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Abstract: Even when simultaneous localization and mapping (SLAM) solutions have been 

broadly developed, the vast majority of them relate to a single robot performing 

measurements in static environments. Researches show that the performance of SLAM 

algorithms deteriorates under dynamic environments. In this paper, a multi-robot 

simultaneous localization and mapping (MR-SLAM) system is implemented within a 

dynamic environment. A probabilistic approach based on extended Kalman filter (EKF) is 

proposed to detect moving landmarks and consequently improve the performance of SLAM 

in dynamic environments. The expected landmark area (ELA) is introduced. This concept 

allows identifying and filtering the moving landmarks. Several experiments are performed 

varying the speed and number of moving landmarks within the environment to investigate 

the effect of dynamism level and landmark speed on. The root mean square error (RMSE) 

is used as a form of measuring the performance of the algorithm. Results show moving 

landmarks, degrade the performance of classical EKF-SLAM. However, the proposed 

method is robust to environmental changes and is less affected by the increasing speed of 

the moving landmarks. 
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1 Introduction1 

OCALIZATION or more precisely, self-localization 

has been one of the fundamental problems in mobile 

robotics since the beginning. Determine its position 

within the environment surrounding it from sensor data 

is a key part of any mobile robot. Even when there is an 

external positioning system (global positioning 

system (GPS), local positioning system (LPS), etc.) a 

self-contained approach is needed to overcome signal 

faults and improve the precision. On the other hand, to 

achieve any real movement it is necessary to have a 

consistent representation of the environment around the 
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robot; a map, which must allow the robot to distinguish 

between obstacles and freeway to navigate it. This is 

why localization and mapping are the main blocks on 

which every mobile robot platform relies. 

   In the late’90s, many researchers realize that 

combining the mapping and localization problems into a 

single one it would result in a convergent estimation 

problem [1]. Since ever that, SLAM has been the Holy 

Grail of mobile robotics researchers. Many approaches 

have been carried out through the years in order to find 

convergent, fast and reliable solutions to the SLAM 

problem. However, many of them rely on two well-

known and distinctive branches: the EKF based and the 

particle-filter based. Bailey and Durrant-Whyte 

established a complete mathematical formulation of the 

SLAM problem and its classic solutions on their tutorial 

papers [1, 2]. Even when SLAM solutions have been 

broadly developed, the vast majority of them relate to a 

single robot performing measurements in static 

environments. 

   In this paper, a solution for the multi-robot SLAM 

problem in dynamic environments is proposed. The 
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proposed method is based on EKF-SLAM and identifies 

moving landmarks based on probabilistic location 

constraints and ELA. The ELA is used as a probabilistic 

index to estimate an approximate location for each 

landmark at each time frame and decide about inclusion 

of detected landmarks in EKF correction step. The 

detected landmarks will have the opportunity to come 

back to the process, if they stop moving. The 

communication between individual team members and 

the leader robot (sink robot), allows the team to share 

statistics of the moving parts with other team members. 

An algorithm is responsible for updating the 

information. Robot and landmark locations at each time 

frame are used to decide on inclusion of detected 

landmarks in EKF correction. The main contribution of 

this research is to introduce a novel probabilistic method 

which identifies the moving parts of the environment 

and filters them to reduce the impact of dynamic objects 

and make SLAM resilient to environmental movements. 

As the second contribution, the proposed method 

leverages local maps to detect global changes; hence, it 

is applicable in multi-robot scenarios. As a result, 

compared to other methods, the proposed method not 

only reduces the devastating effects of both dynamism 

and speed, but also increases the accuracy, robustness, 

and reliability of the SLAM in harsh environments. 

   The structure of this paper is as follows. In Section 2, 

a review of SLAM solutions is presented regarding 

specific approaches for multi-robots and dynamic 

environments implementations. Then, in Section 3 the 

proposed method is introduced. In this section, classic 

EKF-SLAM is explained in detail. In addition, a way to 

determine how the speed of dynamic landmarks affects 

the performance of SLAM is introduced. Then a new 

method is proposed to reduce the effects of speed of 

dynamic landmarks in SLAM. In Section 4, the results 

of experiments are presented. The conclusions reached 

by the research are presented in Section 5. 

 

2 Related Works 

   A basic assumption in most current SLAM approaches 

is that the environment is static. However, some 

research has been done in the last years regarding 

dynamic environments. In 2003, the assumption that the 

errors affecting proprioceptive and exteroceptive 

sensors are unknown-but-bounded, led to a set-theoretic 

formulation of the SLAM problem [3]. In 2012, the 

Bayesian random finite set (RFS) SLAM solution is 

extended to the collaborative multi-vehicle 

SLAM (CMSLAM) problem [5]. Then, in 2013, the 

initial approach is improved by adding moving object 

tracking (MOT) [6]. It used RFS representation of the 

feature map and measurements, tracking both static and 

dynamic features. The corresponding probability density 

is propagated using Bayes recursion, from which the 

static feature map and the dynamic feature locations can 

be estimated. The update phase in the CMSLAM 

process is carried out using the static feature map only.  

   In 2015, a robust Graph-based SLAM relying on 

expectation maximization (EM) algorithms to 

characterize landmark mobility while establishing the 

estimations of robot trajectory and the map is 

proposed [7]. A mobility variable is introduced to scale 

the effect of every landmark according to how 

stationary it is. Therefore, moving landmarks are 

filtered as outliers. In order to evaluate the performance, 

two datasets of real dynamic environments are used. 

From then until now, several works keep proposing 

methods to separate the static part of the environment 

from the dynamic part, removing the latter from the 

SLAM algorithm [8, 9]. 

   In 2017, an overview of the latest trends the problem 

of MR-SLAM is provided [10]. It is focused on a robot 

operating system (ROS) package designed to solve this 

problem by enabling the robots to share their maps and 

merge them over a Wi-Fi network. The approach is 

tested with G-mapping and hector SLAM well-known 

packages. In the same year, the adaptive smooth 

variable structure filter (ASVSF) is introduced as an 

algorithm that differentiates between the static and 

dynamic parts of the environment [11]. The ASVSF 

performance is validated in the real-world and the 

results confirm the robustness of the approach. 

   With the birth of convolutional neural networks 

(CNN) and other deep learning techniques, it is only a 

matter of time before these tools joined the SLAM field. 

In 2019, a CNN-based single shot detector (SSD) object 

detector is proposed to analyze the video stream from 

the robot camera [12]. Then, it is assigned a 

characteristic dynamic score based on previous 

knowledge. Highly dynamic objects score close to 10 

and highly static objects score close to 0. Therefore, a 

moving object such as a person could be scored 9 to 10, 

while a static table would be scored between 2 to 3 (a 

table is mainly static but can be moved sometimes). 

Then, they included a tracking thread that processes 

only the feature points of dynamic objects. The final 

implementation of SLAM (based on ORB-SLAM2 [13]) 

successfully locates and builds an accurate map in real-

world tests with a single robot. ORB-SLAM, is a 

complete SLAM system for monocular, stereo and 

RGB-D cameras, including map reuse, loop closing, and 

relocalization which uses Oriented FAST (Features 

from accelerated segment test) and Rotated BRIEF 

(Binary Robust Independent Elementary Features) 

feature detector (ORB) [13]. Very similar approaches 

using prior knowledge of moving objects, deep learning 

objects detector, and SLAM-ORB2 as a core can be 

found in [13-18]. A complete and updated review of 

visual SLAM in dynamic environment can be read 

in [19]. 

 

3 Multi-Robot SLAM in Dynamic Environments 

   In this section, the proposed method is presented. For 
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this purpose, a classic EKF-SLAM is explained in 

detail. Then introduce a way to determine how the speed 

of dynamic landmarks affects the performance of 

SLAM algorithms. Finally, a method is introduced to 

reduce the effects of the speed of dynamic landmarks in 

SLAM. 

 

3.1 EKF-SLAM 

   Based on EKF-SLAM formulation, the robot pose and 

the mapped landmarks form a random state vector 

called map: 
 

R
X

M

 
  
 

 (1) 
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 (2) 

 

where R is the robot state, containing both the robot’s 

position coordinates x and its orientation angles q. 

Likewise, M is the vector containing the position 

coordinates of the n mapped landmarks (l1, …, ln). Both 

R and M are expressed in the same global reference 

frame. This formulation assumes point landmarks 
without orientations. In the EKF framework, the “a 

posteriori” density is approximated by a Gaussian 

density with mean ˆ ˆ ˆ
T

X R M 
 

and covariance 

matrix P. The SLAM keeps this probability density 

function (PDF) up to date with either the robot 

movements or landmark observations. The evolution of 

robot pose during one time step is characterized as:  
 

 ,  R f R u   (3) 

 

   Here f() is the motion function and u is the uncertain 

control signal. This vector of controls permits to modify 

the robot’s trajectory in the state space. A control signal 

can be a command sent by the computer to the robot or 

can be determined by proprioceptive sensors (wheel 

encoders, inertial sensors or even visual odometry). The 

u ~ N(û; U) is assumed to be Gaussian with mean û and 

covariance matrix U. Based on EKF-SLAM, the 

prediction step is described as: 
 

 ˆ ˆ ,  ˆR f R u   (4) 

ˆ T T

R R u uP F PF F UF    (5) 

 

where P and U are the covariance matrices, the FR and 

Fu are the Jacobian matrices obtained by linearizing 

function f at the current estimated state point R and the 

control u: 
 

ˆ ˆ,ˆ, ˆ

,     R uT T

R u R u

f f
F F

R u

 
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 (6) 

 

   Currently, observed landmarks help SLAM make 

corrections. As the robot moves, it might encounter 

mapped landmarks, and then the existing map will be 

corrected based on the new acquired measurements. The 

measurement from the observed landmark li at time k is 

as follows: 
 

 ,i iy h R l    (7) 

 

where h()is the observation matrix and ω ~ N(0; W) is a 

white Gaussian measurement noise with covariance 

matrix W. In the correction step, the EKF-SLAM takes 

observations and calculates the difference between real 

landmark observations (yi) and its predictions. This 

allows the algorithm to perform corrections on the prior 

estimation as follows: 
 

 ˆˆ ,i i iz y h R l   (8) 

T

i i iZ H PH W   (9) 
1.T

i i iK PH Z   (10) 

ˆ ˆ . i iX X K z    (11) 

T

i i iP P K Z K    (12) 
 

where K  is Kalman gain, z and Z are the innovation’s 

mean and its covariance matrices, respectively. The 

innovation z is the difference between the actual 

measurements and the predictions. Equations (10) and 

(11) constitute the filter update. The X̂ + is the extended 

state vector after the correction step, with covariance P+. 

The Jacobian matrix H is defined in a similar way as FR 

and FU by linearizing the function h at the current 

estimated state point X̂ as: 
 

 

ˆ

ˆ , ˆ
i

i

X

h R l
H

X





 (13) 

 

   As long as the robot moves, the prediction and 

correction steps are implemented to process the SLAM 

and build the environment map. 

 

3.2 Landmarks Speed 

   In order to determine how the speed of dynamic 

landmarks affects the performance of SLAM, it is 

necessary to define a relative rate of change that 

considers both the speed at which the landmarks move 

and the rate at which they are processed by the sensor. 

In this case, we refer to as a sensor to the complete 

perception system that processes the raw data and 

extracts the references. The sensor data is processed at a 

rate of F frames per second. 
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Fig. 1 A single robot surrounded by three landmarks. 

 

   Fig.1 shows a robot (r) and three landmarks (l1, l2, l3). 

The field of the view (FOV) of the robot sensor is 

defined as a circular region of diameter D surrounding 

the robot. In this figure, only l1 is within the FOV of the 

sensor and the other two landmarks remain unseen to it. 

If the speed of movement of a landmark is 1D and 

higher, it will disappear from the current FOV in the 

next time frame. Therefore, it is not worthwhile to study 

speeds higher than 1D. Considering the FOV diameter 

D, and sensor data process rate F, we can define the 

speed of the dynamic landmarks are as: 
 

 lv DF  
(14) 

 

where 0 < α < 1 is a coefficient that allows studying the 

whole ranges of speed of interest. α = 1 is equivalent to 

static landmarks and α = 1 is equivalent to the 

maximum speed, where the landmark is detected in a 

single frame. On the other hand, the movement of the 

robot must ensure that the overlap between the FOV in 

one frame and the FOV in the next frame is large 

enough for the SLAM convergence. This requires the 

movement speed of the robot to be less than 1D per 

frame. 

 

3.3 Reducing the negative effects of movement 

   Traditional EKF-SLAM loses accuracy in dynamic 

environments. As will be shown in the result section, 

increasing the speed or the dynamism level quickly 

deteriorates the performance of EKF-SLAM. In this 

paper, a new method is proposed to reduce the negative 

effects of the speed of landmarks and other robots. This 

will allow the correct implementation of multi-robot 

SLAM in dynamic environments. In the proposed 

method, the dynamic landmarks of the environment are 

identified and eliminated through a probabilistic 

approach. In order to prevent making corrections based 

on erroneous measurements of the moving landmarks, a 

new concept called the expected landmark area (ELA) is 

introduced. This concept allows identifying and filtering 

moving landmarks. 

 

3.3.1 Landmarks Identification and Filtering 

    Following the same notation introduced in the 

previous sections, the robot r is located in state Rr
k at  

 

  
(a) (b) 

Fig. 2 a) The robot discovers a single landmark and b) robot 

moves based on the movement function and the landmark is 

outside the ELA. 
 

time instant k. An observation yi of a single landmark li 

is performed as Fig. 2(a). By applying the inverse 

observation function g, the position li of the observed 

landmark is as: 
 

 , r

i k i kRl g y  (15) 
 

   This location is stored in a map called L-map. The L-

map is further discussed in subsection 3.2.2. Then the 

robot goes on with its exploration of the environment 

based on motion function f. Next time instant k + 1, the 

robot might face different situations according to its 

new position Rr
k+1.  First, the ELA is calculated. The 

ELA for landmark li represents the location where it is 

expected to be on the global map as Fig. 2(b). By 

defining a location threshold, it is possible to distinguish 

whether a landmark is static or dynamic. If the distance 

d between the actual landmark location li and the ELA 

center is greater than threshold di, li is labeled as a 

moving landmark. In this case, any previous 

information about li is removed from the L-map and its 

current location is added. Otherwise, it is a static 

landmark and its location is updated via EKF-SLAM. 

Rather than using Euclidean distance, the comparison is 

made by Mahalanobis distance as will be explained in 

the next section. 

   The remaining case happens if both ELA and 

landmark li are not within the FOV. In this case, due to 

lack of information, the location of the landmark in L-

map remains unchanged so it can be used later. The 

process already described is easily extended to the 

multiple detected landmarks case adding other 

considerations. The relative position of a landmark, 

considering other neighboring landmarks, is used as an 

index to check the mobility of landmarks. Fig. 3(a) 

visualizes a robot located in Rr
k at time instant k. The 

robot makes the measurements y1, …, yn, calculates the 

landmark locations l1, …, ln , and stores these locations 

in L-map. Then, the robot moves and its location 

changes to Rr
k+1 at time instant k + 1 as Fig. 3(b). When 

considering multiple landmarks it seems obvious that a 

constraint network is formed between them. So these 

constraints must remain almost fixed if the landmarks 

are static. A moving landmark could be easily detected 

due to its inconsistent behavior regarding the other  
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(a) (b) 

Fig. 3 a) The robot observes multiple landmarks and b) The 

robot moves and l2 is outside its ELA. 

 

surrounding landmarks. 

   The relative position where landmark l1 is supposed to 

be in the next time instant is called
il
 which

il
 can be 

interpreted as the ELA of each landmark observed in 

time k and expected to be observed in time k + 1. 

The
il
 is calculated for each landmark in the world 

reference frame using the other n – 1 landmarks 

positions (mean and covariance). The
il
 is calculated in 

a Bayesian way as follows: 
 

 
 

 

1 1

1 1

( | )
( | )

n n
i j i

i ji

i i j

P l P l l
P P l l

P l
l






 

    (16) 

 

The term P(lj | li) is calculated by geometry 

transformations. The probability ( )iP l   forms a 

Gaussian distribution itself so the resulting ELAs will 

be an ellipsoid from the geometrical point of the view 

[20]. Every landmark that remains within its ELA is 

incorporated into the main map. Otherwise is considered 

a dynamic landmark. Since the proposed approach is 

probabilistic, the criterion for deciding whether a 

landmark is within or outside the ELA uses the 

Mahalanobis distance instead of the Euclidean distance. 

The prior from EKF-SLAM X̂+ is necessary to obtain 

the approximate locations of fixed landmarks in the next 

time frame. 

 

3.3.2 L-Map Algorithm 

   Every robot in this implementation builds its L-map 

while contributes to the global map of the environment. 

The global map is built by only one of the robot and it is 

called the main robot. The fact that each robot manages 

its local map (L-map) distributes the computational load 

of the SLAM problem making it more feasible to 

implement on a large-scale environment. 

    As described previously, in the proposed method, 

every landmark must pass the ELA criterion in order to 

be added to the L-map and also be shared with the main 

robot to add it to the global map. If a moving landmark 

is detected not only the L-map is updated but also a 

message is sent to the main robot. This one deletes the 

landmark from the global map and notifies the other 

robots about the deleted landmark. In summary, the 

pseudo-code of the proposed method is as Algorithm.1. 

 

4 Results 

   The simulations are made using a 6DOF SLAM 

toolbox for MATLAB developed by Juan Solá 

et al. [21]. The toolbox is modified to include several 

robots and moving landmarks. All simulations are 

performed in a 3D environment, which is traversed by a 

team of three robots. Each robot has a fixed initial 

position and follows a pre-defined semicircular 

trajectory. The environment comprises an area of 400 

square meters in which 72 landmarks are distributed 

with fixed initial positions as can be seen in Fig. 4. 

   Initially, a number of landmarks are picked randomly 

according to the dynamism percentage. Every dynamic 

landmark receives a direction of movement (front, back, 

right, left) assigned randomly. Each landmark moves in 

its assigned direction at the speed selected for the 

experiment. Every twenty frames, the direction of 

movement of each landmark is switched to the opposite. 

   Thirty different experiments are carried out in order to 

determine how the speed of dynamic landmarks affects 

the performance of EKF-SLAM. Then the experiments 

are repeated using the proposed method. Every 

experiment runs for 150 frames and was performed 10 

times. Five values of dynamism (5%, 20%, 35%, 50%, 

65%, and 80%) and six values of speed (0.1m/s, 0.3m/s, 

0.5m/s, 0.7m/s, and 0.9m/s) are tested. A common 

practice among SLAM literature is the use of RMSE as 

a form of measure the performance of the 

algorithm [12]. For every time frame, the average of 

RMSE of all the landmarks RMSEk is calculated as: 
 

   
1

ˆ
1

ˆi i i i

n
T

l l l l

k

i

RMSE x x x x
n 

    (17) 

 

where ˆ ilx is the estimated landmark position and ˆ ilx is 

the real landmark position. In order to obtain a single 

measure to evaluate the performance of every 

experiment RMSEk is averaged over the entire 

simulation time (150 frames) as made in [12]: 
 

150

1

1

150
k

k

RMSE RMSE


   (18) 

 

   Table 1 shows the RMSE total values for the 

landmarks location. It can be seen that for every 

experiments the proposed method exhibit less error than 

the original EKF-SLAM. Fig. 5 shows the same data as 

Table 1 in a 3D bar graph. As can be seen, the EKF-

SLAM deteriorates as dynamism increases. In the same 

way, for high levels of dynamism, the EKF-SLAM 

slowly deteriorates as speed increases. On the contrary, 

for dynamism under 50%, there is no conclusive 

evidence about speed effect over the performance. The 

proposed method proved to be almost insensitive to both 
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Algorithm 1 Pseudo-code of the proposed method. 

for each robot in the team 

build L-map 

update state vector 

    for each time frame 

    determine FOV 

    calculate ELA and 
i

l
 for the observed landmarks in the L-map 

    move and sense the environment 

        if no landmarks are detected 

        delete from the L-map those landmarks who were expected to be sensed in ELA 

        else 

            for each observed landmark 

                if the landmark previously L-mapped 

                    if a single landmark is detected 

                        if in ELA → update L-map and pass the landmark to back-end 

                        if out ELA → delete the landmark info from L-map and inform main robot 

                    else if multiple landmarks are detected 

                        calculate 
i

l
 for each observed landmark 

                        if in ELA → update L-map and pass the landmark to back-end 

                        if out ELA → delete the landmark info from L-map and inform main robot 

                        end if 

                     update L-map 

                  else if the landmark is newly discovered 

                    enter newly discovered landmark info to the L-map 

                    update L-map 

                  end if 

            end for 

        end if 

    end for 

end for 

 

 
Fig. 4 Simulated environment: three simulated robots (blue), current estimated positions of the robots (green) and uncertainty ellipses 

(red). Landmarks (black dots) and its uncertainty ellipses (blue and red). The grid is two meters wide. 

 

dynamism and speed except for the most extreme cases. 

With such a high percentage of dynamism, 80%, even 

when the method deletes the dynamic landmarks, there 

are not enough static landmarks to accomplish a better 

estimation. 
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Table 1 Total RMSE in Landmarks location for every experiment. 

Level of dynamism [%] 

Level of speed 

Very slow [0.1m/s] Slow [0.3 m/s] Medium [0.5 m/s] Fast [0.7 m/s] Very fast [0.9 m/s] 

EKF. Prop. EKF. Prop. EKF. Prop. EKF. Prop. EKF. Prop. 

5 4.07 2.55 3.70 2.63 3.44 2.67 3.46 2.86 3.66 2.93 

20 3.98 2.81 3.90 2.65 4.21 3.10 4.20 2.95 3.93 3.12 

35 5.08 2.96 4.70 3.05 4.72 2.93 4.98 2.86 4.59 2.76 

50 5.38 2.78 5.33 3.17 5.21 2.96 5.15 2.71 5.52 3.16 

65 5.54 2.68 5.35 2.79 5.79 2.61 5.57 2.78 5.97 3.14 

80 5.49 3.09 5.63 3.04 5.78 3.26 6.01 3.29 6.21 3.41 
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(a) (b) 

Fig. 5 Average RMSE for the 30 experiments: a) EKF-SLAM and b) Proposed method. 

 
Table 2 Total RMSE in location of robot 1 for every experiment. 

Level of 

dynamism [%] 

Level of speed 

Very slow [0.1m/s] Slow [0.3 m/s] Medium [0.5 m/s] Fast [0.7 m/s] Very fast [0.9 m/s] 

EKF. Prop. EKF. Prop. EKF. Prop. EKF. Prop. EKF. Prop. 

5 0.490 0.225 0.592 0.240 0.407 0.232 0.426 0.278 0.516 0.314 

20 0.456 0.250 0.562 0.245 0.503 0.266 0.498 0.391 0.485 0.287 

35 0.764 0.324 0.838 0.369 0.648 0.283 0.651 0.294 0.508 0.253 

50 0.873 0.265 0.894 0.359 0.699 0.286 0.664 0.248 0.899 0.318 

65 1.467 0.212 0.791 0.257 0.910 0.218 0.778 0.269 0.899 0.353 

80 1.707 0.217 1.288 0.217 0.987 0.257 1.116 0.230 0.873 0.272 

 
Table 3 Total RMSE in location of robot 2 for every experiment. 

Level of 

dynamism [%] 

Level of speed 

Very slow [0.1m/s] Slow [0.3 m/s] Medium [0.5 m/s] Fast [0.7 m/s] Very fast [0.9 m/s] 

EKF. Prop. EKF. Prop. EKF. Prop. EKF. Prop. EKF. Prop. 

5 0.583 0.252 0.467 0.305 0.360 0.338 0.379 0.339 0.494 0.493 

20 0.492 0.363 0.601 0.302 0.475 0.434 0.521 0.436 0.393 0.496 

35 0.761 0.399 0.605 0.371 0.644 0.374 0.712 0.287 0.525 0.229 

50 0.861 0.277 0.824 0.439 0.792 0.322 0.598 0.189 0.621 0.393 

65 1.252 0.138 0.789 0.239 0.865 0.237 0.605 0.191 0.672 0.296 

80 1.108 0.157 1.081 0.287 1.053 0.219 0.696 0.325 1.093 0.307 

 

   Tables 2-4 show similar results for the three robots 

positions. As before, the proposed method exhibits 

better performance in all cases but three that can be 

treated as outliers. Fig. 6 shows a 3D representation of 

the averaged RMSE of the three robots. In this case,  as 

with landmarks, the effect of dynamism to degrade the 

EKF-SLAM is more pronounced than the effect of 

speed. Using the proposed method the differences are so 

subtle (less than 0.2m) that it can be said that variation 

on both, speed and dynamism, has almost no effect on 

performance. 

   Fig. 7(a) shows the evolution of RMSE in landmarks 

over time for several simulations with very slow 

dynamism (5%). The proposed method (continuous 

lines) exhibits better performance than the EKF-SLAM 

(dashed lines) for all the speed cases. In the same way, 

Fig. 7(b) shows the evolution of RMSE in landmarks 

over time with very high dynamism (80%). As 

expected, the performance of the proposed method is 

better than EKF-SLAM. 



Effects of Moving Landmark’s Speed on Multi-Robot 

 
… S. Badalkhani and R. Havangi 

 

Iranian Journal of Electrical and Electronic Engineering, Vol. 17, No. 1, 2021 8 

 

Table 4 Total RMSE in location of robot 3 for every experiment. 

Level of dynamism [%] 

Level of speed 

Very slow [0.1m/s] Slow [0.3 m/s] Medium [0.5 m/s] Fast [0.7 m/s] Very fast [0.9 m/s] 

EKF. Prop. EKF. Prop. EKF. Prop. EKF. Prop. EKF. Prop. 

5 0.560 0.252 0.486 0.305 0.366 0.338 0.460 0.339 0.483 0.493 

20 0.532 0.363 0.662 0.302 0.546 0.434 0.505 0.436 0.490 0.496 

35 0.710 0.399 0.633 0.371 0.539 0.374 0.535 0.287 0.551 0.229 

50 1.228 0.277 0.925 0.439 0.594 0.322 0.493 0.189 0.578 0.393 

65 1.243 0.138 0.659 0.239 0.627 0.237 0.552 0.191 0.585 0.296 

80 1.261 0.157 1.276 0.287 0.743 0.219 0.732 0.325 0.804 0.307 
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Fig. 6 Average RMSE for all three robots during the 30 experiments: a) EKF-SLAM and b) Proposed method. 

 

  
(a) (b) 

Fig. 7 RMSE over time: a) 5% of dynamism and b) 80% of dynamism. 
*Numbers in the legends represent landmarks speed. 

 

   Lastly, for every experiment, uncertainty over the 

generated map is analyzed using the mean of the 

diagonal of the covariance matrix diagonal as follows: 
 

  150
ˆAve mean diag kP   (19) 

 

This parameter allows comparing the uncertainty across 

all the experiments as can be seen in Fig. 8. Once again, 

original EKF-SLAM exhibits higher uncertainty. It is 

worth noting that using the original EKF-SLAM, the 

final uncertainty increases with both increased 

dynamism and increased speed. However, the proposed 

method reduces the effect of the former and almost 

eliminates the effect of the latter. 

5 Conclusion 

   Researches show that the performance of SLAM 

algorithms deteriorates under dynamic environments. 

To limit the effect moving landmarks on performance 

SLAM algorithm, in this paper, a multi-robot 

simultaneous localization and mapping is implemented 

within an environment with moving landmarks. The 

proposed method uses the limited maps around each 

robot and detects the moving landmarks based on 

probabilistic constraints. Landmarks positions and the 

geometric constraints between those are the key aspects 

to identify and reject erroneous measurements obtained 

from moving parts of the environment. Thirty different 

tests are performed for different levels of dynamism 

(5%, 20%, 35%, 50%, 65%, and 80%) and speed  
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Fig. 8 Total map uncertainty at the final frame: a) EKF-SLAM and b) Proposed method. 

 

(0.1m/s, 0.3m/s, 0.5m/s, 0.7m/s, and 0.9m/s) in order to 

measure the effect of moving landmarks and their speed 

on SLAM performance. Every experiment runs for 150 

frames and is performed 10 times. The RMSE of the 

landmarks estimated positions, the RMSE of the robot 

estimated positions, and the final uncertainty of the final 

map are studied to compare the performance of both 

algorithms while varying the values of dynamism and 

speed. In general, the results agree that the effect of 

increasing dynamism in classic EKF-SLAM is 

devastating. However, the increase in landmarks speed 

worsens SLAM performance in some cases but never as 

devastatingly as the increase on dynamism. However, 

using the proposed method, the reduction of uncertainty 

in the final estimated map is above 50% with respect to 

the uncertainty in the map estimated by the traditional 

EKF-SLAM. The proposed method not only reduces the 

devastating effects of both dynamism and speed, but 

also increases the accuracy, robustness, and reliability 

of the SLAM in harsh environments. There are still 

several possibilities for future extensions. Since the 

proposed method is a probabilistic method that acts on 

the front-end of the SLAM, the authors suggest 

implementing the method with other SLAM approaches 

such as Graph-based SLAM methods to further evaluate 

effectiveness. In addition, the noise and perturbations at 

the present study are assumed as uni-modal Gaussian 

variables. In the future, the authors implement non-

Gaussian error models which are more realistic. Data 

association is one of the main sources of the failure in 

SLAM algorithms mainstream SLAM methods have 

been developed with the rigid and static world 

assumption. The proposed method addresses the 

robustness against the dynamics of the environments. 

However, the real world is non-rigid also due to the 

inherent deformability of objects. Hence, making the 

SLAM back-end resilient against spurious 

measurements such as perceptual aliasing and wrong 

loop-closures is a compelling area for future works. 

Finally, although computer simulations are useful for 

evaluating the effectiveness of methods, they might 

neglect important practical issues that appear in the real 

world. In this sense, future works can be focused on 

developing real experiments to validate the applicability 

of the proposed approach completely. 
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