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Abstract: In order to enhance the accuracy of the motion vector (MV) estimation and also 

reduce the error propagation issue during the estimation, in this paper, a new adaptive error 

concealment (EC) approach is proposed based on the information extracted from the video 

scene. In this regard, the motion information of the video scene around the degraded MB is 

first analyzed to estimate the motion type of the degraded MB. If the neighboring MBs 

possess uniform motion, the degraded MB imitates the behavior of neighboring MBs by 

choosing the MV of the collocated MB. Otherwise, the lost MV is estimated through the 

second proposed EC technique (i.e., IOBMA). In the IOBMA, unlike the conventional 

boundary matching criterion-based EC techniques, not only each boundary distortion is 

evaluated regarding both the luminance and the chrominance components of the boundary 

pixels, but also the total boundary distortion corresponding to each candidate MV is 

calculated as the weighted average of the available boundary distortions. Compared with 

the state-of-the-art EC techniques, the simulation results indicate the superiority of the 

proposed EC approach in terms of both the objective and subjective quality assessments. 
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1 Introduction1 

REAT advances in communications technology in 

recent years have inspired the use of various and 

attractive communication services, such as multimedia 

services, through wireless channels. However, the 

growing demand for multimedia services, and 

particularly the video services, imposes additional 

burdens on the different parts of the transmission 

schemes, especially on the source coding techniques and 

the error control techniques. 

   Despite the great advances in improving the spectral 

efficiency of the modern communication systems, such 

as the OFDM modulation technique, due to the huge 
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amount of the raw video sequences data, the bandwidth 

scarcity issue is still the major challenge in video 

services. Therefore, since the 1990s, ISO/IEC and ITU-

T have proposed some block-based video coding 

standards, such as MPEG-4, H.264/AVC, and the latest 

H.265/HEVC, to compress the raw video data by 

eliminating the existing redundancies within the video 

sequences. 

   Although the problem of the high amount of the video 

data is to a great extent addressed through the proposed 

video compression standards, high compression 

efficiency increases the vulnerability of the video 

stream to the transmission errors. Moreover, as the 

predictive and variable length coding are exploited in 

the encoder to compress the video data, transmission 

errors not only degrade the quality of the current frame 

but also propagates to the subsequent frames. 

   Regardless of the type of the transmitted data, some 

error control approaches are proposed to increase the 

robustness of the transmitted data against the channel 

errors, such as the Forward Error Correction (FEC) and 

Automatic Repeat Request (ARQ) [1]. However, in 

these methods, the robustness is achieved at the expense 

of reduced bandwidth efficiency. Moreover, these 
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methods are known to work well only for low error rates 

and their performances tend to degrade in high error 

rates. 

   As illustrated in Fig. 1, in addition to the 

aforementioned techniques, there are two other 

categories of error control techniques designed 

specifically for the video data: Error resilience and error 

concealment methods. 

    Error resilience methods such as the Multiple 

Description Coding (MDC), are applied at the encoder 

and exploit the redundancies due to high spatial and/or 

temporal correlation within the video sequence to make 

the encoded video more robust against the transmission 

errors [2-8]. However, similar to the conventional error 

control methods, the robustness is achieved at the 

expense of reduced bandwidth efficiency. Moreover, 

these methods cannot thoroughly prevent the received 

video sequences degraded due to the transmission error. 

   Unlike the error resilience methods, the error 

concealment (EC) techniques are applied at the receiver 

side and take the redundancies within the video 

sequence to reconstruct the erroneous regions of the 

frames. Therefore, there is no or small need to modify 

the encoder or channel coding schemes [9], leading to 

better bandwidth efficiency. 

   According to the type of redundancies exploited for 

reconstructing the damaged regions, existing EC 

techniques can be classified into two general categories: 

Spatial Error Concealment (SEC) techniques, Temporal 

Error Concealment (TEC) techniques. 

   SEC techniques employ the local correlation of the 

correct neighboring regions within the degraded frame 

to reconstruct the lost regions. However, in addition to 

the high computational complexity due to the pixel-wise 

interpolation, the performance of the SEC techniques is 

highly dependent on the neighboring correct 

MacroBlocks (MBs), so that their performance tends to 

degrade in the presence of the slice error, where the 

number of correct neighboring MBs decreases. In 

addition, the SEC techniques suffer the blurring effect 

which reduces their capability in reconstructing the 

structures (i.e., the objects or regions within the frame 

which can be separated by a border). 

   TEC techniques, however, exploit the strong inter-

frame correlation to find the most appropriate portion of 

the reference frame and replace it with the lost MB in 

the current frame. Unlike the SEC techniques, since the 

structures within the MB are maintained during the 

replacement, the TEC techniques are more capable of 

reconstructing the structures and hence, provide better 

reconstruction quality than the SEC techniques, 

especially in the presence of slice error. However, the 

performance of the TEC techniques greatly depends on 

the correct estimation of the lost Motion Vector (MV), 

so that the inaccurate estimation of the lost MVs, even 

as much as a few pixels, can lead to blocky artifact issue 

which is not pleasant to the viewers. Besides, in video 

sequences with the IPPP picture structure in which each 

frame serves as the reference frame for its consecutive 

frame, the distortions due to the inaccurate MVs 

estimation are not limited to the erroneous frame and 

propagate to the subsequent frames. This is also the case 

for reconstructing the other degraded MBs of the 

erroneous frame so that the previously inaccurately 

estimated MVs introduce an adverse effect to the results 

of the MV estimation for the remaining degraded MVs 

in the frame. 

   Therefore, to reduce the effect of the error propagation 

issue on the estimation of the degraded MVs and 

increase the accuracy of the estimated MVs, in this 

paper, a new EC approach is proposed exploiting two 

new EC techniques in an adaptive manner. The first EC 

technique which is the modified version of the boundary 

matching algorithm improves the performance of the 

EC in two ways: first, unlike the traditional boundary 

matching criterion-based TEC techniques in which the

 

 
Fig. 1 Classification of the error control techniques in the video sequences. 
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boundary matching is measured as the difference 

between the brightness values of the degraded MB and 

its neighboring MBs, the color information of the MBs 

are also used to provide a more accurate estimate of the 

degraded MV. Second, to make the proposed EC 

technique more robust against the error propagation 

issue, the total boundary distortion corresponding to 

each candidate MV is calculated as the weighted 

average of the boundary distortions between the 

degraded MB and the candidate MB. However, unlike 

the conventional boundary matching criterion-based 

TEC techniques, the previously reconstructed MBs are 

discriminated from the intact MBs through the different 

weights assigned to them. 

   In addition, since the boundary matching criterion-

based TEC techniques exploit the spatial information 

within the frames to estimate the MVs of the degraded 

MBs, the performance of the EC techniques is exposed 

to severe degradation in situation where the reliability of 

the spatial information in the frame decreases, such as in 

the presence of slice error with high Block Loss 

Rate (BLR). Hence, to avoid the performance of the EC 

technique degraded a lot under such conditions, other 

information, such as the motion type of the objects in 

the video sequence, is also extracted from the video 

scene. For this purpose, before applying the IOBMA, 

the MVs of the MBs neighboring to the degraded MB 

(including the correct and the previously reconstructed 

MBs) are investigated for the uniform motion type. If 

the neighboring MBs possess the uniform movements in 

the consecutive frames, the degraded MB tries to imitate 

the behavior of the neighboring MBs by selecting the 

collocated MV in the previous frame. Otherwise, the 

IOBMA is exploited to recover the lost MV. 

   The main contributions of the paper are summarized 

as follows: 

 Exploiting both the color and reliability of the 

spatial information of the neighboring MBs to 

improve the performance of the boundary 

matching algorithm such as the OBMA. 

 Exploiting the motion information of the objects 

extracted from the video scene to avoid the poor 

performance of the EC technique in conditions 

where the reliability of the spatial information in 

the frame decreases, such as the presence of slice 

error with high Block Loss Rate in the frame. 

   The rest of the paper is organized as follows. 

Section 2 provides a brief overview of the EC 

techniques proposed in the video EC domain. The 

proposed EC approach is described in detail in 

Section 3. The experimental framework and the results 

of the performance evaluations are presented in 

Section 4. Finally, the proposed approach is concluded 

in Section 5. 

 

2 Related Work 

   As mentioned in the previous section, the EC 

techniques can be classified into two major categories of 

the spatial and the temporal EC techniques. In the 

following a brief introduction to some works carried out 

in the video EC domain is presented. 

 

2.1 SEC Techniques 

   As mentioned before, the SEC techniques usually 

exploit the spatial information within the frame and 

reconstruct the lost regions through the pixel-wise 

interpolation/extrapolation. In this regard, Li et al. [10] 

proposed a 4-step adaptive EC process which decides on 

the appropriate EC technique based on the texture 

complexity of the neighboring MBs. To reduce the error 

propagation issue, they proposed the separately-

directional interpolation in which the corrupted MB is 

first divided into finer sub-blocks and then, each finer 

sub-block is adaptively reconstructed through one of the 

Bilinear Interpolation and Directional Interpolation 

techniques. H. Ni and Y. Li [11] proposed adaptive edge 

thresholding and directional weight to estimate the 

significant edges of missing MBs and solve the problem 

of conventional directional interpolation methods. Liu 

et al. [9] exploit a pixel-wise adaptive predictor to 

estimate the missing pixels of the lost regions 

sequentially. To tune the support shape and the order of 

the predictor, a model selection problem is defined and 

solved with the Bayesian Information Criterion (BIC). 

Besides, to handle the error propagation issue, the pixels 

are selected for EC in order of the self-designed 

uncertainty. Akbari et al. [12] proposed a sparse spatial 

error concealment technique in which, the sparse 

representation of the corrupted patch is first computed 

through the corrupted dataset dictionary and then, the 

corrupted patch is reconstructed through the original 

dataset dictionary. To reduce the blurring issue of the 

SEC techniques and persevere the image sharpness and 

the continuity of edges in the erroneous region of the I-

frame, Mohammadzadeh Qaratlu et al. [13] proposed a 

directional extrapolation which tries to extrapolate each 

missing pixel along its specific direction calculated 

previously in the EC process. Adaptive exploitation of 

the exemplar-based image inpainting and the spatial 

interpolation are presented in [14]. In the proposed 

technique, the exemplar-based technique is applied to 

the regions with regular structures, whereas in the 

complex regions with irregular structures, EC is 

performed through either the directional interpolation or 

neighbor interpolation, based on the gradient 

information. Comparison between two categories of the 

SEC techniques, namely the Frequency Selective 

Extrapolation and the exemplar-based EC algorithms, 

yields the superiority of the Frequency Selective 

Extrapolation method over the patch matching 

algorithm in the presence of distinct random block 

loss [15]. As mentioned in Section 1, the EC techniques 

usually try to reconstruct the degraded region within the 

frame with no modification to the encoder. Recently, 
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however, an encoder-based error concealment method is 

proposed for the image inpainting purpose which 

models the error concealment problem as a sparse 

recovery framework [16]. To this end, in the encoder, 

the coefficients resulting from applying the wavelet 

decomposition to the input image are first partitioned 

into non-overlapping spatial trees (STs). Then, each ST 

is further projected onto a random basis to provide the 

sparse recovery framework. At the receiver, given the 

fact that the wavelet decomposition has a tree-sparse 

structure, an iterative sparse reconstruction algorithm is 

applied to the erroneous image to recover the lost 

regions. Simulation results indicate that the proposed 

encoder-based EC technique outperforms the state-of-

the-art image inpainting techniques. 

 

2.2 TEC Techniques 

   Contrary to the SEC, the TEC techniques take the 

temporal redundancies to estimate the MVs of the lost 

MBs. The Boundary Matching Algorithm (BMA) [17] 

is one of the most famous and well-known TEC 

techniques in this category. In the BMA, the MV of the 

degraded MB is picked out from a set of the candidate 

MVs according to a boundary matching 

criterion (BMC) defined between the inner boundaries 

of the candidate MB and the outer boundaries of the 

degraded MB. To improve the performance of the 

BMA, Thaipanich et al. [18] proposed to apply the 

BMC between the outer boundaries of both the 

candidate MB and the degraded MB. Unlike the 

conventional TEC techniques, in which the appropriate 

MB for motion compensation is selected only from the 

previous frame (i.e., the reference frame), Yu et al. [19] 

proposed a multiple-reference EC algorithm which 

explores 5 previous frames for the most appropriate MB 

in half- and quarter-pixel motion estimation. In addition 

to the information of the MVs in the video scene, Lin 

et al. exploited the other information, such as the 

residual information and partition information, as the 

reliability measure to enhance the accuracy of the MV 

estimation [20, 21]. In contrast to traditional boundary 

matching algorithms which utilize one BMC to recover 

the degraded MVs, Chen et al. [22] proposed an EC 

algorithm which exploits two BMCs, including an 

external boundary matching (EBM) and a directional 

boundary matching (DBM)  criteria, adaptively.  The 

proposed method in [23] further improves the 

performance of the DBM algorithm. Marvasti-Zadeh 

et al. [24] also proposed an EC algorithm which exploits 

two BMCs, including outer boundary matching (OBM) 

and a directional temporal boundary matching (DTBM) 

criteria, adaptively. Simulation results yield the 

superiority of the proposed EC algorithm over both the 

OBMA and DTBMA techniques. Lie et al. [25] 

proposed an iterative Dynamic Programming (DP)-

based approach which utilizes DP optimization 

technique to estimate the lost MVs in a global manner. 

Wei et al. [26] proposed a propagation-based MV 

estimation which splits each degraded MB to finer sub-

blocks and then, estimates the MV of each sub-block as 

the average MV of the available neighboring sub-

blocks. In heavily corrupted videos the number of the 

correct MBs neighboring to the degraded MB decreases, 

thereby reducing the accuracy of the MVs estimation. 

From this viewpoint, the estimated MVs can be 

regarded as the noisy MVs and thus, the noise reduction 

techniques can be exploited to increase the accuracy of 

the estimated MV. Accordingly, the noise reduction 

capability of the Kalman and particle filters is exploited 

in [27-29]. In [30], however, the neural networks are 

exploited to track the variations of the MVs in the 

consecutive frames and reduce the estimation noise. 

Chen et al. [31] proposed a two-stage EC approach 

including a spatio-temporal boundary matching 

algorithm to estimate an MV for the degraded MB and a 

partial differential equation (PDE) based algorithm. In 

the first stage, the MV of the degraded MB is estimated 

exploiting both the temporal and spatial smoothness 

properties of the video sequences in a weighted manner. 

In this regard, the average changes of the Laplacian 

estimator along the tangent direction is exploited as the 

spatial boundary criterion. Regarding the temporal 

smoothness property, however, similar to the 

conventional OBMA [18], the average difference 

between the external boundaries of the reference MB 

and the lost MBs is selected as the temporal boundary 

criterion. In the second stage, unlike the traditional TEC 

techniques in which the degraded MB is replaced 

directly with the reference MB corresponding to the 

estimated MV, the degraded MB is reconstructed so 

that, under given boundary condition, its gradient field 

has the least difference with the gradient field of the 

reference MB. The proposed method can reduce the 

blocking artifact and well-preserve the inner structure of 

the reconstructed MBs. 

 

3 Proposed EC Approach 

   In order to focus on the design of the proposed EC 

approach, in this paper it is supposed that the positions 

of the degraded MBs in the frame are known. There are 

several papers concerning the error detection in the 

video sequences [32-36] which can be used for this 

purpose. Then, according to the position of the 

erroneous MBs in the frame two error models can be 

considered: Random error and Slice error. As illustrated 

in Fig. 2, the Slice error (right Figure) appears as a 

whole row loss, whereas in the Random error (left 

Figure) the erroneous MBs are distributed randomly in 

the frame. 

   In the following, to outline the proposed EC approach, 

the video sequence is regarded as f(x,y,t) whose spatial 

and temporal coordinates are denoted by (x,y) and t, 

respectively. By definition, f(x,y,t=τ) is a 3-elements 

vector containing the luminance and the chrominance 
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Fig. 2 Illustration of typical block loss. Each square represents 

an MB with a fixed size of 16 by 16 pixels. The black squares 

are the lost MBs while the white squares denote the correctly 

received MBs. 

 

components of the pixel located at position (x,y) in the 

frame t = τ. These components are represented also by 

fy(x,y,t), fu(x,y,t), and fv(x,y,t), respectively. Accordingly, 

an error occurred during the decoding or transmission 

results in a lost MB whose top-left corner is located at 

position p = (x,y). 

   As mentioned previously, the distortions due to the 

inappropriate reconstruction of the lost regions not only 

propagate to the subsequent frames but also may reduce 

the accuracy of the MV estimation for the remaining 

degraded MBs in the frame. Therefore, in this paper, a 

new adaptive EC approach is proposed to enhance the 

performance of the boundary matching criterion-based 

TEC techniques and provide better reconstruction 

quality, especially in high BLRs. 

   As illustrated in Fig. 3 the proposed EC approach first 

tries to estimate the motion type of the degraded MB 

from the complexity or uniformity point of view. In this 

regard, the MVs of the MBs neighboring to the 

degraded MB are first analyzed for the existence of the 

uniform motion type. If the neighboring MBs belonging 

to an object possess the uniform motion type, since the 

MBs within an object often represent the same MVs in a 

video sequence, the MV of the degraded MB is also 

likely to be uniform. 

   Hence, to verify whether the neighboring MBs follow 

the uniform motion or not, the dispersion of the 

neighboring MVs and the corresponding collocated 

MVs need to be calculated. However, since the position 

of the degraded MB in the object is random, as 

illustrated in Fig. 4, five models of the neighborhood are 

defined for each lost MB. Then, the dispersion of the 

amplitudes of the differences between the neighboring 

MVs and the corresponding collocated MVs are 

calculated using (1)-(3) and the model with the 

minimum dispersion is selected as the optimum MV set. 

Finally, if the dispersion in the optimum MV set is less 

than the predefined threshold in Fig. 5, the degraded 

MB is classified as the uniform motion MB and hence, 

the MV of the collocated MB in the reference frame is 

selected as the MV of the degraded MB. In this paper, 

the threshold value is set to 1×10-5. 

   In (1)-(4), MV_Seti
k represents the set of the available 

neighboring MVs of the i-th MB corresponding to the 

model (k). Mg_Seti
k represents the amplitudes of the 

temporal differences between the MVs of the k-th 

neighborhood model and their corresponding collocated 
 

 
Fig. 3 Schematic diagram of the proposed EC approach. 
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MVs in the reference frame, respectively. 

   However, if the degraded MB does not follow the 

uniform motion, to recover the degraded MV, the 

proposed approach applies the second proposed EC 

technique, named as the Improved Outer Boundary 

Matching Algorithm (IOBMA) in this paper. As 

illustrated in Fig. 5, similar to other boundary matching 

criterion-based EC techniques, in the proposed IOBMA, 

the MV of the degraded MB is selected among the 

candidate MVs according to a specific boundary 

matching criterion as follows: 
 

  

arg min      n

opt
n Candidate MVs

n IOBMC


  (5) 
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where 
 





n n n
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n n
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(6) 

 

   The n

topIOBMC , n

bottomIOBMC , n

rightIOBMC , 

n

leftIOBMC , and IOBMC n represent the boundary 

distortions on the top, bottom, right, left boundaries of 

the degraded MB and the total boundary distortion 

corresponding to the nth candidate MV, respectively. 

The candidate MVs set includes the MVs of the MBs on 

the top, right, left, and bottom of the degraded MB, 

average and median MVs of the neighboring MBs and 

the zero MV.  

   As stated in Section 1, the error propagation issue due 

to the inaccurate estimation of the previous degraded 

MVs could affect the MV estimation of the remaining 

degraded MBs. Therefore, in addition to brightness 

information of the neighboring MBs, the proposed 

IOBMA tries to exploit the color information of the 

neighboring MBs to improve the accuracy of the MV 

estimation. Besides, to reduce the adverse effect of the 

error propagation on the MV estimation of the next 

degraded MVs, the boundary distortion corresponding 

to each candidate MV is calculated as the weighted 

average of the boundary distortions between the outer 

boundaries of the degraded MB and the corresponding 

ones in the candidate MB using (7)-(11). 
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Fig. 4 Neighborhood models for a typical degraded MB. Each 

square represents an MB with a fixed size of 16 by 16 

pixels [38]. The gray square in each model represents the 

position of the lost MB. 
 

 

Fig. 5 The step-by-step process of the proposed adaptive EC 

approach. 

 

 

Fig. 6 Illustration of the candidate MB partition in the 

reference frame and the corresponding outer boundaries for 

two frames of a video sequence coded by H.264/AVC. 
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In (7)-(10), the MVn represents the n-th candidate MV. 

Ntop, Nright, Nbottom, and Nleft contain the coordinates of the 

available pixels on the top, right, bottom, and left outer 

boundaries of the degraded MB. |Npoition| denotes the 

cardinality of Npoition. wtpo, wright, wbottom, and wleft stand 

for the weights specifically assigned to the top, right, 

bottom, and left outer boundaries of the degraded MB. 

x
 and y  indicate the x- and y-dimension of the MB. 

 ,
nMV

p q represents the sum of absolute differences 

between the pixel located at position (p,q) in the current 

frame and the reference one in the reference frame 

according to the candidate motion vector, MVn, as 

follows: 
 

     

   

   

, , , , , 1

, , , , 1

, , , , 1

n

n n

y y x yMV

n n

u u x y

n n

v v x y

p q f p q t f p MV q MV t

f p q t f p MV q MV t

f p q t f p MV q MV t

    

    

    
 

 

 
 

(11) 

 

MVx
n and MVy

n represent the horizontal and vertical 

components of the n-th candidate MV, respectively. The 

fy(p,q,.), fu(p,q,.), and fv(p,q,.) represent the luminance 

and the chrominance components of the pixel located at 

the position (p,q) in the YUV color encoding system, 

respectively. 

   As illustrated in Fig. 6 the outer boundary pixels of an 

MB are taken from neighboring MBs. The neighboring 

MBs could be degraded, reconstructed, or intact. If the 

neighboring MB does not exist or it is degraded, the 

weight assigned to the corresponding boundary equals 

zero. However, to alleviate the error propagation issue, 

the available neighboring MBs, including the intact and 

previously reconstructed MBs, are weighted with 

different weights. In this regard, 1 and 0.5 are chosen as 

the weighting coefficients for the boundary distortions 

of the intact and the previously reconstructed MBs, 

respectively. 

 

4 Simulation Results 

4.1 Simulation Considerations 

   In this section, the performance of the proposed EC 

approach is compared with the state-of-the-art EC 

techniques including [37] and [38], DTBMA [23], and 

the well-known EC techniques BMA [17] and OBMA 

[18], Average MV (Mean) and Temporal 

Replacement (TR). 

   To evaluate the performance of the EC techniques, ten 

standard video sequences with different types of 

movement and textures are encoded in 4:2:0 format with 

H.264/AVC (JM 19.0) and the quantization parameter 

(QP) of 20. Since the Proposed EC approach is 

independent of the frame type and can be applied on 

both the P- and B-frames, for the sake of simulations 

simplicity, the picture structure is considered IPPP with 

GOP of 30 frames. 

   The performance is evaluated for 5%, 10%, and 20% 

random and slice errors. However, as the errors are 

applied randomly to the frames, to ensure that the 

location of the erroneous MBs within the frames does 

not impress the EC results, the experiments are repeated 

15 times and the average PSNRs are selected as the final 

results. 

 

4.2 Results Analysis 

   In this section, the objective and subjective quality 

assessments and also the corresponding computational 

complexity of the competing EC techniques are listed in 

Table 1-3. In order to evaluate the performances and the 

computational complexities of the competing EC 

techniques, the average PSNR (Peak Signal to Noise 

Ratio) and the reconstruction time per MB (in msec) are 

used as the metrics, respectively. 

   Tables 1 and 2 represent the performances of the 

competing EC techniques for different video sequences 

in the presence of random and slice errors, respectively. 

A general look at Table 1 yields that, depending on the 

video sequence, the proposed EC approach can achieve 

up to 5.78, 2.99, 2.81, 1.62, 1.30, 1.23, 0.61 and 0.45 dB 

higher PSNRs than the TR, Mean, [37], DBMA, BMA, 

DTBMA, [38] and the OBMA techniques, respectively. 

Also, regarding the Table 2 and 3, it can be observed 

that under the 20% BLR slice error, while maintaining 

the computational complexity of the proposed EC 

approach at an acceptable level, the improvements over 

the reference EC techniques could rise up to 2.92, 2, 

1.75, 0.62 and 2.01 dB compared with the DBMA, 

BMA, DTBMA, Ref. [38] and the OBMA techniques, 

respectively. 

   Another point regarding Tables 1 and 2 are related to 

the effect of the video content on the performances of 

the different EC techniques. To the best of our 

knowledge, there is no EC technique outperforming the 

whole EC techniques in the video sequences of various 

contents. This could also be verified by comparing the 

performances of the reference EC techniques in Tables 

1 and 2. In Table 2, for example, [38] outperforms the 

other reference EC techniques in the video sequences 

such as the “Bus” and “Crew” under the 20% BLR, 

whereas in the “Football” and “Ice” sequences, the 

highest performances belong to the DTBMA and [37], 

respectively. This is also the case for the other EC 

techniques. For example, in the “Soccer” sequence in 

Table 1, the simple EC technique, Mean, outperforms 

the state-of-the-art EC technique, [37], and/or in the 

“Hall” sequence, the TR provides the highest PSNR, 

compared with the competing EC techniques. The video 

content, from the MVs variations in the consecutive 

frames viewpoint, is responsible for this event. For 

example, in the “Hall” video sequence, in which the 

camera motion is static and the object own regular 

structure and slow uniform motion, the MVs of the MBs 

within the frames are mostly zero with no significant 

residual information. Hence, the TR is expected to



An Improved Motion Vector Estimation Approach for Video 

 
… S. M. Zabihi et al. 

 

Iranian Journal of Electrical and Electronic Engineering, Vol. 16, No. 4, December 2020 468 

 

Table 1 Objective quality assessments for random error. 

Resolution Sequence 

Video content 

(camera motion) 

------------------------------- 

(object motion/structure) 

Block Loss 

Rate [%] 

Average PSNR [dB] for random error 

Erroneous 

frame 
OBMA DTBMA DBMA Ref. [37] BMA Mean TR Ref. [38] 

Proposed 

Approach 

CIF 

Bus 

Fast [pan] 

-------------------- 

Fast [uniform] / regular 

5 20.27 49.39 48.65 48.49 47.09 48.60 46.88 43.74 49.38 49.52 

10 17.24 45.49 44.65 44.34 43.11 44.60 42.71 40.18 45.49 45.62 

20 14.37 41.28 40.57 40.11 39.35 40.41 38.80 36.75 41.56 41.65 

Football 

Fast [pan] 

-------------------- 

Fast [complex] / irregular 

5 19.79 39.55 39.65 39.56 37.67 39.61 38.74 37.79 39.53 39.92 

10 16.78 36.07 36.19 36.05 34.23 36.16 35.33 34.44 36.04 36.40 

20 13.92 32.55 32.79 32.62 30.92 32.76 31.92 31.18 32.52 32.89 

Foreman 

Slow [pan] 

-------------------- 

Fast [complex] / regular 

5 18.53 55.25 54.78 54.75 53.94 54.50 53.71 52.51 55.21 55.60 

10 15.50 51.21 50.75 50.54 49.84 50.42 49.30 48.50 51.09 51.61 

20 12.64 46.84 46.61 46.28 45.38 46.28 45.12 44.50 46.67 47.29 

Coastguard 

Slow [pan] 

-------------------- 

Slow [uniform] / regular 

5 19.29 60.08 59.24 59.35 59.65 59.29 58.85 56.08 60.09 60.24 

10 16.26 55.88 55.00 55.14 55.22 55.09 54.43 52.17 55.94 56.14 

20 13.42 51.17 50.41 50.40 50.46 50.40 49.57 47.66 51.43 51.54 

Hall 

Static 

-------------------- 

Slow [uniform] / regular 

5 19.13 52.49 51.99 51.96 52.40 51.97 51.26 52.34 52.54 52.50 

10 16.08 48.90 48.48 48.44 48.75 48.43 47.65 48.71 48.92 48.90 

20 13.24 45.27 44.83 44.71 45.19 44.76 43.97 45.13 45.37 45.33 

Stefan 

Slow [pan] 

-------------------- 

Fast [complex] / irregular 

5 19.22 46.42 46.03 46.02 43.84 46.04 45.65 42.74 46.36 46.56 

10 16.20 42.57 42.27 42.18 40.07 42.27 41.96 39.07 42.50 42.73 

20 13.34 38.77 38.59 38.37 36.18 38.57 38.19 35.61 38.73 38.99 

Average 

5 19.37 50.53 50.06 50.02 49.10 50.00 49.18 47.53 50.52 50.72 

10 16.35 46.69 46.22 46.11 45.20 46.16 45.23 43.85 46.66 46.90 

20 13.49 42.65 42.30 42.08 41.25 42.20 41.26 40.14 42.71 42.94 

4CIF 

City 

Slow [pan] 

-------------------- 

Static 

5 19.29 53.92 53.43 53.36 53.43 53.04 52.37 50.99 53.78 54.00 

10 16.39 50.51 50.03 49.92 49.94 49.58 48.99 47.57 50.29 50.60 

20 13.60 46.57 46.16 45.96 45.89 45.75 45.22 43.79 46.31 46.65 

Ice 

Static 

-------------------- 

Slow [uniform] / regular 

5 18.87 56.30 55.42 55.28 55.65 55.35 53.73 52.78 56.34 56.65 

10 15.96 52.16 51.39 51.13 51.48 51.29 49.59 48.90 52.21 52.58 

20 13.15 47.74 47.09 46.57 47.01 46.97 45.50 44.86 47.76 48.19 

Crew 

Static [pan] 

-------------------- 

Slow [complex] / irregular 

5 19.70 51.10 50.78 50.67 50.32 50.76 50.10 50.00 51.07 51.40 

10 16.80 47.55 47.34 47.16 46.86 47.27 46.59 46.51 47.53 47.86 

20 14.00 43.90 43.84 43.53 43.10 43.67 43.09 42.86 43.88 44.24 

Soccer 

Slow [pan] 

-------------------- 

Slow [complex] / irregular 

5 19.18 52.67 52.42 52.27 51.13 52.11 51.57 47.86 52.48 52.87 

10 16.27 49.10 48.94 48.73 47.52 48.55 48.11 44.38 48.84 49.35 

20 13.48 45.03 45.05 44.68 43.24 44.52 44.18 40.56 44.69 45.28 

Average 

5 19.26 53.50 53.01 52.89 52.63 52.81 51.94 50.41 53.42 53.73 

10 16.35 49.83 49.43 49.23 48.95 49.17 48.32 46.84 49.72 50.10 

20 13.56 45.81 45.53 45.19 44.81 45.23 44.50 43.02 45.66 46.09 

 

 

provide good results. However, in the video sequences 

with more complex movements and irregular structures, 

such as the “Football”, in which the MVs scattering is 

high, its performance is exposed to severe degradation. 

   A closer look at Tables 1 and 2 indicates that, in 

addition to the video content, the type of error can also 

affect the performances of the EC techniques. 

Regarding the average performances for the 4CIF 

resolution sequences, for instance, the Ref. [37] 

outperforms most of the reference EC techniques under 

the 20% slice error, whereas its performance is severely 

degraded in the presence of the random error, compared 

with other reference EC techniques. This holds true for 

the whole EC techniques so that, in terms of the average 

PSNR, the reference EC techniques do not follow an 

identical order in the different video sequences. 

   However, regarding the Tables 1 and 2, denotes that, 

in the presence of both the random and slice errors, the 

proposed EC approach, not only outperforms the 

reference EC techniques in most of the test sequences, 

but also provides the best performance on average, 

compared with the reference EC techniques. 

   Note that the performances listed in Tables 1 and 2 

represent the PSNRs per frame, averaged over the 

whole frames within the GoP. This means that, for the 

Proposed EC approach, in some frames, the amount of 

the performance improvement over the reference EC 

techniques might be much higher than this, and of 

course in some frames, not. Therefore, to further verify 

the performances of the EC techniques, frame-by-frame 

PSNR evaluations of the competing EC techniques are 

also presented in Fig. 7-10. 
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Table 2 Objective quality assessments for slice error. 

Resolution Sequence 

Video content 

(camera motion) 

------------------------------- 

(object motion/structure) 

Block Loss 

Rate [%] 

Average PSNR (dB) for slice error 

Erroneous 

frame 
OBMA DTBMA DBMA Ref. [37] BMA Mean TR Ref. [38] 

Proposed 

Approach 

CIF 

Bus 

Fast [pan] 

-------------------- 

Fast [uniform] / regular 

5 20.36 48.80 48.88 47.35 48.88 48.59 47.17 44.47 49.77 49.81 

10 17.14 44.13 44.26 42.76 44.19 43.92 42.64 40.43 45.26 45.34 

20 13.94 38.72 39.52 37.79 39.61 38.86 37.61 36.49 40.53 40.71 

Football 

Fast [pan] 

-------------------- 

Fast [complex] / irregular 

5 19.67 40.16 40.44 40.13 39.49 40.26 39.86 39.24 40.16 40.58 

10 16.57 35.97 36.41 36.08 35.58 36.22 35.72 35.16 35.99 36.51 

20 13.50 31.40 31.87 31.54 31.13 31.68 31.35 30.75 31.42 31.98 

Foreman 

Slow [pan] 

-------------------- 

Fast [complex] / regular 

5 18.49 54.68 54.30 53.41 54.07 53.89 53.69 52.37 54.84 55.40 

10 15.30 50.12 49.86 49.01 50.03 49.59 49.12 48.33 50.62 51.24 

20 12.22 45.17 45.21 44.04 45.03 44.73 43.97 43.85 45.66 46.23 

Coastguard 

Slow [pan] 

-------------------- 

Slow [uniform] / regular 

5 19.53 44.31 44.24 44.14 44.35 44.25 44.30 43.69 44.41 44.43 

10 16.16 56.10 55.57 55.05 56.30 55.67 55.58 52.79 56.73 57.03 

20 13.06 49.69 49.95 49.36 50.74 49.70 49.46 47.62 51.14 51.70 

Hall 

Static 

-------------------- 

Slow [uniform] / regular 

5 19.17 52.32 51.96 51.79 52.60 51.75 51.77 52.47 52.63 52.46 

10 15.95 48.60 48.01 47.69 48.83 47.87 47.28 48.72 48.86 48.77 

20 12.82 44.09 43.57 43.32 44.57 43.22 42.31 44.49 44.60 44.50 

Stefan 

Slow [pan] 

-------------------- 

Fast [complex] / irregular 

5 19.17 48.66 47.97 47.40 47.79 47.70 47.94 45.59 48.66 48.91 

10 16.02 43.17 42.58 41.91 42.11 42.37 42.78 40.02 43.26 43.50 

20 12.91 38.16 37.79 37.14 36.97 37.49 37.78 35.37 38.42 38.59 

Average 

5 19.40 48.16 47.96 47.37 47.86 47.74 47.45 46.31 48.41 48.60 

10 16.19 46.35 46.11 45.42 46.17 45.94 45.52 44.24 46.79 47.07 

20 13.07 41.21 41.32 40.53 41.34 40.95 40.41 39.76 41.96 42.28 

4CIF 

City 

Slow [pan] 

-------------------- 

Static 

5 19.19 53.36 52.05 51.93 53.27 51.97 52.15 50.66 53.36 53.51 

10 16.18 49.99 48.92 48.82 50.05 48.85 48.93 47.53 50.03 50.20 

20 13.17 45.36 44.43 44.21 45.17 44.36 44.14 43.12 45.31 45.60 

Ice 

Static 

-------------------- 

Slow [uniform] / regular 

5 18.76 56.15 55.38 54.49 56.34 55.65 54.52 53.42 56.48 56.24 

10 15.72 51.50 50.76 49.97 51.91 51.07 49.85 49.21 51.94 51.73 

20 12.74 46.22 45.64 44.74 46.87 45.70 44.39 44.39 46.79 46.85 

Crew 

Static [pan] 

-------------------- 

Slow [complex] / irregular 

5 19.67 50.77 50.62 49.87 50.60 50.52 50.56 50.16 50.87 51.16 

10 16.59 47.02 46.90 46.21 46.92 46.86 46.59 46.48 47.16 47.37 

20 13.56 42.83 42.90 42.08 42.87 42.68 42.44 42.43 43.02 43.24 

Soccer 

Slow [pan] 

-------------------- 

Slow [complex] / irregular 

5 19.10 52.00 51.74 51.17 51.98 51.83 51.75 48.63 52.04 52.18 

10 16.09 47.85 47.85 47.00 48.01 47.80 47.76 44.66 47.96 48.30 

20 13.04 43.01 43.12 42.20 43.11 42.95 42.90 39.92 43.08 43.54 

Average 

5 19.18 53.07 52.45 51.87 53.05 52.49 52.24 50.72 53.19 53.27 

10 16.14 49.09 48.61 48.00 49.22 48.64 48.28 46.97 49.27 49.40 

20 13.13 44.35 44.02 43.31 44.50 43.92 43.47 42.46 44.55 44.81 

 

   Regarding Fig. 7 and the corresponding PSNRs listed 

in Table 2, for example, it can be observed that, in the 

“Coastguard” sequence, the proposed EC approach 

provides at least 0.55 dB higher performance than the 

reference EC technique with the highest average PSNR 

(i.e., [38]). However, as seen in Fig. 7, this amount of 

improvement over [38] increases to more than 4.3 dB in 

some frames. Therefore, the quality of the reconstructed 

video sequence is expected to increase considerably in 

those frames. 

   This is also the case for the reference EC techniques. 

Regarding the performances of the reference EC 

techniques for the “Foreman” sequence in Table 1, for 

example, [38] outperforms the DTBMA by more than 

0.34 dB. However, Fig. 9 yields that in the 12th frame 

the achievable PSNR for the DTBMA is 2.8 dB higher 

than the [38]. Similarly, as seen in Fig. 10, the PSNR 

for the OBMA in the 22nd frame is 1.2 lower than the 

performance of the DTBMA, while the performances of 

the OBMA and DTBMA techniques listed in Table 1 

denote that, for the “Ice” sequence, the OBMA 

outperforms the DTBMA by 0.65 dB. 

   As stated before, a typical EC technique does not 

necessarily provide the best reconstruction results for 

the video sequences of different contents, compared 

with other EC techniques. Regarding Fig. 7-10, it can be 

observed that this point also holds true for different 

frames of a video sequence, so that the reference EC 

techniques do not follow an identical order in the 

consecutive frames. For instance, as seen in Fig. 9, [37] 

outperforms the DTBMA by more than 1.16 dB in the 

9th frame, while, in the 12th frame, its performance 

decreases to 3.44 dB below the performance of the 

DTBMA. Many factors could be responsible for this 

event, such as the content of the degraded frame in the 

erroneous regions from the motion type and structure 



An Improved Motion Vector Estimation Approach for Video 

 
… S. M. Zabihi et al. 

 

Iranian Journal of Electrical and Electronic Engineering, Vol. 16, No. 4, December 2020 470 

 

Table 3 average reconstruction time per MB under 20% BLR slice error. 

Resolution Sequence 
Reconstruction time (msec) per MB under 20% BLR slice error 

OBMA DTBMA DBMA Ref. [37] BMA Mean TR Ref. [38] Proposed Approach 

CIF 

Bus 5 12 3 4 5 1 1 3 5 

Football 5 12 3 9 5 1 1 5 5 

Foreman 5 12 3 1 5 1 1 4 5 

Coastguard 5 12 3 1 5 1 1 2 5 

Hall 5 12 3 1 5 1 1 2 5 

Stefan 5 12 3 3 5 1 1 3 5 

Average 5.00 12.00 3.00 3.17 5.00 1.00 1.00 3.17 5.00 

4CIF 

City 8 16 6 4 4 4 3 6 9 

Ice 8 16 6 4 4 4 3 6 9 

Crew 8 16 6 4 4 4 3 8 9 

Soccer 8 16 6 4 4 4 3 6 9 

Average 8.00 16.00 6.00 4.00 4.00 4.00 3.00 6.50 9.00 

 

  
Fig. 7 Frame-by-frame PSNR evaluation for the CIF resolution 

“Coastguard” sequence under 20% slice error. 

Fig. 8 Frame-by-frame PSNR evaluation for the 4CIF resolution 

“Soccer” sequence under 20% slice error. 

 

  
Fig. 9 Frame-by-frame PSNR evaluation for the CIF resolution 

“Foreman” sequence under 10% random error. 

Fig. 10 Frame-by-frame PSNR evaluation for the 4CIF 

resolution “Ice” sequence under 10% random error. 

 

type viewpoint, the random position of the lost MBs in 

the frame, the error propagation issue, etc. Regarding 

the motion type, for instance, due to the random 

position of the degraded MBs within the frame, the 

reliability and the amount of the information exploited 

for MV recovery may vary depending on the motion 

changes around the degraded MB due to both the 

camera and object motions. In the “Foreman” sequence, 

in which the camera motion is slow and the object 

motion is fast and uniform, the temporal MV scattering 

in the consecutive frames could play an important role 

on the performance of the MV recovery. In the 9th 

frame, for example, the temporal MV scattering is low, 

and hence, [37] is expected to provide appropriate 

reconstruction results. In the 12th frame, however, where 

the temporal MV scattering tends to increase due to the 

sudden change of the object movement in the 

foreground, its performance goes under severe 

degradation. 

   To visually display the performance of the proposed 

EC approach, three instances of the subjective quality 

assessments of the competing EC techniques are also 

presented in Fig. 11 in the presence of both random and 

slice errors. As seen, due to more accurate estimates of 
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Fig. 11 Subjective quality assessments in the presence of 20% 

slice and random errors. a) Intact frame, b) degraded frame, 

c) EC with OBMA, d) EC with DTBMA, e) EC with [38], 

f) EC with [37], and g) EC with the proposed approach. 

 

the lost MVs, the proposed EC approach provides better 

reconstruction quality than the reference EC techniques, 

from the output blocky artifacts viewpoint. 

 

5 Conclusion 

   In this paper, a novel EC approach was presented to 

estimate the MVs of the degraded MBs through 

analyzing the video scene from the motion type and the 

spatial information reliability point of view. To this end, 

the proposed EC approach first analyzes the motion type 

of the available MBs adjacent to the degraded MB to 

estimate whether the degraded MB had a uniform or 

complex motion. 

   For the uniform motion MBs, the most appropriate 

MV for motion compensation is the MV of the 

collocated MB. For the complex motion MBs, however, 

due to the high MVs scattering, the degraded MV needs 

to be estimated regarding other information within the 

video scene. In this regard, the boundary matching 

criterion-based EC techniques usually yield higher 

performances compared with other TEC techniques. 

However, the performance of these techniques is highly 

dependent on the correct spatial information on the 

boundaries of the degraded MB, so that their 

performances are exposed to severe degradation in the 

presence of the slice error with high Block Loss 

Rates (BLRs). Therefore, in this paper, a new EC 

technique is proposed which tries to improve the 

performance of the boundary matching algorithms by 

exploiting both the color information and the 

unreliability of the boundary pixels. 

   The experimental results for the various video 

sequences and BLRs indicate that with no considerable 

increase in the computational complexity, the proposed 

EC approach can enhance the average PSNR 

performance of the EC up to 1.5, 0.82, 1.28, 0.43, and 

0.45 dB, compared with the state-of-the-art EC 

techniques, DBMA, DTBMA, [37], [38], and OBMA, 

respectively. 
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