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Abstract: Long-term demand forecasting presents the first step in planning and developing 
future generation, transmission and distribution facilities. One of the primary tasks of an 
electric utility accurately predicts load demand requirements at all times, especially for 
long-term. Based on the outcome of such forecasts, utilities coordinate their resources to 
meet the forecasted demand using a least-cost plan. In general, resource planning is 
performed subject to numerous uncertainties. Expert opinion indicates that a major source 
of uncertainty in planning for future capacity resource needs and operation of existing 
generation resources is the forecasted load demand.  This paper presents an overview of the 
past and current practice in long- term demand forecasting. It introduces methods, which 
consists of some traditional methods, neural networks, genetic algorithms, fuzzy rules, 
support vector machines, wavelet networks and expert systems. 
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1 Introduction1 
A power system serves one function and that is to 
supply customers, both large and small, with electrical 
energy as economically and as reliability as possible. 
Another responsibility of power utilities is to recognize 
the needs of their customers (Demand) and supply the 
necessary energies. Limitations of energy resources in 
addition to environmental factors, requires the electric 
energy to be used more efficiently and more efficient 
power plants and transmission lines to be constructed 
[1]. Long-term demand forecasts span from eight years 
ahead up to fifteen years. They have an important role 
in the context of generation, transmission and 
distribution network planning in a power system. The 
objective of power system planning is to determine an 
economical expansion of the equipment and facilities to 
meet the customers' future electric demand with an 
acceptable level of reliability and power quality [2]. 

Accurate long-term demand forecasting plays an 
essential role foe electric power system planning. It 
corresponds to load demand forecasting with lead times 
enough to plan for long-term maintenance, construction 
scheduling for developing new generation facilities, 
purchasing of generating units, developing transmission 
and distribution systems. The accuracy of the long-term 
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load forecast has significant effect on developing future 
generation and distribution planning. An expensive 
overestimation of load demand will result in substantial 
investment for the construction of excess power 
facilities, while underestimation will result in customer 
discontentment. Unfortunately, it is difficult to forecast 
load demand accurately over a planning period of 
several years. This fact is due to the uncertain nature of 
the forecasting process. There are a large number of 
influential that characterize and directly or indirectly 
affect the underlying forecasting process; all of them 
uncertain and uncontrollable [3]. However, neither the 
accurate amount of needed power nor the preparation 
for such amounts of power is as easy as it looks, 
because: (1) long-term load forecasting is always 
inaccurate (2) peak demand is very much dependant on 
temperature (3) some of the necessary data for long-
term forecasting including weather condition and 
economic data are not available, (4) it is very difficult to 
store electric power with the present technology, (5) it 
takes several years and requires a great amount of 
investment to construct new power generation stations 
and transmission facilities [4]. Therefore, any long-term 
load demand forecasting, by nature, is inaccurate! 

Generally, long-term load demand forecasting 
methods can be classified in to two broad categories: 
parametric methods and artificial intelligence based 
methods. The artificial intelligence methods are further 
classified in to neural networks [1], [2], [4], [8], [10], 
support vector machines [15], genetic algorithms [14], 
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wavelet networks [12] [13], fuzzy logics [16] and expert 
system [17] methods. The parametric methods are based 
on relating load demand to its affecting factors by a 
mathematical model. The model parameters are 
estimated using statistical techniques on historical data 
of load and it's affecting factors. Parametric load 
forecasting methods can be generally categorized under 
three approaches: regression methods, time series 
prediction methods [3]. Traditional statistical load 
demand forecasting techniques or parametric methods 
have been used in practice for a long time. These 
traditional methods can be combined using weighted 
multi-model forecasting techniques, showing adequate 
results in practical system. However, these methods 
cannot properly present the complex nonlinear 
relationships that exist between the load and a series of 
factors that influence on it [2]. 

In this paper, we introduce a brief overview in long-
term forecasting methods. This paper is organized as 
follows. Next section briefly describes parametric 
models. Section III describes different artificial 
intelligence based methods and section IV is the 
conclusions of paper. 
 
2 Parametric Methods 

The three types of well-known parametric methods 
are as, trend analysis, end-use modeling and 
econometric modeling. 
 

2.1   Trend Analysis 
Trend analysis extends past rates of electricity 

demand in to the future, using techniques that range 
from hand-drawn straight lines to complex computer-
produced curves. These extensions constitute the 
forecast. Trend analysis focuses on past changes or 
movements in electricity demand and uses them to 
predict future changes in electricity demand. Usually, 
there is not much explanation of why demand acts as it 
does, in the past or in the future. Trending is frequently 
modified by informed judgment, wherein utility 
forecasters modify their forecasts based on their 
knowledge of future developments which might make 
future electricity demand behave differently than it has 
in the past [5]. 

The advantage of trend analysis is that, it is simple, 
quick and inexpensive to perform [5]. 

The disadvantage of a trend forecast is that it 
produces only one result, future electricity demand. It 
does not help analyze why electricity demand behaves 
the way it does, and it provides no means to accurately 
measure how changes in energy prices or government 
polities influence electricity demand [5]. 
 

2.2  End-Use Models 
The end-use approach directly estimates energy 

consumption by using extensive information on end 
users, such as applications, the customer use, their age, 
sizes of houses, and so on. Statistical information about 

customers along with dynamics of change is the basis 
for the forecast [5]. 

End-use models focus on the various uses of 
electricity in the residential, commercial, and industrial 
sector. These models are based on the principle that 
electricity demand is derived from customer's demand 
for light, cooling, heating, refrigeration, etc.  Thus, end-
use models explain energy demand as a function of the 
number of applications in the market [5]. 

Ideally, this approach is very accurate. However, it 
is sensitive to the amount and quality of end-use data. 
For example, in this method the distribution of 
equipment age is important for particular types of 
appliances. End-use forecast requires less historical data 
but more information about customers and their 
equipments [5]. 

This method predicts the energy consumptions. If 
we want to calculate the load, we have to have the load 
factor in each sections and different types of energy 
consumptions and then by load factor we can calculate 
the load in each section. 

The system load factor is defined as follows 
equation: 

Average - load demand
LoadFactor =

Peak - load demand

annual KWh energy
 =

peak - load demand × 8760 hours/year
                 

        (1) 

The disadvantage of end-use analysis is that most 
end-use models assume a constant relationship between 
electricity and end-use (electricity per appliance). This 
might hold for over a few years, but over 10 or 20-year 
period, energy saving technology or energy prices will 
undoubtedly change, and the relationships will not 
remain constant [6]. 

 
2.3  Econometric Models 

The econometric approach combines economic 
theory and statistical techniques for forecasting 
electricity demand. The approach estimates the 
relationship between energy consumption (dependent 
variables) and factors influencing consumption. The 
relationships are estimated by the least-square method 
or time series methods. One of the options in this 
framework is to aggregate the econometric approach, 
when consumption in different sectors (residential, 
commercial, industrial, etc.) is calculated as a function 
of weather, economic and other variables, and then 
estimates are assembled using recent historical data. 
Integration of the econometric approach in to the end-
use approach introduces behavioral components in to 
the end-use equations [5]. 

The advantage of econometrics are that it provides 
detailed information on future levels of electricity 
demand, why future electricity demand increases, and 
how electricity demand is affected by all the various 
factors [6], [7], [29]. 
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A disadvantage of econometric forecasting is that in 
order for an econometric forecast to be accurate, the 
changes in electricity remain the same in the forecast 
period as in the past. This assumption, which is called 
constant elasticity, may be hard to justify especially 
where very large electricity prices changes, make 
customers more sensitive to electricity prices. 

 
2.4  Differences Between These Traditional 

Mentioned Method 
As mentioned in the trend analysis, just past changes 

or movements in electricity demand and uses them to 
predict future changes in electricity demand, there isn't 
any process on why those movements happened. In this 
method, end users and their behavior aren't important. 
But in end use method, statistical information about 
customers along with dynamics of change is the basis 
for the forecast. 

In Economical methods, the results estimate the 
relationship between dependent variables and factors 
influencing consumption. The relationships are 
estimated by the least-square method or time series 
methods. 

In comparison, trend analysis can't be trustworthy; in 
this method we need a wise and knowing judge to 
recognize unreal date and omit them from previous 
information. 

Up to this part we describe the old methods for long 
term load forecasting. They are also useful today. But 
the new following methods can use for their accuracy 
and fast possessing system. Special the new methods are 
used for different economical inputs in forecasting. By 
these new methods, we can have a model from the past 
data and correct its inaccurate date. After that we can 
predict the following peak load. 

 
3  Artificial Intelligence Based Methods 

3.1  Artificial Neural Networks 
Artificial neural networks (ANNs) have succeeded 

in several power system problems, such as planning, 
control, analysis, protection, design, load forecasting, 
security analysis, and fault diagnosis. The last three are 
the most popular. The ANNs ability in mapping 
complex non-linear relationships is responsible for the 
growing number of its application to load forecasting 
[8], [9]. Most of the ANNs have been applied to short-
time load forecasting. Only a few studies are carries out 
for long-term load demand forecasting [10], [22], [24], 
[28]. 

In developing a long-term load forecast, the 
following are some of the degrees of freedom which 
must be iterated upon with the objective to increase the 
potential for an accurate load forecast: (1) fraction of 
the database that will be used for training and testing 
purpose, (2) transformations to be performed on the 
historical database, (3) ANNs architecture 
specifications, (4) optimal stopping point during ANNs 

training, and, (5) relative weights for use in forecast 
combination [8]. 

The design of neural network architecture involves 
decision making on type, size and number of neural 
being used [11]. 

The result of Output ANN is in (2). 
nY W Xi 1i i i= ∑ =                                                           (2) 

where i 1, 2, ..., n= , Xi is input, and Wi is weight of 
network and Yi is one of the ANN's outputs. 

The first question to be asked is if an ANN can learn 
to perform the desire application, and if so what would 
be the most suitable form of the network. In this section, 
various aspects of ANNs are analyzed to determine a 
suitable model. These aspects include the network 
architecture and method of training. There are three 
types which can be useful for long-term load demand 
forecasting: Recurrent neural network (RNN) for 
forecasting the peak load, feed-forward back 
propagation (FFBP) for forecasting the annual peak load 
[10] and radial basis function network.(RBFN) for 
fasting training and better following the peaks and 
valleys [4]. 

1) Recurrent neural network: Recurrent neural 
network contains feedback connections, which enable 
them to encode temporal context internally. This 
feedback can be external or internal. RNN has be ability 
to learn patterns from the past records and also to 
generalize and project the future load patterns for an 
unseen data [10]. We have different types of RNNs, 
such as Jordan RNN, Elman RNN and others. Feedback 
connections in these RNNs are different from network 
to network. For instance, Jordan RNN has feedback 
connections from output to input while the Elman RNN 
has feedback connections from its hidden layer neurons 
back to its inputs. Additional neurons in input layer, 
which accept these feedback connections, are called 
state or context neurons. The role of context neurons in 
RNN is to get inputs from the upper layer, and after 
processing send their outputs to the hidden layer 
together with other plan units. In long-term load 
demand forecasting, there is strong relationship between 
the present and next year loads. For this type of 
problem, Jordan's model of RNN proved to be suitable. 
However, it should be noted that as the period of target 
forecast loads becomes longer, the forecast errors might 
increases relatively [10]. This is why the feed-forward 
back propagation is used for forecasting loads of longer 
than 1 year. The Jordan RNN used in most of case study 
is shown in Fig. 1. 

2) Feed-forward back propagation: Feed-forward 
back propagation is one of is one of the most widely 
used neural network paradigms, which have been 
applied successfully in application studies. FFBP can be 
applied to any problem that requires pattern mapping. 
Given an input pattern, the network produces an 
associated output pattern. Its learning and update 
procedure is intuitively appealing, because it is based on 
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• Learning: GAs are the best known and widely 
used global search techniques with an ability to 
explore and exploit a given operating space 
using available performance (or learning) 
measures. 

• Generic Code Structure: GA operates on an 
encoded parameter string and not directly on the 
parameters. This enables the user to treat any 
aspect of the problem as an optimizable 
variable. 

• Optimality of the Solutions: In many problems, 
there is no guarantee of smoothness. Traditional 
search techniques often fail miserably on such 
search spaces. GA is known to be capable of 
finding near optimal solutions in complex 
search spaces. 

•  Advanced Operators: This includes techniques 
such as nicking (for discovering multiple 
solutions), combinations of Neural, Fuzzy, and 
chaos theory, and multiple-objective 
optimization. 

The GAs approach presented in this work is 
employed to find the optimum values of the state vector 
X that minimizes the absolute summation of the 
forecasting error r(t). In order to emphasize the “best” 
string and speed up convergence of the iteration 
procedure, fitness is normalized into range between 0 
and 1. The fitness function (ff) adopted is [14]: 

1
ff m1 k r(t)k 1
=

+ ∑ =
                                                    (3) 

where k is a scaling constant (for example, k=0.0001) 
Like other stochastic methods, the GA has a number of 
parameters that must be selected, size of population, 
probability of crossover and probability of mutation. r 
(t) is the error vector associated. GA tries to keep the r 
(t) in the allowed limitation. If the r (t) is kept in the 
allowed limitation, the fitness function has the best 
value for load demand forecasting [14]. 

Forecasting results using GA were found to be the 
best. This indicates that the GA approaches is quite 
promising and deserves serious attention because of its 
robustness and suitability for parallel implementation 
[14]. 

With r (t), we can calculate the load demand 
forecasting by the following equation: 

inP(t) a a t r(t)i 10 i= + +∑ =                                         (4) 

where P(t) is the peak load demand at time t, a0 , ia  are 
the regression coefficients relating the load demand P(t) 
to the time t. r(t) is the residual load at year (t). 
 

3.4  Support Vector Machine (SVM) 
SVM (Support Vector Machine) is a useful 

technique for data classification. Even though people 
consider that it is easier to use than Neural Networks, 

however, users who are not familiar with SVM often get 
unsatisfactory results at first [15]. 

The support vector machines (SVMs) are based on 
the principle of structural risk minimization (SRM) 
rather than the principle of empirical risk minimization, 
which conducted by most of traditional neural network 
models. SVMs have been extended to solve nonlinear 
regression estimation problems [16]. Recurrent neural 
network (RNN) is one kind of SVM which is based on 
the main concept in which every unit is considered as an 
output of the network and the provision of adjusted 
information as input in a training process. RNNs are 
extensively applied in long-term load time series 
forecasting and can be classified in three types, Jordan 
networks, Elman networks, and Williams and Zipser 
networks. Both Jordan and Elman networks use mainly 
past information to capture detailed information. 
Williams and Zipser networks take much more 
information from the hidden layer and back into 
themselves. Therefore, Williams and Zipser networks 
are sensitive when models are implemented. Jordan and 
Elman networks are suited to time series forecasting. 
Traditionally, RNNs are trained by back-propagation 
algorithms. SVMs with genetic algorithms are used to 
determine the weights between nodes [16]. 

The basic concept of the SVM regression is to map 
nonlinearly the original data x into a higher dimensional 
feature space. Hence, given a set of data 

NG {(x , a )}i i i 1= =  (where xi is the input vector, ia the 
actual value and N is the total number of data patterns), 
the SVM regression function is: 

(x)f g(x) w bi i= = ψ +                                            (5) 

where (x)iψ is the feature of inputs, and both iw and b 

are coefficients. The coefficients ( iw and b) are 
estimated by minimizing the following regularized risk 
function: 

( )
N1 1 2r(C) C a , f || ||i ii 1N 2

= Γ + ω∑ ε=
                          (6) 

where, 

0 if a f
(a, f )

a f         otherwise

− ≤ ε
Γε =

− − ε

⎧⎪
⎨
⎪⎩

                           (7) 

and C and ε are prescribed parameters. In (6), Γε (a, f) is 
called the ε-insensitive loss function. The loss equals 
zero if the forecasted value is within the ε-tube (7). The 
second term, 1/2 ||w||², measures the flatness of the 
function. Therefore, C is considered to specify the trade-
off between the empirical risk and the model flatness. 
Both C and ε are user-determined parameters. 

The architecture of SVMs with genetic algorithm 
(SVMG) is shown in Fig. 5. 

The superior performance of the RSVMG model has 
several causes. First, the RSVMG model has nonlinear 
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Fig. 5 Architecture of SVMG. 
 

mapping capabilities and thus can more easily capture 
electricity load data patterns than can the ANN and 
regression models. Second, improper determining of 
these three parameters will cause either over-fitting or 
under-fitting of a SVM model. In this section, the Gas 
can determine suitable parameters to forecast electricity 
load. Third, the RSVMG model performs structural risk 
minimization rather than minimizing the training errors. 
Minimizing the upper bound on the generalization error 
improves the generalization performance compared to 
the ANN and regression models. 
 

3.5  Fuzzy Logic Model 
Fuzzy control systems are rule-based systems in 

which a set of so-called fizzy rules represents a control 
decision mechanism to adjust the effects of certain 
stimulus. The aim of fuzzy control systems is normally 
to replace a skilled human operator with a fuzzy rule-
based system. The fuzzy logic model provides an 
algorithm, which can convert the linguistic strategy 
based on expert knowledge into an automatic strategy. 
Fig. 6 represents the basic configuration of a fuzzy logic 
system, which consists of a fuzzification, knowledge 
base, fuzzy interface and a defuzzification (IO). The 
fuzzy logic method is applied for scoring. The 
application of fuzzy rules will improve the model 
accuracy by avoiding arbitrariness for the purpose of the 
stud. The fuzzy rule base is composed of some rules 
generated from the analysis of the historical load data 
[16], [21]. 

One of the applications of the fuzzy rules is to 
combine them with neural network to train ANN and 
have a better load demand forecasting. The training 
patterns for the ANN models were collected from the 
historical load data. The number of training cycles has 
been determined through a trial process, to avoid 
overtraining [16]. 

The benefit of the proposed hybrid structure was to 
utilize the advantages of both, i.e., the generalization 
capability of ANN and the ability of fuzzy inference for 
handling and formalizing the experience and knowledge 
of the forecasters. It has been demonstrated that the 
method give relatively accurate load forecasts for the 
actual data. The test results showed that this  method  of 

Fig. 6 Block diagram of the fuzzy logic system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7 Structure of ANN and Fuzzy based used. 

 
forecasting could provide a considerable improvement 
of the forecasting accuracy. This indicates that the fuzzy 
rules and the training patterns for the ANN is quite 
promising and deserve serious attention of its robustness 
and suitability for implementation. It can be concluded 
that the outcome of the study clearly indicates that the 
proposed composite model can be used as an attractive 
and effective means for the industrial load forecasting. 
The improvement of forecast accuracy and the 
adaptation to the change of customers would fulfill the 
forecasting needs [16]. Fig. 7 shows the structure of 
ANN and Fuzzy based used in forecasting. 

We can also combine two different methods to 
achieve better result. These two methods can be ANN 
and Fuzzy control. Long term load forecasting of power 
system is affected by various uncertain factors. Using 
clustering method numerous relative factors can be 
synthesized for the forecasting model so that the 
accuracy of the load forecasting would be improved 
significantly. A clustering neural network consisting of 
logic operators is quoted, which can be used in long 
term load forecasting Applying logic operators and in 
the fuzzy theory, the algorithm speed of the clustering 
network will be increased. Although competitive 
learning algorithm is used here for the network, it solves 
the dead unit problem and gives more room to select the 
initial values of the clustering center in the clustering 
analysis of the history data. The proposed model 
considers the influences of both history and future 
uncertain factors [25], [27], [31], [32]. 
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3.6  Expert System 
The confidence levels associated with classical 

forecasting techniques, when applied to forecasting 
problem in mature and stable utilities are unlikely to be 
similar to those of dynamic and fast growing utilities. 
This is attributed to the differences in the nature of 
growth, socio-economic conditions, occurrence of 
special events, extreme climatic conditions, and the 
competition in generation due to the deregulation of the 
electricity sector with possible changes in tariff 
structures. Under such conditions, these forecasting 
techniques are insufficient to establish demand forecast 
for long-term load demand. Consequently, this case 
requires separate consideration either by pursuing the 
search for more improvement in the existing forecasting 
techniques or establishing another approach to address 
the forecasting problem of such systems [17]. 

In this section, the classical forecasting methods are 
firstly applied to obtain the long-term load demand 
forecasts, for a typical fast growing utility as well as 
normal developing system [17]. 

A poor performance is observed when such methods 
are applied to fast developing system, whereas most of 
these models are valid when used to produce the 
forecasts of the normal developing system. 
Consequently, an extended logistic model is developed 
to reflect the critical forecasting problem in fast growing 
areas. Although the developed model gives an accurate 
load demand forecast compared with the classical 
models, it is hardly difficult to dependent on single 
method for producing the demand of such fast growing 
and dynamic system [17]. This is because several 
important factors related to the cyclic and dynamic 
events that contribute significantly to the system load 
are difficult to involve it into the existing forecasting 
models. 

Thus, there is a need to develop a computational tool 
which allows one to store the knowledge associated 
with this problem along with the mathematical models 
to support the choice of the most suitable load 
forecasting model, for long-term power system 
planning. Therefore, the implementation of long-term 
forecasting strategies using a knowledge-based expert 
system (ES) is then presented in this section. In the 
expert system, key system variables which have major 
effects on system load are identified based on past 
planners experiences. A set of decision rules relating 
these variables are then established and stored in the 
knowledge base to select the recommended forecasting 
[17]. 

The main components of the proposed expert system 
are shown in Fig. 8. 

With the knowledge base at hand (rules and facts), 
an inference engine can be used to search through this 
knowledge base according to the solution strategy. The 
detailed procedures of the solution strategy to ascertain 
the accuracy and credibility of selecting forecasting 
method. In addition to knowledge base, inference 

engine, solution strategy, a user interface is also 
developed in the expert system to facilitate the 
navigation between the expert system and the user. 

The variables of the formulated problem can be 
grouped into Static and Dynamic Facts as follows: 

Static Facts: This kind of knowledge is developed 
before starting the planning process. A sample of these 
facts is: system conditions to identify the current 
situation of the system, i.e., mature, or under 
developing, isolated or interconnected with other 
system, etc. 

Forecasting horizon to define the load forecasting 
period, i.e., long-term. 

• Load pattern to describe the load behavior 
(stable, or dynamic pattern, cyclic, or seasonal 
pattern, or combination of all, time of system 
peak, load types, etc.) 

• Historical peak load to indicate annual and 
seasonal growth, coincidence factor, area peak, 
etc. 

• Historical energy to describe the information 
related to number of consumers of each sector, 
consumption rate, tariff rate, etc. 

• Major factors affecting the system peak, i.e., 
weather variables, economic variables, 
demographic variables, special event, 
suppressed demand, bulk loads to be connected 
into the network, coincidence factor of the 
system peak, etc. 

Dynamic Facts: These facts are developed and 
automatically updated during the inference process to 
represent the planning attributes needed for evaluating a 
decision making process. Samples of these facts include 
the following: 
 
 

 
Fig. 8 Structure of expert system for long-term load 
forecasting. 
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• load and energy attribute for the estimated load 
and energy forecast; 

• System losses attribute for the estimated system 
losses; 

• Error attribute related to the forecasting model. 
In this section, a long-term load forecasting is 

developed and classified according to the forecasting 
problem using a knowledge-based expert system (ES). 
The proposed methodology is applied successfully to 
forecast yearly peak load for normal and fast developing 
power systems. Since the expert system is very flexible 
in updating the forecasting methods and heuristic rules, 
it is expected that the expert system can serve as a 
valuable assistant to system planners in performing their 
annual load forecasting duties. Finally, it can be 
expected to serve as a valuable assistant also for training 
purposes [17]. 

 
4  Contrasting New Forecasting Methods 

Recurrent neural network (RNN) has be ability to 
learn patterns from the past records and also to 
generalize and project the future load patterns for an 
unseen data. In this type, some additional neurons are 
available. Additional neurons in input layer, which 
accept these feedback connections, are called state or 
context neurons. The role of context neurons in RNN is 
to get inputs from the upper layer, and after processing 
send their outputs to the hidden layer together with 
other plan units. 

In the other neural network method, feed-forward 
back propagation an input pattern is given, the network 
produces an associated output pattern. Its learning and 
update procedure is intuitively appealing, because it is 
based on a relatively simple concept: the network is 
supplied with both a set of patterns to be learned and 
desired system response for each pattern. This method is 
much better than the RNN method. Because if the 
network gives the wrong answer, then the weights are 
corrected so that the error is lessened and as a result 
future responses of the network are more likely to be 
correct. It can have a trustworthy result. 

Another method for long term load forecasting is 
Wavelet Network. The most advantage factor of wavelet 
network is not spanned inputs although the accuracy of 
model is better than multi layer neural networks. This is 
one reason which can be ended up in this choice. It has 
more advantages to apply to long-term forecast. The 
multi-resolution analysis capability of wavelet functions 
has much power in function approximation to obtain 
better accuracy. This accuracy can make a better result 
in future forecasting. 

For one method, we can call Genetic Algorithm for 
long-term load demand forecasting, Genetic algorithms 
are a numerical optimization technique. More 
specifically, they are parameter search procedures based 
upon the mechanics of natural genetics. Forecasting 
results using GA were found to be the best. This 
indicates that the GA approaches is quite promising and 

deserves serious attention because of its robustness and 
suitability for parallel implementation. 

Other most commonly method is SVM. This method 
is much more comparable with ANN. First, the RSVMG 
model has nonlinear mapping capabilities and thus can 
more easily capture electricity load data patterns than 
can the ANN and regression models. Second, improper 
determining of these three parameters will cause either 
over-fitting or under-fitting of a SVM model. Third, the 
RSVMG model performs structural risk minimization 
rather than minimizing the training errors. 

Fuzzy system as another method is normally to 
replace a skilled human operator with a fuzzy rule-based 
system. One of the applications of the fuzzy rules is to 
combine them with neural network to train ANN and 
have a better load demand forecasting. 

In expert system, we can use traditional methods to 
forecast the peak load forecasting. The expert system is 
very flexible in updating the forecasting methods and 
heuristic rules, it is expected that the expert system can 
serve as a valuable assistant to system planners in 
performing their annual load forecasting duties. 

 
5  Conclusions 

Load forecasting plays a dominant part in the 
economic optimization and secure operation of electric 
power systems. 

Long-term load forecasting represents the first step 
in developing future generation, transmission, and 
distribution facilities. Any substantial deviation in the 
forecast, particularly under the new market structure, 
will result in either overbuilding of supply facilities, or 
curtailment of customer demand. The confidence levels 
associated with classical forecasting techniques, when 
applied to forecasting problem in mature and stable 
utilities are unlikely to be similar to those of dynamic 
and fast growing utilities.  This is attributed to the 
differences in the nature of growth, socio-economic 
conditions, occurrence of special events, extreme 
climatic conditions, and the competition in generation 
due to the deregulation of the electricity sector with 
possible changes in tariff structures. Under such 
conditions, these forecasting techniques are insufficient 
to establish demand forecast for long-term power 
system planning. Consequently, this case requires 
separate consideration either by pursuing the search for 
more improvement in the existing forecasting 
techniques or establishing another approach to address 
the forecasting problem of such systems. 

Different methods of long-term load demand 
forecasting are defined in this paper. All of these 
methods can forecast the load of the power system, but 
the amount of previous data and such variables which 
they need to forecast, make them different in accuracy 
from area to area. 

Finally, for long-term load forecasting, we should 
know the power system in details, and after that we can 
select the best method for the specified power system. 
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Sometimes we can combine different methods and 
compare the accuracy of them together. 

Traditional methods, such as time series, regression 
models and etc. are used in most of the countries, 
because of their reliable result. 

Neural networks can solve nonlinear problems, and 
because of nonlinear behavior of load, so they can be 
useful for long-term load forecasting. 

Genetic algorithm can forecast long-term load 
forecasting, when we have a lot amount of different 
variables and we want to find the best solution to follow 
the future load. Also it can be useful to estimate the 
support vector machine parameters. 

Wavelet can estimate peak and valley of load 
behavior better than Furious series. It can combine with 
ANN have a better forecast. 
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