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Abstract: Control center of modern power system utilizes state estimation as an important 

function. In such structures, voltage phasor of buses is known as state variables that should 

be determined during operation. To specify the optimal operation of all components, an 

accurate estimation is required. Hence, various mathematical and heuristic methods can be 

applied for the mentioned goal. In this paper, an advanced power system state estimator is 

presented based on the adaptive neuro-fuzzy interface system. Indeed, this estimator uses 

advantages of both artificial neural networks and fuzzy method simultaneously. To analyze 

the operation of estimator, various scenarios are proposed including impact of load 

uncertainty and probability of false data injection as the important issues in the electrical 

energy networks. In this regard, the capability of false data detection and correction are also 

evaluated. Moreover, the operation of presented estimator is compared with artificial neural 

networks and weighted least square estimators. The results show that the adaptive neuro-

fuzzy estimator overcomes the main drawbacks of the conventional methods such as 

accuracy and complexity as well as it is able to detect and correct the false data more 

precisely. Simulations are carried out on IEEE 14-bus and 30-bus test systems to 

demonstrate the effectiveness of the approach. 
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1 Introduction1 

1.1 Motivation 

OWER system state estimation (SE) is a key tool for 

management systems [1]. In fact, different 

proceedings such as energy management [2] and 

network control [3] are not possible without availability 

of accurate information. Hence, if the unknown data are 

predicted by SE, the operators will easily monitor and 

control the network [4]. Through application of such 

methodology, safe and efficient operation can be 

achieved [5-7]. Thus, the development of SE tools is 
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inevitable for the optimal protection, optimization, and 

control of power systems especially with increasing 

information exchange due to smart grids [8]. 

 

1.2 Literature Review 

   The SE consists of estimating the bus voltage 

magnitude and phase angle using redundant active-

reactive power injection measurements and line active-

reactive power flows at different locations [9-12]. The 

weighted least square (WLS) method is the most 

common approach to solve the SE problem. In this 

procedure, SE is formulated as an optimization problem 

and solved by an iterative method [13]. This process 

includes several drawbacks such as ill-conditioning of 

gain matrix, slow detection of false data, and numerical 

problems in some cases (e.g., simultaneous connection 

of short and long line to bus and high weighting 

coefficients for pseudo measurements) [14]. According 

to the presented issues, WLS algorithm may provide 

unacceptable outputs as well as its convergence is not 

P 

mailto:m.ahmadi@kut.ac.ir
mailto:v-sohrabi@kut.ac.ir
https://doi.org/10.22068/IJEEE.17.3.1722


State Estimation in Electric Power Systems Based on Adaptive 

 
… M. Ahmadi Jirdehi and V. Sohrabi Tabar 

 

Iranian Journal of Electrical and Electronic Engineering, Vol. 17, No. 3, 2021 2 

 

guaranteed. In recent years, various methods are 

suggested by researchers to improve the SE and resolve 

the mentioned problems. Reference [15] proposes a 

past-aware SE (PASE) based on Ensemble Kalman 

Filter (EKF) for distribution systems to enhance 

accuracy. In this method, fewer phasor measurement 

units (PMUs) are required to achieve the same 

estimation error as well as power flow equations are not 

embedded into the estimator. The interconnected 

optimal filtering problem for distributed dynamic SE 

based on the mean squared error between the real and 

estimated states is investigated by considering packet 

losses [16]. In this regard, the system is modeled as a 

state-space linear equation where sensors are utilized to 

obtain measurements and the optimal local and 

neighboring gains are computed to reach a consensus 

estimation. A model-free and fully data-driven approach 

is developed for power system static SE based on a 

conditional generative adversarial network in [17]. 

Comparing with the WLS, any appropriate knowledge 

about system model is not needed. Reference [18] 

presents a novel decentralized load frequency control 

(LFC) approach based on dynamic SE where employs 

an unknown input observer including demand 

fluctuation and tie-line power deviations to track the 

dynamic states in real-time operation. A distributed 

unscented information filtering (UIF) is proposed for SE 

of interconnected nonlinear dynamic systems [19]. This 

method is based on unscented transformation where the 

local estimate is calculated based on the local 

observations, and then gradually integrates the 

neighboring information by an iterative method to 

obtain a more accurate distributed estimate. In the same 

way, a hybrid SE approach is developed based on the 

two-stage iterative algorithm in [20]. Reference [21] 

uses two novel algorithms including deterministic and 

stochastic schemes derived from composite 

optimization to improve the low speed and accuracy of 

conventional least-absolute-value (LAV) for real-time 

estimating and monitoring. 

   Besides mathematical methods, heuristic or meta-

heuristic algorithms can be utilized for various goals 

such as estimating, predicting and learning. Recently, 

applications of intelligent algorithms, artificial neural 

networks (ANNs), fuzzy method and combination of 

them are widely developed in electrical power 

systems [22]. For instance, the electricity consumption 

patterns of customers in response to electricity price of 

demand response (DR) program are modeled by ANN 

[23]. An economic load dispatch issue is solved using 

dragonfly algorithm to minimize the cost in the power 

system including thermal power plant, renewable 

resources and different load conditions [24]. In order to 

validate the effectiveness, the results are compared to 

different intelligent algorithms such as crow search 

algorithm (CSA), ant lion optimizer (ALO), 

oppositional real-coded chemical reaction optimization 

(ORCCRO), biogeography-based optimization (BBO), 

particle swarm optimization (PSO) and genetic 

algorithm (GA). As well, load dispatch problem is 

studied by utilizing ALO [25] and grey wolf 

optimizer (GWO) [26]. Reference [27] proposes a 

robust SE utilizing a re-weighted moving horizon 

estimation. This method decreases the sensitivity to the 

outliers by real-time updating the error variances and re-

weighting the contributions adaptively. Due to 

dependency of some algorithms such as PSO to the 

system dimension, a hybrid state estimator includes a 

cellular computational network (CCN) and GA is 

designed [28]. In this research, the CCN is improved by 

GA and used to distribute the whole computation into 

computation cells and execute local estimation. Since 

ANN is a machine learning, such a network can be 

utilized to estimate and approximate functions which 

are related to a large number of inputs and unknown 

data. ANN is widely applied to different power system 

problems such as power system restoration [29], 

reactive power transfer allocation [30], transient 

response prediction [31], controlling a hybrid power 

filter [32], and power flow [33]. Reference [34] utilizes 

ANN to solve power flow problem under different 

loading and contingency conditions for computing bus 

voltage magnitudes. In the mentioned study, two 

supervised learning networks are used including counter 

propagation neural networks and multi-layer feed-

forward network with back propagation algorithms. 

Furthermore, in order to take advantages of ANN speed 

over the conventional power flow methods, multi-layer 

perceptron neural networks trained with the second 

order Levenberg-Marquardt are successfully 

developed [35]. Due to need for many iterations to 

obtain reasonable results and converge problem of 

Gauss-Newton as a key component in distribution 

system SE, reference [36] uses historical or simulation-

derived data to train a shallow neural network and 

initialize Gauss-Newton network. The results validate 

that this hybrid machine learning/optimization approach 

yields superior performance in terms of stability, 

accuracy and runtime efficiency. According to voltage 

fluctuations caused by large-scale deployment of 

renewable generators, electric vehicles and DR 

programs, monitoring in real-time becomes increasingly 

critical. Hence, physics-inspired deep neural 

networks (DNNs) is utilized for real-time power system 

monitoring [37]. Numerical tests show improved 

performance of the proposed DNN-based estimation and 

forecasting approaches compared with existing 

methods. To improve the operation of neural networks, 

this structure is combined with fuzzy logic. Adaptive 

neuro-fuzzy inference system (ANFIS) is the 

combination of ANN and fuzzy logic and comprises the 

specifications of both methods [38]. ANFIS is 

implemented on power system problems such as 

maximum power point tracking in photovoltaic 

systems [39], fault location in power distribution 

systems [40], fast power restoration plan in distribution 
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systems [41], and power flow in distribution networks 

[42]. However, the application of ANFIS is not well 

analyzed as the SE in the presence of false data 

injection (FDI). 

 

1.3 Contribution of Paper 

   As investigated, various methods are presented to 

improve the SE of power systems as a new tool. In this 

regard, some studies are based on mathematical 

procedures, while the others use intelligent algorithms. 

The main problems of mathematical methods are the 

complexity and solving time. In return, intelligent 

procedures are not accurate enough. In this paper, a new 

method is proposed to estimate the power system states 

based on the combination of neural network and fuzzy 

logic. Hence, the main contribution and key points of 

the paper are summarized as follows: 

 Proposing an intelligent state estimator based on 

adaptive neuro-fuzzy inference system. 

 Comparing the accuracy of the presented estimator 

by ANN and WLS. 

 Analyzing the capability of the method to detect and 

correct the injected false data.  

 Considering the probability of load variation as a 

practical condition in power system. 

 

1.4 Paper Organization 

   The rest of the paper is organized as: Section 2 

summarizes the state estimation formulation. In 

Section 3, the ANFIS and ANN are modeled and the 

load uncertainty is presented in Section 4. As well, 

algorithm constructing and accuracy analysis are 

explained in Section 5 and the understudy test system is 

introduced in Section 6. Finally, Sections 7 and 8 are 

devoted to the simulation results and conclusions, 

respectively. 

 

2 State Estimation Formulation 

   The goal of a static SE is finding the best estimation 

for state Ẋ. If the X is the state vector, the measurement 

vector will be determined by (1) [7]. 
 

 Z h X e   (1) 

 

where, Z and h(X) are the measurement and a nonlinear 

vectors related to state components, respectively. 

Moreover, e is the Gaussian noise vector with zero 

mean and diagonal covariance matrix. 
 

 2 2 2

1 2, , , mR diag      (2) 

 

   The diagonal covariance matrix is defined by (2) in 

which the σm
2 exhibits the covariance. It should be noted 

that the state vector comprises voltage phase angle and 

magnitude and the measurement vector includes active-

reactive power flow through the lines, the injected 

powers and voltage magnitudes. To find the state vector 

that minimizes the objective function, J(X) can be 

defined as (3). 
 

     -1- -
T

J X Z h X R Z h X         (3) 

 

The state estimation of states Ẋ which minimizes J(X) 

can be obtained by (4). 
 

 
 -1 - 0T

dJ X
H R Z h X

dX
     (4) 

 

where, an iterative process is caused as (5). 
 

   -1

1

-k k T k

k k k

G X X H R Z h X

X X X

      

   

 (5) 

 

In (5), k is the iteration index, G(X)=HTR-1H and 

H(X)=dh(X)/dX are the system gain matrix and the 

measurement Jacobian matrix, respectively. 

 

3 Modeling of ANN and ANFIS 

3.1 Structure of Artificial Neural Network 

   ANN operates based on biological neural networks. 

Multi-layer perceptron (MLP) network consists of a 

large number of processing elements (i.e., neurons) and 

at least three layers including input, hidden, and output 

layers [32, 33]. Each layer of the MLP network 

comprises several neurons. The node d input in the 

hidden layer is stated by (6). 
 

 
1

1,2,...,
i

d d k kd

k

a X W d n


     (6) 

 

where, X, n, i, a and W shows the inputs, number of 

neurons in the hidden layer, number of neurons in the 

input layer, bias term and the weighting factor, 

respectively [31, 32]. The output from dth hidden layer 

is determined by (7). As well, the activation function of 

the hidden layer is defined by f and the output of cth 

neuron in the output layer is given by (8). 
 

 d df   (7) 

 
1

1,2,...,
i

c c k kc

k

Y b W c m


     (8) 

 

where b and m are the bias term and number of neurons 

in the output layer. 

 

3.2 Structure of Adaptive Neuro-Fuzzy Interface 

System 

   The ANFIS is constructed from the multi-layer feed-

forward network that combines the capability of fuzzy 

logic and ANN simultaneously [41, 42]. To show the 

ANFIS structure, a simple model is presented where the 
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Fig. 1 MLP structure including input, hidden, and output 
 

layers. 

 

system includes two inputs (x, y) and one output (f). In 

such a structure, two fuzzy rules based on the first-order 

Sugeno are utilized by (9) and (10). 
 

For x equal to A1 and y equal to B1, then 

1 1 1 1f p x q y r    

 

(9) 

For x equal to A2 and y equal to B2, then 

2 2 2 2f p x q y r    

 

(10) 

 

   The ANFIS structure for the mentioned description is 

exhibited in Fig. 2 and the structure of layers are 

explained as follows: 

   Each node in the first layer produces grades of 

membership for input variable through node functions 

as shown by (11) and (12). 
 

 1,   1,2i AiO x i   (11) 

 1, -2 3,4i BiO x i   (12) 

 

where, i and O1,i are the membership grade of a fuzzy 

set and output of node i. All input signals are multiplied 

in the second layer as (13). 
 

   2, 1,2i i Ai BiO w x x i      (13) 

 

   In the third layer, the nodes calculate the ratio of the 

ith rule’s firing strength by (14). 
 

3,

1 2

1,2i
i i

w
O w i

w w
  


 (14) 

 

   All of the fourth layer nodes are adaptive with an 

output node as (15). The normalized firing strength and 

consequent parameters are defined by 
iw  and pi, qi, and 

ri. 
 

 4, 1,2i i i i i i iO w f w p x q y r i      (15) 

 

   Each node in the fifth layer determines the overall 

output as stated by (16). 
 

2
1 1 2 2

5,

1 1 2

i i i

i

w f w f
O w f

w w


 


  (16) 

 

 
Fig. 2 ANFIS structure for two inputs and one output. 

 

4 Load Uncertainty Modeling 

   To model the uncertainty of load and simulate a 

practical condition, a probability distribution 

function (PDF) with 10%-60% standard deviations is 

considered for each load and 2000 random data are 

generated for each deviation (17). Afterward, the 

expected value is calculated for all data in each 

deviation. Eventually, the expected value of all 

deviations should be determined for each load (18). 
 

( ) ( , )S X PDF X dv  (17) 

1 1

( ) ( ) ( ) ( )
n ndv g

dv g

E X S X prob g prob k
 

 
   

 
   (18) 

 

where, S and dv are the generated scenario for variable 

X and standard deviation, respectively. Moreover, E, 

prob and g are the expected value, probability matrix 

and generated data. 

 

5 Algorithm Constructing and Accuracy Analysis 

   The ANFIS and ANN are the training-based 

algorithms where several data sets are required to 

construct their networks. In this regard, real values 

including slack bus voltage magnitude, active-reactive 

power and voltage phasor of test systems are used for 

learning goal. The mentioned data sets are gathered 

from measurement units under different conditions such 

as load uncertainty. After learning process, a data set is 

used to calculate the accuracy of the model. If the 

prediction accuracy is lower than an acceptable 

threshold, the learning will be finished. Otherwise, the 

input data sets are updated and the mentioned steps are 

repeated. 

   In order to analyze the performance of the method, the 

outputs of WLS, ANN, and ANFIS should be compared 

to the real values. To order to provide an extensive 

comparison, the error indices can be calculated for all 

cases as proposed by (19)-(21). These indices are mean 

absolute error (MAE), root mean square error (RMSE), 

and mean relative error percentage (MRE), respectively. 
 

1

1
MAE (exp) - ( )

N

i i

i

X X pred
N 

   (19) 
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 
0.5

2

1

(exp) - ( )

RMSE

N

i i

i

X X pred

N



 
 
 
 
  


 (20) 

1

1 (exp) - ( )
MRE% 100

(exp)

N
i i

i i

X X pred

N X

    (21) 

 

where N is the number of data, Xi(exp) and Xi(pred) 

show the experimental/real and predicted values, 

respectively. Moreover, N is equal to bus number for all 

error indices except for phase angles in MRE, because 

the phase angle of the slack bus is always zero and 

should be removed to get a better result. 

 

6 Test System 

   In this paper, the proposed state estimator is 

implemented on the IEEE 14-bus and IEEE 30-bus test 

systems. It is worth mentioning that all input data are 

taken from IEEE standards [7]. In addition, the 

specifications of ANN and ANFIS are listed in Tables 1 

and 2, respectively. To train the ANFIS and ANN, ten 

data sets including voltage, active-reactive power 

injection, and active-reactive power flow through the 

lines are used. In order to simulate the errors, Gaussian 

errors with zero mean and known standard deviation are 

added to the actual data. The standard deviations for 

voltages, power injections and power flows are equal to 

0.004, 0.008, and 0.001, respectively. 

 

7 Simulation Results 

   In order to test the presented SE and show the 

efficiency, three scenarios are analyzed, as shown in 

Table 3. In the first scenario, the performance of ANFIS 

is compared to ANN and WLS without considering 

false data. In the next scenario, a single false data is 

injected and the capability of each method for false data 

detection and correction is evaluated. Then, to validate 

the capability of the method against critical conditions, 

multi-false data is considered and the results are 

proposed in the third scenario. Eventually, the error 

indices for all scenarios are proposed in the last section 

for clear analysis. 

 

Table 1 Specification of the ANN model. 

Specification ANN 

Neural network MLP 

Number of hidden layer 2 

Number of neurons in the first hidden layer 6 

Number of neurons in the second hidden layer 4 

Number of neurons in the output layer 4 

Learning rate 0.5 

Number of epochs 250 

Adaption learning function Trainlm 

Activation function Tansig 
 

Table 2 Specification of the ANFIS model. 

Specification IEEE-14 bus IEEE-30 bus 

Type Sugeno Sugeno 

Inputs/outputs 47/1 225/1 

No. of membership 

functions for each input 

7 15 

No. of output membership 

functions 

7 15 

Membership function type Sub.clustring Sub.clustring 

Range of influence 0.001 0.001 

Squash factor 1.25 1.25 

Accept ratio 0.5 0.5 

Reject ratio 0.15 0.15 

Optimal method Hybrid Hybrid 

No. of nodes 722 1254 

No. of linear parameters 336 632 

No of nonlinear parameters 658 1124 

Total number of parameters 994 1756 

No. of training data pairs 7 15 

No. of fuzzy rules 7 15 

No. of epochs 250 250 
 

 

Table 3 List of scenarios for analyzing the performance of the method. 

Test system Scenario Scenario explanation Variable  Actual data False data 

IEEE 14-bus 

1 Without false data - - - 

2 Single false data P2-3 0.81465 -0.81465 

3 Five false data 

P11 -0.035 -0.015 

Q12 -0.016 -0.008 

P3-4 -0.31574 -0.15 

P7-9 0.28298 0.14 

Q7-8 -0.24856 -0.12 

IEEE 30-bus 

2 Single false data P2-3 0.88038 -0.88038 

3 Five false data 

Q21 -0.112 0.112 

P3-4 0.82517 0.62517 

P6-7 0.38326 0.48326 

Q9-11 -0.22967 -0.12967 

P30 -0.106 -0.09 
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7.1 Analyzing performance without false data 

   In this scenario, capability of ANFIS for SE is 

investigated and compared with ANN and WLS. It 

should be noted that false data is not considered in this 

section. The final results for IEEE 14- bus and 30-bus 

system are illustrated in Figs. 3 and 4, respectively. As 

seen in Fig. 3, it is clear that ANFIS estimates state 

variables with more accuracy and less error than WLS 

and ANN methods. In fact, the estimated voltage 

magnitude by ANFIS is equal or near to real data. In 

return, the estimated data by ANN and WLS in several 

buses are far from real data such as buses 2 and 5. Such 

errors in estimation make the operator select a wrong 

decision. Moreover, it is obvious that the same 

operation has occurred for phase angle. According to 

Fig. 4, increasing the number of data points or state 

variables cannot influence the operation of ANFIS. 

However, the operation of ANN and WLS is still far 

from ANFIS. 

7.2 Impact of single false data 

   As proposed in Table 3, this scenario consists of a 

single false data in the measurement sets for both test 

systems. The false data for IEEE 14-bus and 30-bus 

system is active power flow in line 2-3 that is changed 

from 0.81465 p.u to -0.81465 p.u and from 0.88038 p.u 

to -0.88038 p.u, respectively. Such false data injection 

maybe occurred by non-legitimate agents or even 

human mistakes. In this regard, Figs. 5 and 6 show the 

state estimation results and Table 4 exhibits the 

corrected false data by each method. The estimated 

values of active power flow through line 2-3 are 0.4137, 

0.6966, and 0.8172 p.u. by WLS, ANN and ANFIS for 

IEEE 14-bus, respectively. Moreover, the results for 

IEEE 30-bus are equal to 0.710085 p.u, 0.7587 p.u and 

0.8799 p.u for WLS, ANN and ANFIS, respectively. 

Furthermore, according to Figs. 5 and 6, the operation 

of ANFIS in the presence of false data is still reliable 

and accurate. In return, the operation of ANN is far 

from real data but more precise than WLS in most 

buses. 

 

  
Fig. 3 Comparing voltage magnitude and angle for IEEE 14-bus 
 

test system in the first scenario. 

Fig. 4 Comparing voltage magnitude and angle for IEEE 30-bus 
 

test system in first scenario. 

 

  
Fig. 5 Comparing voltage magnitude and angle for IEEE 14-bus 
 

test system in the second scenario. 

Fig. 6 Comparing voltage magnitude and angle for IEEE 30-bus 
 

test system in the second scenario. 
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Table 4 False data correction in the second scenario. 

Test system Variable [p.u] Actual data False data WLS ANN ANFIS 

IEEE 14-bus P2-3 0.81465 -0.81465 0.4137 0.6966 0.8172 

IEEE 30-bus P2-3 0.88038 -0.88038 0.710085 0.7587 0.8799 

 

  
Fig. 7 Comparing voltage magnitude and angle for IEEE 14-bus 
 

test system in the third scenario. 

Fig. 8 Comparing voltage magnitude and angle for IEEE 30-bus 
 

test system in the third scenario. 

 
Table 5 False data correction in the third scenario. 

Test system Variable [p.u] Actual data False data WLS ANN ANFIS 

IEEE 14-bus 

P11 -0.035 -0.015 -0.026 -0.029 -0.035 

Q12 -0.016 -0.008 -0.0091 -0.011 -0.016 

P3-4 -0.31574 -0.15 -0.2605 -0.3018 -0.3128 

P7-9 0.28298 0.14 0.1948 0.2761 0.2829 

Q7-8 -0.24856 -0.12 -0.1950 -0.2350 -0.2505 

IEEE 30-bus 

Q21 -0.112 0.112 -0.099643 -0.0998 -0.109 

P3-4 0.82517 0.62517 -0.015333 0.6971 0.8118 

P6-7 0.38326 0.48326 0.774576 0.37525 0.3812 

Q9-11 -0.22967 -0.12967 0.410323 -0.2301 -0.2189 

P30 -0.106 -0.09 -0.201892 -0.0986 -0.105 

 

7.3 Impact of Multi-False Data 

   To validate the robustness of method, this scenario 

considers five false data in the measurement sets as 

specified in Table 3. The false data includes injected 

active-reactive power and power flow between buses. 

Hence, a critical condition is occurred in this section 

due to the presence of different false data injection. 

Figs. 7 and 8 show the state estimation results and Table 

5 proposes the corrected false data by each method. As 

seen in Table 5, the performance of ANFIS is much 

better than other methods. Moreover, one important 

point in this scenario is the low accuracy of WLS in the 

presence of multi-false data. Indeed, the accuracy and 

robustness of WLS decrease if the number of false data 

increases. However, the ANN is more capable than 

WLS but it is not reliable compared to ANFIS. The 

mentioned points are observable in the Figs. 7 and 8 

clearly. 

 

7.4 Evaluating Performance by Error Indices 

   In this section, three error indices including MAE, 

RMSE, and MRE% are used to investigate the accuracy 

of each algorithm and validate the previous results. As 

seen in Tables 6 and 7, all error indices are calculated 

for voltage magnitude and angle in IEEE 14-bus and 30-

bus. It is worth mentioning the angle of the slack bus is 

not considered in MRE% due to the zero value and 

causing an infinite amount. According to the results, it 

is clear that the proposed ANFIS method provides less 

error and estimates the variable as accurately as 

possible. In fact, all error indices validate that the 

robustness and accuracy of ANFIS are more than ANN 

and WLS. Moreover, it is obvious that the operation of 

WLS will be troubled if the number of false data 

increases. In return, ANN has a rather stable operation 

in all scenarios but the accuracy is much less than 

ANFIS. 

 

8 Conclusion 

   This paper proposes a new state estimator based on a 

neuro-fuzzy system considering load uncertainty and 

false data injection. To show the capability of the 

presented procedure, three different scenarios are 

defined including no false data, single false data and  
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Table 6 Error indices for voltage magnitude and angle of IEEE 14-bus in all scenarios. 

Variable Scenario 
WLS ANN ANFIS 

MAE RMSE MRE% MAE RMSE MRE% MAE RMSE MRE% 

Voltage 

magnitude [p.u] 

1 0.0088 0.0095 0.8769 0.0454 0.0518 4.4681 0.00265 0.00287 0.26333 

2 0.0109 0.01281 1.0951 0.0038 0.0084 0.3877 0.00135 0.00244 0.13477 

3 0.00742 0.0089 0.7360 0.0017 0.0042 0.6958 0.00135 0.00244 0.13477 

Voltage angle 

[rad] 

1 0.00342 0.0037 1.5028 0.00201 0.00216 0.9267 0.0005 0.0008 0.1946 

2 0.04019 0.0434 1.76228 0.00364 0.00380 0.9733 0.0012 0.0013 0.6457 

3 0.00504 0.0067 2.0767 0.0039 0.00186 1.6777 0.0012 0.0013 0.6457 

 
Table 7 Error indices for voltage magnitude and angle of IEEE 30-bus in all scenarios. 

Variable Scenario 
WLS ANN ANFIS 

MAE RMSE MRE% MAE RMSE MRE% MAE RMSE MRE% 

Voltage 

magnitude [p.u] 

1 0.0079 0.0085 0.9112 0.0087 0.0096 0.9321 0.00261 0.00277 0.26433 

2 0.0432 0.0628 1.0951 0.0322 0.0518 1.07 0.00155 0.00274 0.14477 

3 0.00623 0.0073 0.8152 0.0043 0.0061 0.7515 0.00155 0.00274 0.14477 

Voltage angle 

[rad] 

1 0.00431 0.0042 1.7238 0.00211 0.0039 1.6238 0.0006 0.0009 0.1965 

2 0.06809 0.0694 1.9812 0.055 0.0564 1.7519 0.0013 0.0015 0.7342 

3 0.00714 0.0082 2.1577 0.0059 0.0063 1.9233 0.0013 0.0015 0.7342 

 

multi-false data. Moreover, three error indices 

consisting of MAE, RMSE, and MRE% are used to 

validate the accuracy of results. Based on the obtained 

results from the mentioned scenarios on IEEE 14-bus 

and 30-bus test systems, it is demonstrated that the 

ANFIS estimator significantly robust and more accurate 

than the other methods even in the presence of multi-

false data injection. Moreover, if false data is not 

considered, WLS has a better estimation than ANN. In 

return, the estimation by WLS will be troubled if the 

number of false data increases. Hence, the ANN has a 

rather stable operation and more accurate compared to 

WLS if false data is considered. Eventually, according 

to the calculated error indices, ANFIS is more accurate 

and reliable than ANN and WLS. 
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