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Abstract: The promising element of the infrastructure of unmanned electric vehicles is 

wireless chargers. The central part of such systems is a resonant circuit that provides 

wireless power transfer. The article discusses a set of criteria used for making the rational 

choice of the resonant circuit parameters. Such criteria include the efficiency, the current 

transfer coefficient, the excess voltage on the resonant circuit capacitors over the input 

voltage, the ratio between the transmitting circuit current and the receiving one. For the 

resonant circuit with fixed coils size and fixed resonant frequency, the families of curves 

were obtained via parametric analysis to show how these criteria change depending on the 

inductance and capacitance of the resonant circuit. The obtained dependencies allow 

choosing the rational inductances and capacitances of the resonant circuit, providing for a 

given size and a given value of the input voltage the highest conveyed power with the 

highest efficiency at the minimum voltage class of capacitors and the minimum current of 

semiconductor switches. The results of the parametric analysis were confirmed 

experimentally. 
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1 Introduction1 

N recent years, the intensive development of 

electrochemical energy sources, power electronics, 

artificial intelligence, etc. have shaped the development 

of unmanned electric vehicles. Successful 

implementation of such vehicles in everyday life 

depends on a number of factors, including the creation 

of supporting infrastructure. One of the most important 

elements of this infrastructure is the system of charging 

stations, and it is desirable that such stations be 

automated and do not require human participation. From 
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this point of view, the most promising are charging 

stations with wireless power transfer (WPT). 

   Various authors consider the features of using 

charging stations with WPT for electric vehicles [1-4], 

drones [5, 6], and underwater vehicles [6]. When using 

a wireless charger, the vehicle only needs to arrive at 

the location point where the transmitting coil is located 

and does not need to use human assistance. 

   The central part of the wireless charger is a resonant 

circuit. There are four main topologies of resonant 

circuits considered in [4, 7, 8] that are combinations of 

series and parallel connection of capacitors with the 

transmitting and receiving coils. As a current source is 

required for battery charging, the most suitable topology 

for the resonant circuit of wireless charger seems to be 

the series connection of capacitors in the primary and 

secondary sides [7]. 

   One of the most urgent research areas for wireless 

chargers is choosing and optimization of their 

parameters. Many works consider their constructive 

optimization, for instance, the analysis of how the coils’ 

geometry influences the energy efficiency of wireless 

chargers [9-11], or the analysis of changes in the coils 

relative position [12-14]. The hallmark of the 
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considered wireless chargers is the dependence of their 

energy efficiency on the load resistance. To optimize 

the energy efficiency under variable load, the paper [15] 

proposes a step-change in the resonant frequency by 

switching a capacitor bank in the resonant circuit. Other 

works [16, 17] investigate the optimization of energy 

efficiency by using several resonant circuits on the 

secondary side for a given coil geometry and a given 

resonant frequency. 

   In contrast to the above works, this paper considers a 

set of criteria that help to choose the parameters of the 

resonant circuit not optimally but rationally. 

   When designing wireless chargers, a multi-criteria 

task is solved. On the one hand, it is necessary to ensure 

the highest energy efficiency of WPT, and on the other 

hand, there is a need to fulfill some restrictions on 

weight and size characteristics, on an allowable voltage 

across capacitors, on operating frequency range, and 

others. To solve this task, the following criteria are 

proposed: 

1) The efficiency η, showing the energy efficiency of 

WPT; 

2) The current transfer coefficient ki, showing the 

ratio of the load current, which is equal to 

receiving circuit current, to the input voltage that 

characterizes the power conveyed to the load at the 

fixed input voltage; 

3) The coefficient of excess voltage on the primary 

side capacitor over the input voltage kC1 and the 

same on the secondary side capacitor kC2, 

characterizing the voltage class of these capacitors; 

4) The ratio between the transmitting circuit current 

and the receiving circuit current ai that 

characterizes the maximum current of the 

semiconductor switching elements of the wireless 

charger. 

   For rational choosing of inductances and capacitances 

of the resonant circuit, it is necessary to study their 

influence on the above criteria. The study will be carried 

out with the fixed geometry of the resonant circuit coils, 

the fixed resonant frequency, under varied values of the 

inductances and capacitances, as well as the equivalent 

resistance of the load. 

 

2 Theory 

2.1 Models and Approaches 

   The functional diagram of the wireless charger with 

the topology of the series connection of capacitors is 

shown in Fig. 1. In this system, the supplied voltage 

from the industrial AC grid is rectified and converted by 

an inverter into an input voltage with the resonant 

frequency. This high-frequency voltage feeds the 

resonant circuit with the transmitting and receiving 

coils. The voltage of the receiving circuit is converted 

by a rectifier into direct current, which is necessary to 

charge the battery. 

   It should be noted that the resonant frequency of the

 

 
Fig. 1 Functional diagram of the wireless charger. 

 
Fig. 2 Idealized equivalent circuit of the wireless charger. 

 

wireless charger fr is in the range of megahertz and its 

value depends on the resonant circuit parameters. If the 

frequency of the input voltage f does not correspond to 

the resonant value, the wireless charger will not be able 

to convey to the load as much power as possible. To 

evaluate the conveyed power in that case so-called 

resonant curves showing the dependence of the 

receiving circuit current i2 on the frequency f at the 

fixed input voltage uin are used. The shape of the 

resonant curves depends on the coupling coefficient 

between the coils that is determined by the ratio: 
 

1 2

M
K

L L
 ,  

 

where L1, L2 are transmitting and receiving coils 

inductance consequently; M is mutual inductance. 

   In the case of weak coupling where K is less than the 

critical value the power in the receiving circuit 

significantly lower than the power given by the 

transmitting circuit. The resonance curve has one 

extremum. In the case of strong coupling, the 

backreaction of the receiving circuit to the transmitting 

one becomes significant, and the resonance curve 

acquires two extrema. Operating of the wireless charger 

in the condition of strong coupling is more efficient so 

the resonant circuit parameters should provide it. 

   The analytical study of the presented wireless charger 

uses the idealized equivalent circuit of the wireless 

charger operating on a resistive load as shown in Fig. 2. 

This equivalent circuit contains the following 

assumptions: the power source is ideal; capacitors losses 

are neglected; actual inverter characteristics are not 

taken into account; the inverter output voltage is 

sinusoidal; the load is purely active; the displacement 

current effect in conductors is not taken into account. 

Despite the mentioned assumptions, this equivalent 

circuit allows analyzing the main characteristics and 
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dependencies of the system. 

   The idealized equivalent circuit of the wireless 

charger is described by the following differential 

equations of the fourth-order: 
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(1) 

 

where uin is the input voltage; uC1 is the capacitor 

voltage at the primary side; uC2 is the capacitor voltage 

at the secondary side; i1 is the transmitting circuit 

current; i2 is the receiving circuit current that is equal to 

the load current; R1, R2, C1, C2 are primary side and 

secondary side resistance and capacitance consequently; 

Rload is the equivalent resistance of the battery; R2Σ is 

sum (R2 + Rload). 

   According to model (1), the proposed criteria are 

calculated by: 
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(2) 

 

Since obtaining a rigorous analytical solution of the 

differential equation (1) with harmonic input signals is a 

complicated mathematical problem, to calculate (2) and 

analyze the resonant circuit parameters of the wireless 

charger, we will use the model in the Laplace-domain. 

   To begin with, consider the current transfer coefficient 

ki characterizing the conveyed power which allows us to 

obtain the value of the resonant frequency. Using (1) 

and Laplace transform, a structural diagram was 

composed where the input is the input voltage uin and 

the output is the load current i2. This structural diagram 

is shown in the first line of Table 1 and the 

corresponding transfer function is as follow: 
 

2 ( )
( )

( )ik

in

i s
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 ,  

 

where s is Laplace operator,   3

2 1 2s Ci C Ms  , and 

4
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   In the following, the transfer function Wki was 

transformed into the frequency domain by replacing s 

with jω after which the real part and the imaginary part 

were got: 
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   The obtained equations were used in further 

transformation of Wki to get the amplitude-frequency 

response and phase-frequency response: 
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The complete equations of which are omitted due to 

their excessive cumbersomeness. 

   Analysis of (3) and (4) considering their complete 

equations is only possible by using of graphical 

approach. Thus for each set of the resonant circuit 

parameters the Bode plot of the current transfer 

coefficient ki needs to be drawn where analogically to 

the resonant curves the resonant frequencies and the 

response magnitudes on them can be visually 

determined. 

   The other criteria were considered with a similar 

approach. Firstly, the corresponding structural diagrams 

were drawn and after that, their transfer functions were 

composed. The results are given in Table 1. Thereafter 

these transfer functions were transformed into the 

frequency domain and its real and imaginary parts were 

calculated. The obtained equations are omitted as they 

have similar complicity to the above example. Real and 

imaginary parts were used to get corresponding 

amplitude-frequency and phase-frequency responses 

which were analyzed graphically. 

 

2.2 Parametric Analysis 

   Transfer functions (5)-(8) and their derived elements 

were used to conduct a parametric analysis of the 

wireless charger with the following parameters: 

 Required resonant frequency is 90 kHz that based 

on the recommendation of the standard [18]; 

 The transmitting and receiving coils have a flat 

square shape with an outer coil dimension of 

600×600 mm; 

 The coils are located one above the other in
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Table 1 Structural diagrams and transfer functions for the criteria. 

Criterion Description 

ki 
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parallel planes at a distance of 150 mm; 

 Input voltage uin is 24 V; 

 The wireless charger capacity PWPT is 500 W. 

   The coils under analysis were with the turn number 

from 1 to 10 and for each of them, the resonant circuit 

inductances were calculated. 

   The coils inductances L1 and L2 were obtained 

according to [19] as follow: 
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(9) 

 

where μ0 is the magnetic constant; w is the turn number 

of a coils’ winding; c is the side of the middle turn of 

the coil; rw is the bare wire radius; p is coils’ winding 

pitch; fw is the function of the turn number with a 

tabular value. 

   The mutual inductance of the coils was calculated 

based on [20] for the case when they are coaxial: 
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where h is the distance between the coils. 

   After determining the resonant circuit inductances, 

based on the required wireless charger capacity and the 

load voltage, the equivalent resistance of the battery 

Rload was determined, and also, based on the coils wire’s 

length and cross-section with different turn numbers 

their active resistances that were calculated as follow: 
 

2

1 2

2

w w

w

l r
R R

S
r

f f


 

   

  



 , 

 

 

where ρ is the electrical resistivity; lw is the wire length; 

S is the cross-section area of the wire; μ is the magnetic 

permeability. 

   To provide the resonant frequency on the required 

value for coils with different turn numbers, the 

capacitances of the primary side and secondary side 

capacitors C1 and C2 were selected. The initial value of 

the capacitance was determined by the expression: 
 

1 22 2

1 2

1 1
,С С
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after which, according to (3) and (4) with the calculated 

above parameters the amplitude-frequency response and 

the phase-frequency response were got and the Bode 

plot for the current transfer coefficient ki was drawn. 

   The example of the Bode plot is shown in Fig. 3. As 

can be seen, the amplitude-frequency response has two 

maxima, consequently, when calculating the wireless 

charger the strong coupling between the transmitting 

and receiving coils was managed to provide. In what 

follows, the frequency corresponding to the first 

maximum was considered as the resonant frequency fr. 

If the obtained resonant frequency differed from the 

required value, which is 90 kHz in the wireless charger 

under analysis, the capacitances C1 and C2 were selected 

by the method of successive approximations until the 

values of resonant frequencies have coincided. 

   As the result, the capacitances and inductances of the 

resonant circuit for a different turn number of coils are 

given in Table 2. 

   Taken the obtained parameters L1, L2, M, C1, and C2 of 

the resonant circuit, for the criteria kC1, kC2, and ai the 

Bode plots were drawn and the value of magnitude and 

phase for the criterion at the resonant frequency was 

fixed on each plot. For the given input voltage uin the 

coefficient ki and the ratio ai provide calculating of the 

efficiency η as follow: 
 

2

,
cos

i load

i i

k R

k a



   

 

where φ is the angle between the input voltage uin and 

the transmitting circuit current i1 that is determined from 

the phase plots of the current transfer coefficient ki and 

the ratio between the transmitting circuit current and the 

receiving circuit current ai: 
 

.
i ik a       

 

   Described procedure was carried out for various 

equivalent resistances of the load and allowed us to 

draw families of curves at Fig. 4 that show how the 

criteria change depending on transmitting and receiving 

coils inductance L = L1 = L2. 

These curves indicate that coefficient ki is nonlinear and 

decreases with the increase of the inductance L that 

means if the inductance L declines the conveyed power 

of the wireless charger rises. However, too small 

inductance L contributes to a decrease in the efficiency 

η because of the large excess of transmitting coil current 

and consequently increased power losses in this coil. 

   The coefficients kC1 and kC2 have the best values when 

the efficiency η is maximum, i.e. the optimal energy 

efficiency coincides with the minimum voltage class of 

capacitors. 

   It should also be noted that as Rload decreases which 

corresponds to the load capacity increase the lower 

inductance L is required to ensure the optimum of 

energy efficiency and therefore the transmitting and 

receiving coils might be with the smaller turn number. 

At the same time, reduction of Rload corresponds to 

restriction of the area around the extremum, making the 

optimum of energy efficiency more pronounced. 

   Since the initial equations (1) is a system of linear 

differential equations, the analysis of the shown families 

 

 

Table 2 Capacitance and inductance of the resonant circuit with 

the different turn numbers of coils. 

Turn number 
Resonant circuit parameter 

L = L1 = L2 [μH] M [μH] C1 = C2 [nF] 

1 5 0.41 626 

2 13 1.6 227 

3 23 3.5 123 

4 35 6 76.7 

5 48 9 55 

6 61 12.4 42.7 

7 76 16.2 34 

8 90 20.3 28.4 

9 105 24.6 24.2 

10 120 29 21 
 

Fig. 3 Bode plot for the current transfer coefficient ki. 
 



Criteria for Choosing of Resonant Circuit Parameters of 

 
… V. M. Zavylov et al. 

 

Iranian Journal of Electrical and Electronic Engineering, Vol. 18, No. 1, 2022 6 

 

of curves made it possible to algorithmize the general 

procedure for optimization of the resonant circuit 

parameters of any wireless charger by the means of the 

flowchart shown in Fig. 5. 

 

   
(a) (b) (c) 

  

 

(d) (e) 
Fig. 4 Families of curves indicating dependences of the criteria on the inductance L for different values of Rload. 

 

 
Fig. 5 Flowchart the resonant circuit parameters optimization. 
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   It should be noted that it is incorrect to call as optimal 

the parameters obtained as a result of the successful 

execution of this algorithm in the strict mathematical 

sense since an optimality criterion has not been set 

analytically and the search for a solution is carried out 

using a graph-analytical approach, which allows errors 

due to the human factor. The more correct name for the 

algorithm, in this case, is rational choosing of 

inductances and capacitances of the resonant circuit, and 

the term “optimization” has been used for brevity and 

clarification of what the authors mean by “rational 

choosing”. 

   It should be separately discussed the probable reasons 

why the execution of the optimization algorithm might 

be unsuccessful. The first group of reasons, marked with 

letter (a) on the flowchart, relates to the hardware 

solutions of the wireless charger, such as the choice of 

the type for capacitors or semiconductor switching 

elements. To rectify the situation, capacitors of the same 

capacity should be chosen, but with a higher voltage 

class, or power transistors with the same rated current 

should be implemented, but with a higher maximum 

current. If these measures are not enough, the value of 

the input voltage should be changed. 

   The second group of reasons, marked with letter (b) 

on the flowchart, is responsible for low efficiency. First, 

it could be too small linear dimensions of the coils at a 

high desired power conveyed to the load or a very large 

distance between the coils. The last-mentioned factor is 

even more significant since the coupling coefficient 

between the coils K and the energy efficiency of WPT 

depend on this distance to a large extent. According 

to [21, 22], the wireless charger has an efficiency of 

more than 90% if, the first, it operates in the resonant 

mode, the second, the distances between coils is below 

the threshold where coupling between the coils become 

weak that does not allow efficient WPT. If the reason 

for unsatisfactory efficiency η is weak coupling, the 

distance between the coils should be reduced. 

   Second, incorrect hardware solutions might affect 

efficiency undervaluing it. This can happen if due to the 

restrictions R the turn number of coils and therefore the 

inductance L turns out to be too low and the wireless 

charger will work in the zone of reduced efficiency 

according to Fig. 4. In such a situation, another type for 

capacitors or semiconductor switching elements should 

be chosen. 

 

3 Experimental Results 

   To confirm the findings a series of experiments were 

carried out. The experimental equipment includes the 

specially made resonant circuit and WPT laboratory 

installation that are shown in Fig. 6. The voltage of 

WPT laboratory installation is rectangular pulses with 

adjustable duty cycle and adjustable pulse amplitude 

from 20 V to 540 V. Maximum permissible current of 

the installation is 60 A. The power capacity of the 

resonant circuit is 500 W and the input voltage is 24 V 

which corresponds to 1.15 Ω of the equivalent battery 

resistance. Resonant capacitors are realized as a set with 

a parallel-series connection consisting of 10 capacitors 

75-715C50KTD17M5 with 1700 pF and 10 capacitors 

75-715C50KTT56M5 with 560 pF. 

   The WPT laboratory installation is equipped with a 

wide range of measuring instruments, including a 

MY6243 digital LC-meter with an accuracy of ± 2%. 

When performing experiments, the inductances for each 

turn number obtained according to (9) and (10) were 

compared with the measured values. The discrepancy 

does not exceed 5% that is acceptable for further 

evaluation of the results and was caused by nonideality 

in the frame form and the winding pitch. 

   The turn number of the transmitting and receiving 

coils of the resonant circuit was chosen such that 

provide an extremum of wireless charger efficiency η.  

As seen from Fig. 4, the optimal inductance L is about 

20 μH that corresponds to an intermediate turn number 

between two and three turns. It is most expedient to use 

three turns since in this case, the efficiency is close, but 

the current transmission ratio ai is smaller which allows 

using transistors of a lower class in maximum current in 

the inverter, and also reducing the losses in the inverter 

and capacitors of the resonant circuit. 

   The conducted experiments included oscilloscopy of 

currents and voltages at the transmitting and receiving 

circuits. Fig. 7 shows oscilloscope patterns for the 

experimentally found resonant mode that point out to 

resonant frequency is 89.5 kHz. 
 

 
(a) 

 
(b) 

Fig. 6 The experimental equipment: a) resonant circuit and 
 

b) WPT laboratory installation. 
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(a) (b) (c) 

Fig. 7 Oscilloscope patterns of currents and voltages: a) on the inverter output; b) on Rload, and c) on the primary side capacitor. 
 

 

Table 3 Comparison of the criteria obtained in different ways. 

The results 

obtained via 

The criteria 

η 

[%] 

ki 

[A/V] 

kC1 

[times] 

kC2 

[times] 

ai 

[times] 

Parametric 

analysis 
95.5 0.865 10.45 9.4 1.12 

Experiment 87.6 0.82 7.51 5.35 1.13 
 

Fig. 8 Harmonic compositions of inverter output. 
 

   The obtained resonant frequency indicates the 0.55% 

deviation from the designed value which confirms the 

correctness of the methods that were used to develop the 

coils. The currents and voltages have higher harmonics, 

which is due to the power transistors switching of the 

inverter in conjunction with parasitic inductances and 

capacities of the resonant circuit, that is especially 

expressed in the inverter output for which Fig. 8 shows 

the harmonic compositions. To gain an objective 

comparison of the experimental data with the results of 

parametric analysis, the criteria were determined via 

experiments in relation to the first harmonic. 

   Table 3 shows the criteria obtained experimentally for 

the first harmonic and calculated during parametric 

analysis.  Comparison of these data certifies good 

convergence between the results obtained in different 

ways. The only parameters where deviation exceeded 

5% are the efficiency and excess voltages on the 

resonant circuit capacitors over the input voltage. That 

may be caused by the losses in the capacitors and losses 

due to the current displacement effect that the 

mathematical model did not take into account, or by the 

possible asymmetry of the primary and secondary 

circuits due to the parameter imperfection of capacitors 

and coils. Nevertheless, the obtained discrepancies fall 

within the margin of error in engineering, therefore, the 

results of the parametric analysis could be reputed as 

experimentally confirmed. 

 

4 Conclusions 

   The research results showed that the suggested set of 

criteria indicate the following: 

1. When designing a wireless charger for unmanned 

electric vehicles with restrictions on the dimensions 

and the resonant frequency magnitude, the best 

energy efficiency can be achieved by selecting the 

optimal inductances and capacitances relation of the 

resonant circuit. 

2. With the optimal parameters relation in terms of 

energy efficiency, there is a minimum overvoltage 

on the capacitors in the resonant circuits which 

allows using capacitors of the lower voltage class.  

3. With an increase in the load at a given voltage, the 

energy efficiency of the resonant circuit appears at a 

lower inductance of the resonant circuit. 

   The described models, approaches, and parametric 

analysis underlie the flowchart based on these 

generalizations that can be used at the design stage to 

rational choosing of inductances and capacitances of the 

resonant circuit of the wireless charger. 
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