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Abstract: The Global Positioning System (GPS) is vulnerable to various deliberate and 

unintentional interferences. Therefore, identifying and coping with various interferences in 

this system is essential. This paper analyzes a method of reducing the dimensions of Cross 

Ambiguity Function (CAF) images in improving the identification of spoofing interference 

at the GPS using Multi-Layer Perceptron Neural Network (MLP NN) and Convolutional 

Neural Network (CNN). Using the proposed method reduces data complexity, which can 

reduce the number of learning data requirements. The simulation results indicate that, by 

applying the proposed image processing algorithm for different dimensions of CAF images, 

the CNN performs better than MLP NN in terms of training accuracy; the MLP NN is 

superior to CNN in terms of convergence speed of training. In addition, the results 

demonstrate that the operation of the proposed method is appropriate in the case of small-

delay spoofed signals. Therefore, for the intervals above 0.25 code chip, the proposed 

method detects spoofing attacks with a correct detection probability close to one. 
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1 Introduction1 

HE Global Positioning System (GPS) is a satellite 

system widely used today for positioning and 

timing. GPS, being used in various fields, is a vital part 

of the national infrastructure, and its security is an 

important issue. GPS signals travel long distances from 

satellites to receivers, so they have meager power on the 

ground and are weak against various disturbances. 

Spoofing attack is known as the most dangerous 

interference in GPS. In this type of attack, the spoofer 

sends a signal structurally similar to the authentic GPS 

signal to receiver and forces the receiver to position 

incorrectly. Because of this similarity in the structure of 
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the authentic signal and the spoofing signal, interference 

detection is crucial. Detection of spoofing interference 

is mandatory in protecting navigation systems [1, 2]. 

   Monitoring signal power in the GPS band is one of the 

commonest methods of spoofing interference detection. 

Monitoring the correlation function distortion in the 

tracking stage is another criterion used to detect 

interference in the GPS [3]. Signal Quality 

Monitoring (SQM) is a criterion for measuring 

correlation function distortion which has been widely 

investigated. Several countermeasures for measuring 

interference have been introduced [4]. In [5], the authors 

examined the ratio test criterion under the presence of 

the spoofing signal. Pirsiavash et al. [6] suggested a 

countermeasure for monitoring distortion in the 

frequency domain as a two-dimensional SQM method. 

In [7], the authors mitigate spoofing attacks in GPS 

receiver using least mean squares-based adaptive filter. 

Moazedi et al. [8] investigated real-time interference 

detection in tracking loop of GPS receiver. Borhani-

Darian et al. [9] presented Multi-Layer Perceptron 

Neural Network (MLP NN) and complex Convolutional 

Neural Network (CNN) structure to detect GNSS 

spoofing attacks. Nowadays, deep neural network 

structures and machine learning have been very 

successful in various applications. For example, in [10], 
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the authors utilized deep CNN and extreme learning 

machines stabilized by the chimp optimization 

algorithm to diagnose COVID-19 from X-Ray images. 

In [11] Naderan et al. used combined machine learning 

algorithms and fuzzy logic for classification of trust 

factor in social networks. The high performance of 

CNN made us base our work on reference [9], which 

employed CNN in the field of GPS spoofing detection. 

   In this work, the aim is to detect spoofing attacks 

using Cross-Ambiguity Function (CAF), which will be 

discussed in the following. These functions are fed and 

trained as data to MLP NN and CNN, and finally, after 

learning, the neural networks will be able to detect 

spoofing attacks from CAFs. On the other hand, these 

functions have many volumes and dimensions, and it 

will require a strong processor to learn MLP NN and 

CNN. In particular, this paper proposes an effective and 

known preprocess method to reduce CAF dimensions. 

This work aims to explore this method's capabilities and 

modify it to use on CAF data appropriately. Then, to 

prove the claim, tests are performed, and to validate the 

results, a comparison is made with other similar 

reported works. 

   In the following, the proposed method is presented 

along with the flowchart. By applying this method to 

CAF images and then feeding these images to MLP NN 

and CNN, the performance of the proposed method is 

evaluated in the results section. Finally, conclusions are 

drawn, and references are listed. 

 

2 Cross Ambiguity Function 

   One of the methods of detecting the spoofing attack is 

the CAF. These functions are obtained in acquisition 

stage of the receivers after a two-dimensional search in 

Doppler frequency and the code phase containing 

essential information on the presence of spoofing 

signals. When there is a GPS spoofing signal, there is 

more than one peak in CAF images, and if only the 

original signal is present, a single peak is observed in 

CAF images (according to Figs. 1 and 2). Two different 

hypotheses are intended and tested [9]: 

1. The null hypothesis (H0), stating that the legitimate 

signal (S(.)) and noise (η(.)) are present, but there is no 

spoofing signal (i.e., H0: Y(t) = S(t) + η(t)). 

2. The alternative hypothesis (H1), stating that both the 

legitimate signal, spoofed signal (Ss(.)), and noise are 

present in the dataset (i.e., H1: Y(t) = S(t) + Ss(t) + η(t)). 

   In the absence of a spoofing signal, the legitimate 

signal can be stated by (1): 
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where M is the number of spreading codes, ai is the 

carrier amplitude of the i-th signal, ci(t) is the spreading 

code of i-th satellite, di(t) is the i-th signal data bit 

stream, τi(t) is the i-th signal code phase, ωc is the 

carrier frequency, ωIF is the intermediate frequency and 

φi(t) is the i-th carrier phase. Also, in the presence of the 

spoofing attack, the spoofing signal structure is similar 

to the structure of the legitimate signal in the form 

of (2): 
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where Ms denotes the number of spoofed signals. In this 

case, the only spreading code ci(t) is the same as the 

legitimate signal spreading code and amplitude of the 

spoofed signal as,i, code phase τs,i(t), and carrier phase 

φs,i(t) is different from the legitimate signal [12]. 

   The total signal at the victim receiver antenna during a 

spoofing attack is as (3): 
 

                     sY t S t S t t    (3) 

 

where η(t) is the received noise typically modeled as 

zero-mean, additive, white, and Gaussian [9]. 

   Detection of spoofing attacks using CAF is not always 

straightforward. In the following cases, it is challenging 

to detect spoofing attacks using CAF: 
 

  
Fig. 1 CAF in the absence of spoofing signal. Fig. 2 CAF in the presence of spoofing signal. 
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 Environments with significant multi-path: In the 

presence of multi-path, multiple observable peaks 

occur frequently. The peak points of the multi-path 

are typically close to the legitimate signal peak in 

Doppler (i.e., within 10’s of Hz) and in time (i.e., 

within 10’s of microseconds). In [13], the way to 

detect this type of spoofing attack is presented. 

 Spoofing signals very close to the legitimate signal 

in the Doppler frequency and code phase: In the 

situation where the spoofed and desired signals are 

close in Doppler (i.e., within 10’s of Hz), and time 

(i.e., within the spreading code symbol duration, 

e.g., ~1 microsecond for the GPS C/A-code), only 

one peak may be observable in the CAF. 

Monitoring the CAF for multiple peaks renders a 

less effective technique to detect spoofing. In such 

cases, a variety of methods have been examined to 

detect spoofing, which are similar to SQM 

techniques used by civil aviation augmentations to 

detect malformations in legitimate Global 

Navigation Satellite System (GNSS) signals [14]. 

 Spoofing signals are much higher in amplitude than 

the legitimate GNSS signals accompanied by noise: 

In this situation, it can be difficult to detect multiple 

peaks in the CAF, because the true signal peaks are 

much lower in amplitude than the spoofed signal 

peaks. Furthermore, the noise floor may be 

elevated. In [13], it is suggested that CAF 

monitoring be accompanied by coarse Automatic 

Gain Control (AGC) monitoring to detect the 

situation where the noise floor has been 

significantly altered. 
 

3 Proposed Method 

   In [9], a spoofing attack has been identified according 

to the characteristics of the peak points related to the 

CAF images, using the MLP NN and CNN. 

Furthermore, a complex CNN structure with 13 layers 

of convolution with high training accuracy has been 

used to classify the signals into two classes: spoofing 

and legitimate signals. Fig. 3 depicts the acquisition-

based spoofing detection scheme of the GNSS system 

presented in [9] using the CNN [15, 16]. 

   CAF images have a large size; therefore, detecting the 

spoofed signal from CAF using artificial intelligence 

requires a lot of training time and deep processing. On 

the other hand, in addition to the accuracy of correct 

detection of the spoofing attack, NNs' time for correct 

detection of the spoofing attack must be as short as 

possible. Therefore, we are looking for approaches to 

improve the timing and accuracy of deep NNs. For this 

reason, in this paper, the algorithm of the volume and 

dimensions reduction of the Latent Semantic Analysis 

(LSA)-transform is recommended [17-22]. 

   LSA is a technique in natural language processing, 

particularly distributional semantics, for analyzing 

relationships between a set of documents and the terms 

they contain by producing a set of concepts related to 

the documents and terms. It uses singular value 

decomposition, a mathematical technique to scan the 

unstructured data to pinpoint hidden relationships 

between terms and concepts. One of the effective ways 

to reduce the dimensions of image data is the LSA-

transform. According to LSA-transform, this method 

eliminates the trivial information of the image matrix 

and reduces its size and dimensions. Assume that I is an 

image matrix and M is the matrix of the brightness of 

the image pixels, in which case, the LSA-transform only 

selects even columns and rows of the matrix M and 

forms M1. For better understanding, you can see the 

grey image in Fig. 4 that has 2129×3840 dimensions. 

This method was applied four times to the image, and 

the image in Fig. 5 was obtained. As can be seen, the 

general concept of the image is recognizable [19]. 

 
4 Procedure 

   In the present study, CAF images were extracted from 

the acquisition stage of the GPS receiver. The LSA-

transform method as the proposed pre-processing 

method was applied to the CAF function. These images 

were then fed to MLP NN and CNN to decide on the 

presence or absence of the signal. Fig. 6 shows the 

general diagram of the proposed method of spoofing 

detection. 

 

 
Fig. 3 Spoofing detection scheme in the acquisition stage of GNSS receiver using the CNN structure. 
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Fig. 4 An image (Naghsh-e-Jahan square of Isfahan) with 

dimensions of 2129×3840. 

Fig. 5 Naghsh-e-Jahan square of Isfahan with dimensions of 

133×240 (LSA-transform applied four times). 
 

 
Fig. 6 General steps to detect GPS spoofing. 

 

 
Fig. 7 The original CAF acquired image (left), and the modified version using the LSA-transform method (right). 

 

4.1 Applying the LSA-transform Method on CAF 

Images 

   Given that the most important image information in 

CAF images is the peak points, the LSA-transform is 

modified to have the highest reduction of dimensions 

and prevents the peak points from disappearing. Part of 

this method is decided based on the column and row 

related to the peak points to remove the odd or even 

rows or columns. For example, Fig. 7 shows the CAF 

image of a spoofing signal (including two peak points) 

with dimensions of 141×4192 which has been reduced 

to 2×4 by the modified LSA-transform method. This 

method reduces the complexity of NN learning and, in a 

shorter period, can train the NN with more learning 

data. On the other hand, training losses are reduced, and 

the accuracy of learning increases. NN training time 

also decreases. 

   Fig. 8 shows the flowchart of the modified LSA-

transform in the presence of the original signal. This 

method has been implemented in MATLAB software. 

Fig. 9 shows how the LSA-transform algorithm 

performs in the presence of the spoofing signal. 

  The modified LSA-transform method is implemented 

simply when only the authentic signal is present. It is 

illustrated in Fig. 8. In the presence of the spoofing 

signal, the row and column related to the peak points 

were obtained first, and then every other matrix rows 

are deleted; so that only the peak points remain. Then, 

similarly to every other matrix columns are deleted 

based on the being even or odd columns of the peak 

points. Fig. 9 shows the modified LSA-transform 

method applied on a 6×6 CAF matrix. NN training time 

also decreases. Fig. 8 shows the flowchart of the 

modified LSA-transform in the presence of the original 

signal. 

   In the presence of the spoofing signal, it is challenging 

to detect the spoofing attack when Doppler frequency 

and code phase delay related to the authentic signal and 

the spoofed signal are close to each other. In other 

words, peak points are very close to each other. 

   Under these conditions, the criterion of performance 

of the modified LSA-transform algorithm will be 

measured, and the results will be presented in the results 

section. Figs. 10 and 11 show the two-dimensional view 

of the CAF image. In Fig. 10, only the authentic signal 

is present, and in Fig. 11, both authentic and the 

spoofing signals are present with the distance of a chip. 

In this case, in Fig. 12, an area around the maximum 

peak point is considered to detect the presence of the 

spoofing attack, and then the sum of the CAF values of 

this area is compared to the threshold λ. A spoofed 

signal has occurred close to the maximum peak point if 

the total amount of CAF of the considered area is more 

significant than λ. Otherwise, only the authentic signal 

is present. 



Improving Cross Ambiguity Function Using Image Processing 

 
… K. Zarrinnegar et al. 

 

Iranian Journal of Electrical and Electronic Engineering, Vol. 19, No. 1, 2023 5 

 

 

 
Fig. 10 Two-dimensional view of the CAF image in the presence 

of an authentic signal. 

 

Fig. 8 The flowchart of the LSA-transform method in the 

presence of the authentic signal. 

Fig. 11 Two-dimensional view of the CAF image in the presence 

of both authentic signal and spoofing signal with one chip 
 

distance. 

 

 

Fig. 9 An example of the modified LSA-transform method in the 

presence of the spoofing attack: (a) 6×9 CAF matrix, and (b) 

CAF matrix with reduced dimensions 5×3 after applying 
 

modified LSA-transform method. 

Fig. 12 Performance of the LSA-transform algorithm in the 

presence of the authentic signal and the spoofing signal with one 
 

chip distance. 
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5 Results 

   The Software-Defined Receiver (SDR) [23] has been 

used in the MATLAB environment to simulate the 

proposed method. The sampling frequency in front-end 

stage of the GPS receiver was set at 4.092 MHz, and the 

IF signal frequency was adjusted to 1.023 MHz. 

Processor system specifications include Intel Core i7-

10750 CPU @ 2.6 GHz 2.59 GHz and 16 GB of 

memory RAM and NVIDIA GeForce GTX-1660 Ti 

graphics cards. MLP NN and CNN were used to detect 

spoofing attacks. CNN consists of two convolutional 

layers and three fully connected layers. Each 

convolutional layer used a batch normalization and a 

rectified linear unit activation function [24]. In addition, 

the ReLu activation function and dropout layer with a 

probability of 0.5 were used in each fully connected 

layer [25, 26]. 

   MLP NN consists of three connected layers that 

follow up the ReLu activation function and a dropout 

layer with a probability of 0.5. The last fully-connected 

layer consists of two neurons representing the CAF 

image classification in one of the two spoof and the 

authentic classes. CAF images were of 141×4092 

dimensions. In extracting CAF images, the Doppler 

frequency shift search step was set to 500 Hz, and the 

code phase search step was set to 0.5 chip. In this case, 

each CAF image is converted into a matrix with 

141×4092 dimensions and 8-bit values. The simulation 

uses 2400 CAF images to train MLP NN and CNN, of 

which 1200 images are associated with the scenarios 

with presence of the spoofing signal and another 1200 

images associated with presence of the authentic signal. 

   As shown in Fig. 13, the authentic signal is delayed 

and utilized as a spoofing signal at the IF level.  Out of 

2400 data, 30% is used to evaluate the NN. Adam’s 

optimizer is also used to obtain weights and thresholds 

of the NN [27, 28]. In the first part of the simulation, 

preprocessing was done on the CAF image to reduce 

image dimensions to 2×4. Then, these images were fed 

to MLP NN and CNN for training. In the second part, 

the unprocessed CAF images with 20×1023 dimensions, 

similar to [9], are given to MLP NN and CNN as 

training data. These two simulation parts are performed 

to determine the importance of the proposed method. In 

Table 1, the structure of the MLP NN and CNN used in 

this work is shown. Also, in Figs. 14 to 17, the accuracy 

and losses of MLP NN and CNN are shown in both 

simulation parts. 

 

 
Fig. 13 Block diagram of the spoofing signal generation. 

 
 

Table 1 The structure of deep learning models used in the first 
 

simulation part. 

MLP structure CNN structure 

 Fully connected layer 

 ReLu activation function 

 Dropout layer 

 2×2 Convolutional layer 

 Batch normalization layer 

 ReLu activation function 

 Fully connected layer 

 ReLu activation function 

 Dropout layer 

 2×2 Convolutional layer 

 Batch normalization layer 

 ReLu activation function 

 Fully connected layer 

- 

- 

 Fully connected layer 

 ReLu activation function 

 Dropout layer 

- 

- 

- 

 Fully connected layer 

 ReLu activation function 

 Dropout layer 

-  Fully connected layer 

 

 
Fig. 14 Accuracy (top panel) and losses (bottom panel) of MLP NN training by applying the modified LSA-transform method. 
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Fig. 15 Accuracy (top panel) and losses (bottom panel) of CNN training by applying the modified LSA-transform method. 

 

 
Fig. 16 Accuracy (top panel) and losses (bottom panel) of MLP NN training without applying the preprocessing method. 

 

   In Fig. 15, according to the simulation results with the 

CNN, the average accuracy after the 95th iteration was 

calculated at about 99.42%. Also, the CNN total 

training time was about 52 seconds due to time-

consuming calculations and a more complex structure 

than the MLP NN. Convergence time was about 4.9 

seconds and 8.23 seconds for MLP NN and CNN, 

respectively. As expected, MLP NN learning speed is 

faster than CNN for the same learning data. Another 

advantage of the CNN is its fewer training losses 

compared to the MLP NN. In addition, the MLP NN 

structure uses 1816 activations per image data, while the 

CNN structure uses 2448 activations per image data. 

Therefore, CNN structure consumes more memory for 

learning than MLP NN. As also mentioned in [29], in 

aggregate, the CNN performs better than the MLP NN 

in detecting spoofing attacks. 

   To accurately assess the simulation results of CNN 

and MLP NN and to validate the LSA-transform 

preprocessing method, a comparison has been made 

between these two parts of the simulation results in this 

work. It should be noted that simulation conditions such 

as NN structure, hardware processing system, and all 

parameters of NN training, such as learning rate, for 

both simulation parts are quite the same. Considering 

that [9] did not provide information about the structure 

of the MLP NN, it is not possible to compare the results 

of the MLP NN in this work with the MLP NN results 

in [9]. As shown in Fig. 16, the average accuracy after 

convergence was calculated at about 69.46%. This 

average accuracy is close to the average obtained in [9]. 

According to Fig. 17, CNN simulation results have 

worst accuracy, total training time, and convergence 

than anticipated. Simulation results are found in 

Tables 2 and 3 utterly. 
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Fig. 17 Accuracy (top panel) and losses (bottom panel) of CNN training without applying the preprocessing method. 

 
Table 2 Comparison of MLP NN simulation results with the structure introduced in this work, applying pre-processing and without 
 

pre-processing on CAF images.  

Measured parameters 
CAF images without 

pre-processing 
CAF images by applying 

LSA-transform 
Improvement 

[%] 
Convergence time of NN training accuracy [sec] 68.8 4.9 92.88 

The average accuracy of training after convergence [%] 68.46 98.28 29.82 

Average losses of training after convergence 0.597 0.0512 91.43 

Validation data accuracy at the end of the training [%] 50 100 50 

Validation data losses at the end of the training 0.5121 0.0008492 99.84 

Total training time [sec] 607 31 94.9 

Adjusted CAF image dimensions [pixels] 20×1023 2×4 99.96 

 
Table 3 Comparison of CNN simulation results with the structure introduced in this work, applying pre-processing and without 
 

pre-processing on CAF images. 

Measured parameters 
CAF images without 

pre-processing 
CAF images by applying 

LSA-transform 
Improvement 

[%] 
Convergence time of NN training accuracy [sec] 63.5 8.23 87.04 

The average accuracy of training after convergence [%] 59.29 99.44 40.15 

Average losses of training after convergence 0.6755 0.033 95.12 

Validation data accuracy at the end of the training [%] 50 99.42 49.42 

Validation data losses at the end of the training 0.6986 0.0195 97.21 

Total training time [sec] 2540 52 97.96 

Adjusted CAF image dimensions [pixels] 20×1023 2×4 99.96 

 

   Table 2 shows that the average training accuracy after 

convergence has improved by 29.82% as a result of 

applying the LSA-transform method on CAF images. 

The total MLP NN training time is reduced by 94.9% 

compared to the case where LSA-transform is not 

applied to the CAF images. Training data losses after 

convergence have increased about 0.1 times in this case. 

   Considering the results from Table 3, the average 

training accuracy after convergence has improved by 

40.15% by applying LSA-transform on CAF images. 

The total training time of CNN has been reduced by 

97.96% compared to the case where LSA-transform is 

not applied to the CAF images. Training data losses 

after convergence have increased 97.21% in this case. 

Comparing the measured parameters for both MLP NN 

and CNN in this work, it can be claimed that this 

method is effective. 

   The detection process determines the presence or 

absence of spoofing, and the output is the random 

variable called the decision variable. If the spoofer is 

present, the probability that the decision variable passes 

a threshold is called the detection probability. If the 

spoofer is absent, it is called false alarm probability. 

Then, the plot of probability detection (Pd) versus the 

probability of false alarm (Pfa) is called the Receiver 

Operating Characteristic (ROC) [9]. The ROC curve is a 

graphical tool for investigating the discriminatory power 

of a detection method [30]. The performance of the 

modified LSA-transform method and the method of [31] 

are shown in Figs. 18 and 19, when the peak points are 
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Fig. 18 Comparison of the probability of correct detection of the 

learning models presented in this work with the work done 
 

in [31]. 

Fig. 19 Comparison of the probability of false alarm of the 

learning models presented in this work with the work done 
 

in [31]. 

 

  
Fig. 20 ROC curve performance of the proposed LSA-transform 

method. 

Fig. 21 ROC curve performance of MLP NN [9]. 

 

 
Fig. 22 ROC curve performance of complex CNN [9]. 

 

very close to each other (i.e., in small delay spoofing 

attack). As shown in Fig. 18, for the intervals below 

0.25 chip, the proposed method cannot detect spoofing, 

and the probability of correct detection of spoofing is 

severely dropped. Whereas for the peak points of more 

than 0.25 chips, the probability of false alarm is within 

an order of 10–4, so the method’s performance is 

satisfying (as shown in Fig. 19). 

   To evaluate the performance of the LSA-transform 

method proposed to detect spoofing, the ROC curve for 

this method is plotted in Fig. 20. For an optimal 

performance of the detector, the ROC curve is close to 

the upper left corner as far as possible [30]. In the ROC 

curve of Fig. 20, the excellent performance of the 

proposed method is clearly observed. 

   Furthermore, the ratio of carrier power to noise power 

(C/N0) related to the signals extracted in the results was 

estimated, as follows [32-34]: 
 

 
2

10 10
2

0

10.log 10.log  
 . 

ACC

sACC

IC NBW
dB Hz

N fQ 

   
         

 

(4) 

 

where IACC denotes the output of I accumulator, QACC is 

the output of Q accumulator in the tracking section of 

GNSS receiver, NBW is the noise bandwidth at the 

intermediate frequency, fs is the A/D sampling 

frequency, and τ is the accumulation period. In the 

present study, this value was calculated equal to 

23.89 dB-Hz, which was approximated to the value of 

24 dB-Hz. ROC curves for GNSS software receiver, 

MLP NN, and complex CNN structure (VGG16) for 

different C/N0 are depicted in Figs. 21 and 22, 

respectively. 

   Comparing Figs. 20, 21, and 22, it can be concluded 
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Table 4 Comparison of the simulation results in this work with the simulation results of other references. 

Comparison of reported NNs 
 

Specifications 

MLP NN 

presented in [9] 

Complex CNN 

presented in [9] 

CNN presented 

in [31] 

CNN proposed 

in this work 

MLP NN 

proposed in this 

work 

Number of layers - 41 13 16 10 

The average accuracy of training after 

convergence 
[60-70] [95-100] 97.64 99.42 98.28 

Number of learnable parameters - 107,004,610 493,822 65,918 93,602 

Number of activations per image data - 27,973,252 16,921 2,448 1,816 

Adjusted CAF image dimensions 20×1,023 20×1,023 9×9 2×4 2×4 

GNSS data set 10,000 10,000 200,000 2,400 2,400 

 

that the ROC curve is improved in Fig. 20, despite the 

low ratio of C/N0. 

 

5.1 Neural Network Performance 

   In addition to the accuracy of the training and losses 

of a NN, there are other criteria for examining the 

performance of a NN. These criteria include learning 

parameters and the number of activations per image data 

to investigate the complexity of the NN structure. 

Learning parameters in a NN are any parameters such as 

weights and thresholds that can be learned. The amount 

of memory that a NN consumes for training can be 

calculated from the number of activations in all layers. 

Due to the dependence of the memory consumed on 

other parameters and its approximation, we only rely on 

the learnable and activation parameter. In Table 4, the 

comparison is made between the results of the present 

work and the study done in [31] and [9]. For the sake of 

fair comparison, the reference NN results [31] were 

considered only in the Doppler frequency search step of 

500 Hz and the code phase search step of 0.5 chip. It 

should be noted that there is not enough information on 

MLP NN structure in [9]. 

 

6 Conclusion 

   CAF images in the acquisition section of GNSS 

software receivers include a lot of information that can 

be used to detect spoofing attacks. Due to CAF images’ 

high dimensions, MLP NN and CNN training by these 

images have high computational complexity. Also, 

training time and losses increased in case of a 

significant number of learning data. Before training the 

CNN and MLP NN, CAF image pre-processing was 

proposed using the modified LSA-transform method. 

This method reduced the dimensions of the CAF 

images. The results showed that the training time and 

losses of both MLP NN and CNN decreased, and 

training accuracy increased. The ROC curve presented 

in the results showed that the proposed method has a 

proper performance in detecting spoofing attacks above 

0.25 chip distance. In the case of spoofing less than one 

chip distance, the accuracy of the proposed CNN was 

higher than that of the MLP NN. In addition, CNN has 

higher complexity than the MLP NN. Finally, by 

applying the proposed LSA-transform method, the 

number of learnable parameters and activations per 

image data was reduced. Therefore, the memory 

consumption was significantly reduced and the learning 

speed increased. Comparison of the presented results 

with other reported results showed that the proposed 

LSA-transform method can be considered as a proper 

pre-processing method on CAF images. The only 

limitation was that the proposed method has a low 

probability of detection and a high probability of false 

alarm in spoofing attacks less than 0.25 chip distance. 
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