenon occurs due to the enhanced spatial diversity 
and multiplexing gain enabled by the increased number 
of antennas. With more antennas, the UAV can employ 
sophisticated beamforming techniques to optimize signal 
transmission and reception. As a result, the overall sum 
rate of the system improves. Furthermore, the 
comparison among different DRL methods reveals 
insights into their efficacy in optimizing the system 
performance. 

3.2 Rate-Fairness Utility Function 

Fig. 4 illustrates the cumulative distribution function 
(CDF) of the fairness function across various values of 
α. When α decreases, resources are distributed more 
evenly among users, resulting in an increase in the 
fairness function. 

 
Fig. 2 Sum rate of the proposed network versus different 
levels of maximum transmit power 
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Fig. 3 Sum rate of the proposed network versus different 
number of UAV antennas. 

This indicates that as α decreases, the system 
prioritizes equitable resource allocation, aiming to 
ensure that each user receives a fair share of resources. 
However, it's important to note that there is a trade-off 
involved: while reducing α enhances fairness among 
users, it may also lead to a decrease in the overall system 
performance or efficiency. Thus, selecting an 
appropriate value for α involves balancing the need for 
fairness with the desire to optimize system performance. 

 
Fig. 4 Effect of  on fairness function 

 
Fig. 5 Sum rate comparison of D-RIS with BD-RIS 

 

3.3 Performance Comparison 

Comparison of BD-RIS and D-RIS performance 

Here, we evaluate how the performance of the 
proposed BD-RIS system compares to that of the 
traditional D-RIS architecture. Our findings clearly 
indicate that the BD-RIS system outperforms its D-RIS 
counterpart, which is shown in Fig. 5. The superiority of 
the BD-RIS system can be attributed to several factors. 
Firstly, BD-RIS offers enhanced adaptability and 
flexibility in manipulating electromagnetic waves 
compared to D-RIS. By enabling interconnections 
among RIS elements and facilitating dynamic phase shift 
adjustments, BD-RIS optimally shapes the wireless 
channel, resulting in improved signal quality and higher 
data rates. Moreover, BD-RIS's ability to exploit spatial 
multiplexing and diversity gains allows for more 
efficient utilization of available resources, leading to 
enhanced system performance. Additionally, BD-RIS's 
capacity to mitigate interference and optimize spectrum 
utilization further contributes to its superior performance 
compared to D-RIS. Overall, the comparison 
underscores the significant advantages of BD-RIS over 
traditional D-RIS architectures, highlighting its potential 
to revolutionize wireless communication systems by 
offering higher throughput, improved reliability, and 
enhanced spectral efficiency. 

In Fig. 6, we present a comparison of the bit error rate 
(BER) for the proposed network across varying numbers 
of RIS elements. The results clearly demonstrate that 
increasing the number of RIS elements leads to a 
reduction in BER. This is because having more RIS 
elements enhances the ability of the system to 
intelligently manipulate the signal propagation 
environment, improving signal quality and reducing 
transmission errors. Additionally, it is observed that BD-
RIS outperforms traditional D-RIS in terms of BER, 
showing consistently lower error rates. This is likely due 
to the more advanced design and functionality of BD-
RIS, which offers greater flexibility in controlling the 
reflection properties of the signal.  

 
Fig. 6 BER comparison of D-RIS with BD-RIS 
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Comparison of Different Multiple Access methods 

In this section, we compare the performance of the 
proposed NOMA transmission with two other multiple 
access schemes: space division multiple access (SDMA) 
and orthogonal multiple access (OMA). Fig. 7 illustrates 
the sum-rate achieved by various DRL algorithms across 
these different multiple access methods. 

The results clearly show that NOMA outperforms both 
SDMA and OMA in terms of sum-rate. This is because 
NOMA allows multiple users to share the same 
frequency resources by superimposing their signals with 
different power levels, enabling more efficient spectrum 
utilization. In contrast, OMA allocates distinct time or 
frequency resources to different users, leading to more 
rigid resource usage. SDMA, on the other hand, 
separates users by their spatial location, which can be 
effective in certain conditions but may not fully exploit 
the available spectrum in more complex environments. 
The superior performance of NOMA can be attributed to 
its ability to accommodate a higher number of users on 
the same frequency band while maintaining a higher 
overall data rate, especially when combined with 
advanced DRL algorithms. The learning-based 
optimization provided by the DRL algorithms further 
enhances the sum-rate by dynamically adapting the 
power allocation and other transmission parameters in 
NOMA, making it a more efficient solution compared to 
SDMA and OMA. 

 
Fig. 7 Performance comparison of the proposed NOMA 
scheme, SDMA, and OMA 

3.4 Convergence Analysis 

In Fig. 8, the convergence speed of various DRL 
algorithms is depicted. Notably, DDPG demonstrates 
faster convergence compared to TD3 and SAC methods. 
However, as highlighted in the preceding subsection, 
SAC achieves a higher sum rate despite its slower 
convergence speed. This observation underscores a 
fundamental trade-off between convergence speed and 
performance in DRL. In essence, optimizing for superior 
performance may necessitate sacrificing some 

convergence speed, and vice versa. This trade-off is 
inherent in DRL methodologies. Therefore, selecting the 
appropriate algorithm and hyper-parameters for a given 
problem is crucial, depending on the specific 
requirements and objectives at hand. Striking the right 
balance between convergence speed and performance 
ensures the effectiveness and efficiency of the DRL 
approach in addressing real-world challenges. 

 
Fig. 8 Convergence of different DRL methods 

4 Conclusion 

This paper has presented a comprehensive 
investigation into the utilization of BD-RIS and UAV in 
wireless communication systems, coupled with DRL 
techniques. We defined an optimization problem for 
performance improvement as a  -fair utility function. 
Our proposed DRL-based framework offers a powerful 
means to optimize the dynamic phase shift adjustments, 
enabling efficient hybrid beamforming, and effective 
power allocation for NOMA transmission. Through 
extensive simulations and performance evaluations, we 
have showcased the superiority of BD-RIS over 
conventional D-RIS architectures, emphasizing its 
transformative potential in revolutionizing wireless 
communication systems. Furthermore, our analysis of 
various DRL algorithms has shed light on the trade-offs 
between convergence speed and performance, 
highlighting the importance of selecting the appropriate 
algorithm and hyper-parameters based on specific 
application requirements. 
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