

Iranian Journal of Electrical and Electronic Engineering, Vol. 16, No. 2, June 2020 158

Iranian Journal of Electrical and Electronic Engineering 02 (2020) 158–173

A Framework for Adapting Population-Based and Heuristic

Algorithms for Dynamic Optimization Problems

S. M. Ejabati* and S. H. Zahiri*(C.A.)

Abstract: In this paper, a general framework was presented to boost heuristic optimization

algorithms based on swarm intelligence from static to dynamic environments. Regarding

the problems of dynamic optimization as opposed to static environments, evaluation

function or constraints change in the time and hence place of optimization. The subject
matter of the framework is based on the variability of the number of algorithm individuals

and the creation of feasible subspaces appropriate to environmental conditions.

Accordingly, to prevent early convergence along with the increasing speed of local search,

the search space is divided with respect to the conditions of each moment into subspaces

labeled as focused search area, and focused individuals are recruited to make search for it.

Moreover, the structure of the design is in such a way that it often adapts itself to

environmental condition, and there is no need to identify any change in the environment.

The framework proposed for particle swarm optimization algorithm has been implemented

as one of the most notable static optimization and a new optimization method referred to as

ant lion optimizer. The results from moving peak benchmarks (MPB) indicated the good

performance of the proposed framework for dynamic optimization. Furthermore, the
positive performance of practices was assessed with respect to real-world issues, including

clustering for dynamic data.

Keywords: Increase and Decrease Individuals, Dynamic Optimization Problems (DOPs),

Local Search, Multi Swarm.

1 Introduction1

 great number of optimization problems occur in

the real world within dynamic environments, in

that global optimization value change over time. For

instance, we can refer to clustering problem when the
values of sample change over time. The purpose of

clustering is to assume the dataset postulated for spaces

separated from one another, and is expressed with a

clustering center. Once the values of data change, so

does global optimization, which is the centers of

clusters here, where the conventional algorithms that

work in static environments are no more unable to find

Iranian Journal of Electrical and Electronic Engineering, 2020.

Paper first received 03 March 2019, revised 29 June 2019, and

accepted 17 July 2019.

* The authors are with the Electrical and Computer Faculty,

University of Birjand, Birjand, Iran.

E-mails: ejabati_masoud@birjand.ac.ir and hzahiri@birjand.ac.ir.

Corresponding Author: S. H. Zahiri.

new optimization, and we need dynamic optimization

algorithms. In a general case, engineering processes

consists of uncertain and complex problem
optimization, in that objective function, constraints, and

some components of a problem change over time.

 It is obvious that following the change in the

foregoing problems, global optimization will undergo

change. By considering this, the goal of dynamic

optimization is to search for the path to the changes of

optimization place over time, besides finding

optimizations. This issue is addressed within static

optimization.

 Many of the dynamic algorithm have been developed

by disclosing a change in the environment, where there
are some techniques to disclose the change in the

environment. Disclosing change in a workplace is

difficult and eve it can be impossible at some time.

Suppose that only a fraction of the entire search space

receives change, in this case predicting this subspace or

disclosing the change will be quite difficult. This is why

methods that do not require change disclosure in an

A

mailto:ejabati_masoud@birjand.ac.ir
mailto:hzahiri@birjand.ac.ir

A Framework for Adapting Population-Based and Heuristic

… S. M. Ejabati and S. H. Zahiri

Iranian Journal of Electrical and Electronic Engineering, Vol. 16, No. 2, June 2020 159

environment can demonstrate better performance in a

variety of environments.

 Considering their dynamic nature, heuristic algorithms

have a good potential to be used in a dynamic

optimization. Since the optimization process of the

algorithms is derived from a natural or biological

evolution, and the nature is constantly changing, a

variety of methods have been proposed recently to boost

classic evolutionary algorithms that are used in static

environments [1, 2]. The methods can be divided into

five groups:

1) Increasing Diversity After a Change

 Many strategies used to solve dynamic problems

depend on the recognition of changes to the

environment. Hence, this class of algorithms enhance

the diversity through reinitiating the algorithm after

discovering the change in the environment. Some part

of the population is assigned a value at random when a

change occurs in the environment [3, 4]. In these

researches, a conventional particle swarm

optimization (PSO) algorithm was applied on a time-

varying parabolic function that reflects a simple
unimodal fitness landscape.

1.2) Maintaining Diversity During Execution

 In this class, the diversity is maintained during the

time the program runs using different techniques. For

example, Blackwell and Branke introduced two

algorithms of multi-charged particle swarm

optimization (mCPSO) and multi-quantum swarm

optimization (mQSO) inspired by a nuclear field [5]. In

mCPSO, some part of the swarm particle in each

population is introduced as charged particles, which

repel each other and revolve around the neutral particles
in circles. The quantum particles move around the best

particle in mQSO algorithm [6]. Both algorithms

improved through re-initialization of the worst

population when all swarms converge in order to

maintain diversity. The same quantum principle was

employed in the specification (SFA) algorithm [7].

 A modified artificial bee colony (MABC) was

proposed by Takano et al. with the restriction of

communication among those bees that are closer

only [8].
 A PSO-based memetic algorithm was proposed by

Wang et al. in which two local search operators were
employed to maintain the diversity when implementing

the algorithm [9]. Chen et al. employed a method

similar to that of honeybee life cycle to adjust the

colony size during optimization [10].

1.3) Memory Schemes
 The memory schemes are used to transfer useful

information from the search in the previous

environment to the current one to speed up the search

process. Usually, hopeful solutions are stored in the

memory and reused when a change is made to the

environment. An external archive is usually required to
implement a memory scheme. The population archive is

created to store the best solutions when a change is

made to the environment, or when a peak is found [11].

Nasiri and Meybodi used two types of memories one of

which used to store the information of current

environment and the other one to store the information

of the previous setting [12]. Such a mechanism has been

also employed for PSO [13].

1.4) Multiple Population Methods

 In the multi-population scheme, the search space is

divided into some sub-spaces and each swarm is

responsible for searching in one of the sub-spaces,

which has multiple advantages [14], including
maintenance of the global diversity since the start of the

search at different areas, the possibility of tracking some

optima at the same time, and facilitation of expanding

the schemes based on single-swarm and multi-swarm

approaches.

1.5) Hybridizations

 Hybridizations are in fact a combination of methods

with different knowledge domains such as genetic

algorithms, differential evolution, or other meta-

heuristic methods. For example, Multi-strategy

ensemble PSO (MEPSO) uses Gaussian local search
and differential mutation for exploration and

exploitation [15]. A fuzzy cognition with multiple local

searches was used by Sharifi et al. [16]. A hybrid model

of cellular automata and PSO was also provided by

Hashemi and Meybodi [17]. The search space was

divided into discrete cells by automata and a particular

number of particles was placed in each cell to maintain

the diversity.

 As mentioned earlier, the goal of dynamic

optimization is to find and pursue the global

optimization over time. Obviously, pursuing global
optimization in a set of the best optimization has proved

to be more functional when the environment

changes [18, 19]. Accordingly, in many of the studies,

the use of multi-population methods is suggested.

 The principles of work are such that the entire search

space is divided into subspaces. Each sub space covers

one or a few local optimums and represents a sub-

population. The algorithm then individually updates the

particles of each sub-population and searches for

optimum results. The challenging topic in multi-

population methods is how to create the right number of

sub-populations and that of people to cover different
sub-domains in the search space. For example, the

hierarchical clustering method [20, 21] was used to

automatically divide the search space into sub-

populations.

 In this paper, a new framework with a simple yet

robust mechanism has been introduced to boost

heuristic algorithms based on swarm intelligence from

optimization in static environment to dynamic

environments. Similarly, new practices have been

introduced for problems like how sub-populations can

occur, preventing early convergence, and excessive
swarm of individuals, and how individuals’ behavior

can adapt to the conditions of dynamic environments.

A Framework for Adapting Population-Based and Heuristic

… S. M. Ejabati and S. H. Zahiri

Iranian Journal of Electrical and Electronic Engineering, Vol. 16, No. 2, June 2020 160

For performance evaluation, the algorithms PSO and

AL have prepared for the proposed framework in order

to solve the problems with dynamic environments.

 The proposed algorithms are used to solve moving

peak benchmark (MPB) problem with different

settings [22]. Similarly, the method of optimization

proposed to solve the problems in real world, e.g.,

clustering is used when samples are changing.

 Organization of this paper is in a way that a review of

multiple-population method developed for solving

dynamic problems is presented in Section 2; the
structure of the proposed framework and developed

algorithms is introduced with a framework in Section 3.

Section 4 includes the results obtained from algorithm

performance when encountering MPB problem with

different settings and dynamic clustering. In the end,

section 5 ends with a conclusion and discussion.

2 Multi-Population Methods

 In optimizing dynamic environments, preserving the

diversity of population is one of the most fundamental

issues. In the same vein, many research studies on multi
modal problems in dynamic environments have shown

that to preserve the diversity of population, the multi-

population approach is highly effective.

 A multi-colony ant colony optimization (ACO)

algorithm was developed in which each colony uses a

separate pheromone table to maximize exploration in

the entire search space [24-26]. Although there is no

explicit method for maintaining colonies in the entire

search space, the results showed a better performance

than single-clone algorithm.

 Melo et al. used a multi-colony ACO algorithm with
the difference that the pheromone table is similar for all

clones called castes, and that the differences in the

settings of parameters cause different behaviors of

castes to cover more areas of search space [27], [28]. A

similar idea was also proposed in the PSO [29].

Khouadjia et al. introduced a multi-population PSO

algorithm based on the island model, so that particles

migrate regularly between different populations [30].

According to Okulewicz and Mańdziuk, the algorithm

functions differently, and communication between

populations occurs only when changes occur in the

environment [31].
 Two groups of heterogeneous populations cooperate

in collaborative evolutionary swarm optimization

algorithm (CESO) [32]. The first group is responsible

for maintaining diversity, and the second group

undertakes tracking of global optimum. The groups

follow crowding differential evolution (CDE) and PSO

model respectively. Similarly, the binary population was

employed by Zheng and Liu [33]. The number of

populations exchanging information through

evolutionary swarm cooperative algorithm reached three

through adding a further population by Lung and
Dumitrescu [34].

A self-organizing scout (SOS) algorithm was proposed

by Branke et al. [35]. In the present research, a large

main population (parents) is used to search for optima,

and several small populations (children) have been

employed to follow each optimum point. Whenever a

new peak is found, a new population will be created for

tracking. This approach was adopted in different types

of EAs and meta-heuristics, e.g. GA [36], DE [32], and

PSO [37]. An amendment GA algorithm was proposed

for this purpose, i.e. making use of a great population to

search and a small population to follow the changes
[38]. The only difference that only two populations with

the capability of overlapping have been employed in

this algorithm.

 The other approach is to combine both duties of

searching and following in both populations such that

each population can find and follow new solutions [39].

When a sub-population finds a new peak, it is divided

into two sub-populations to ensure that each peak is

followed by one sub-population.

 In a number of studies, sub-populations are created

through separation from the main population. For
example, the fast multi-swarm optimization (FMSO)

algorithm starts with a parent population [40]. When the

best particle achieves a certain improvement criterion,

the offspring population, which is a collection of the

best particles, and also a number of its surrounding

particles, are born. A similar idea viz. hibernation multi-

swarm optimization algorithm (HmSO) was introduced

by Kamosi et al. [41], in which the offspring population,

if not effective, undergoes so-called hibernation until it

feels a change in the environment.

 The properties of atoms and the principle of repulsion
of particles with the same name were used to preserve

diversity in populations [5], [6]. In this way, charged

populations are presented separately to cover

optimizations. In an improved version, two innovative

laws were added to increase diversity [42]. According to

one of the rules, the number of quantum particles

increases and that of particle paths decreases in case of

an environmental change. Particles with inappropriate

performances are initialized or stopped in the second

law. Similar ideas of the exclusion principle were

adopted in such other algorithms as multi-Bacterial

foraging optimization (multi-BFO) [43], multi-swarm

modified AFSO [44], and multi-swarm firefly

algorithm (FA) [45].

 The clustering PSO algorithm was provided by Yang

and Li in which a hierarchical clustering method was

used to divide the initial population into sub-populations

to cover different local areas after recognizing a change

to the environment [20, 21]. Then, a new version was
introduced to avoid the recognition of an environmental

change [46]. In this method, random particles are

clustered in the new populations when the number of

particles is less than a certain threshold value.

 A decision-making model was proposed by Dun-wei

and Xiao-yan in order to improve MPCEGAs on the

A Framework for Adapting Population-Based and Heuristic

… S. M. Ejabati and S. H. Zahiri

Iranian Journal of Electrical and Electronic Engineering, Vol. 16, No. 2, June 2020 161

networks [47]. In this model, the objective of

optimization is to minimize maximal computational

time for average one-step iteration of a computational

node. However, a limitation is considered to be the fact

that each evolutionary population is allocated at most to

one computational node. Accordingly, the

computational resource can be allocated logically

leading to a dramatic decrease in the implementation

time on the computational nodes for the evolutionary

populations.

 A cooperative co-evolution strategy has been
proposed based on the environmental sensitivity through

analyzing the relationship between decision variables

and environment [48]. According to this strategy,

decision variables are divided into two subgroups

namely the environmental subgroup and non-

environmental subgroup, which are then optimized by

two sub-populations, respectively. Therefore, the search

space of each sub-population decreases and the

algorithm capability of exploring improves. If

environmental changes are examined during the

evolution process, the sub-populations are adjusted
based on the results of linear prediction and the Cauchy

perturbation strategies.

3 Proposed Framework

 In this section, a new design is introduced as

increasing-decreasing optimization for optimization in

dynamic environments. For the synchronization of

heuristic algorithm based on swarm intelligence for

dynamic environments, individuals are divided into two

groups; free individuals and focused individuals. By

individuals, we mean active components of optimization
algorithm based on swarm intelligence in an

optimization. For instance, in PSO algorithm noun as a

particle in inclined planes system optimization (IPO)

algorithm, ball or ant lion optimizer algorithm (ALO),

ant is the active component of an optimization. The duty

of free individuals is to always search throughout a

searching space.

 When these individuals advance toward convergence,

some of them are referred to as focus individuals in a

region called the focused search zone donated as FSZ.

The area of FSZ is determined around the best focus

individuals with a radius, called the focal search
radius (FSR). By refreshing the focus individuals in

case of improvement of the best individual, the FSZ

center will also shifts to the location of the best

individual, and other focus individuals in this FSZ will

require to search in this subarea. At the same time, all

free individuals are scattered to find other optimum

points in the search space. In fact, the task of free

individuals is to conduct an elementary search to find

the probable subareas. Focus individuals function to

find and improve the optimum and follow it during

environmental changes. Thus, the number of individuals
increases with respect to the creation of FSZs, and

consequently the production of new focus individuals.

The structure of the algorithm is such that at any time

all focus individuals of that zone are eliminated

depending on optimum environment conditions

associated with each FSZ leading to constant changes in

the number of individuals.

 The main circle of the proposed plan begins with

initialization of free individuals and then in the next

phase the locations of these individuals are updated with

a heuristic algorithm based on swarm intelligence. In

what follows, free individuals’ convergence is
investigated. In the case of recognizing the possibility of

convergence, individuals who are in a focused search

zone (FSZ), (i.e., within the range of focused search

radius that revolves around the best individual) are

recognized as the focused individuals, creating a new

search focused zone. Now the location of focused

individuals in each search zone is separately updated

with a heuristic algorithm. In the case of optimization

improvement, any FSZ is transferred to the center of a

better optimization. In the next phase, focused search

zone is studied with respect to overlapping dimension
and finally the FSZs that lost their optimization because

of critical changes in the environmental conditions are

deleted. It is because we assume that any change in an

optimal location fall within FSZ area after being

changed. Thus the total numbers of individuals are

always a function of environmental conditions during

operation, and this feature exempt the plan from

constant updating constraints for the large number of

individuals.

 In the first step, free individuals are updated by a

heuristic algorithm. In the next phase of the main circle
of the proposed plan, the convergence process of free

individuals will be investigated.

 The initial convergence condition is that the rate of

change in the position of the best free individual and its

fitness is measured relative to the previous stage,

followed by investigating the process of free individual

convergence in Algorithm 1. If the best free individual

changes are less than rconv/5 and their fitness variations

are less than rconv, then the algorithm recognizes the

possibility of free individual convergence. The position

of the best point is examined in this stage. If it is located

in each of the FSZs and its fitness value is more
optimized than that of the center of the FSZ located

therein, then the FSZ and, consequently, the focused

member individuals are removed, and the new FSZ with

the number of free individuals in the FSR range are

formed with a centrality of the best free individual.

Then, all free individuals are scattered throughout the

search space to search for other possible areas. On the

other hand, if the best free individual fitness value is not

more optimal than the center of FSZ located therein, all

of the free individuals would be scattered.

 After satisfying the initial condition of convergence, if
the position of the best free individual point is not

located at any of the FSZs, then the total lengths of the

A Framework for Adapting Population-Based and Heuristic

… S. M. Ejabati and S. H. Zahiri

Iranian Journal of Electrical and Electronic Engineering, Vol. 16, No. 2, June 2020 162

Algorithm 1 convergence Checking ().

if (f(xgbest)t-1-f(xgbest)t < rconv) and (||(xgbest)t-1- (xgbest)t|| <
rconv/5) then
 if xgbest was within FSZ[i] then
 if f(xgbest) better than f(centerFSZ[i]) then
 Replace selected free individual with focus
individuals in FSZ[i]
 re-initialize the free individuals

 else
 re-initialize the free individuals
 end if
 else
 create a new FSZ with selected free individuals as
the focus individuals
 re-initialize the free individuals
 end if

end if

1

2
3
4

5

6
7
8
9
10

11
12

13

two free individuals are discussed, which has the

smallest distance from the best free individual. If this

sum is also somewhat less than rconv, it indicates that the

free individuals are convergent, and best free individual

is considered to be the center of FSZ. The number of
free individuals up to a maximum of four individuals

within the FSR range relative to the center are

introduced as the focus individual. The title of its

centralized individual is FSZ, and all free individuals

are scattered throughout the search space to search for

other possible areas. If there are less than two free

individuals in the new FSZ range, two individuals closer

to best free individual will be accepted as focus

individuals for the mentioned FSZ.

 In the next step, the position of focus individuals for

each FSZ will be updated separately by the heuristic
algorithm. If the best individual of each FSZ is

improved, its center of FSZ will shift to the position of

the best individual. In this way, the FSZs’ location will

also be updated in the search space. The framework also

monitors the speed of focus individuals by scattering the

mentioned focus individuals in their FSZ range when

they are close to zero at any time, thereby, preventing

their trapping in the local optimizations.

 In the proposed framework, a mechanism has been

used to prevent overlap of FSZs and the parallelization

of focus individuals. In this method, the distances
between FSZ centers are calculated and two

neighboring FSZs are considered with a distance less

than two times the FSR. In order to avoid the influence

of local optimizations on the framework, average

optimum performance is calculated by other FSZs. If

the fitness of two FSZ centers were better than the

average fitness (pmean) of centers of other FSZs, the

search radius would be reduced to half the distance

between the centers of two FSZs in order for both FSZs

to pursue their own optimums.

 Now if the fitness of one or both FSZs was worse than

the average fitness (pmean) of the centers of other FSZs,
the one whose optimum fitness was found to be worse

than the other is considered as the local optimum. This

Algorithm 2 FSZ overlap Checking (FSZ,FSR).

if distance between FSZ[i] center and FSZ[j] center <
2*FSR then
 fmean(centerFSZ) = Calculation of mean fitness for
other centers
 if f(centerFSZ[i]) and f(centerFSZ[j]) better than
Pmean×fmean(centerFSZ) and FSR > 1 then
 FSR = (distance between FSZ[i] center and FSZ[j]

center) / 2
 else
 delete FSZ with worst fitness between FSZ[i] and
FSZ[j]
 end if
end if

1

2

3

4

5
6

7
8

Algorithm 3 Remove Useless FSZ.

fmean(centerFSZ) = Calculation of mean all fitness centers
if worst f(centerFSZ[i]) > Pmean×fmean(centerFSZ) then
 delete FSZ with worst fitness FSZ[i]
end if

1
2
3
4

is followed by elimination of the mentioned FSZ and
the associated focus individuals. This way prevents the

search for several FSZs in a search area and also avoids

trapping in the local optimizations resulting in an

increase in the speed of the framework in finding the

most optimum points in the entire search space within a

more limited time. Algorithm 2 shows the FSZ overlap

checking process.

 Another idea used in the proposed framework

presented in Algorithm 3 is the automatic removal of

FSZs that do not have an optimum point in the region

after severe changes in another environment, or the
removal of focus individuals locally trapped in local

optimizations. In this case, the coefficient of optimum

optimization average (pmean) is found as the

measurement criterion. The worst-performing optimum

in somewhat worse FSZs is compared with this criterion

at each step, which eliminates the corresponding FSZ

with its focus individuals.

3.1 Dynamic Environments With Undetectable

Changes

 Many studies carried out to solve dynamic
optimization problems (DOPs) according to

evolutionary algorithms are based on either detection of

environmental changes [6, 20, 21, 34, 49], or prediction

of a change assuming that such changes follow a pattern

of properties [50]. When changes are detected or

predicted, then different strategies are employed to

increase diversity.

 One of the common methods to detect a change is to

re-evaluate the solutions. The algorithm re-evaluates

regularly a number of solutions to recognize a change in

the environment. Detectors can be a part of the

population such as the best current optima [51], a
memory-based sub-population [52], or a feasible sub-

population [51]. In addition, the detectors can be

selected separately from the searching population. For

A Framework for Adapting Population-Based and Heuristic

… S. M. Ejabati and S. H. Zahiri

Iranian Journal of Electrical and Electronic Engineering, Vol. 16, No. 2, June 2020 163

example, they can be merely a fixed point (Carlisle and

Dozier, 2000) [53] or a collection of random

solutions [49].

 Another detection idea is to supervise reductions in

average values of the best points found during some

iterations [54]. The changes that are based on statistical

hypotheses tests are used to find the difference in the

population distribution of two consecutive

generations [49]. As stated by Morrison, studies on the

detection of a change to the environment are based on

the diversity, the relationship between diversity, value
of fitness function, and the rate of success in detecting

the change [55].

 Given the importance of maintaining diversity in

solving dynamic optimization problems and their

dependence on environmental changes, it is important to

note that performances of algorithms proposed for

dynamic environments should not be dependent on the

detection of changes in the environment, which are very

difficult and impossible to discover in some cases. For

example, imagine that changes occur in some areas of

the search environment only making the algorithm very
problematic to detect environmental changes. If it fails

to detect, all common strategies will lose out

deteriorating the algorithm. Also, detection of changes

in noisy environments is very difficult for algorithms

working based on detection of a change. The proposed

algorithm does not need to detect a change in the

environment and always adapts itself to environmental

conditions.

3.2 Implementation of Framework on PSO

Algorithm

 In this section, a new algorithm called increasing-

decreasing particle swarm optimization (idPSO) is

introduced for optimization in dynamic environments.

Due to its short and abstract mechanism, this algorithm

has a good speed for dynamic optimization. The general

framework is shown in Algorithm 4.

 The main ring of the proposed algorithm starts with
initialization for free particles, and in the next step, the

Algorithm 4 idPSO.

Initialize free particles
while stop criteria is not satisfied do
for free particles do
 PSO ();
end for
convergence checking (free particles)
if FSA exists then

 for each FSZ[i] do
 PSO(FSZ[i])
 Update FSZ centers
 Check velocity of focus particles
 end for
end if
FSA overlap checking (FSZ, FSR)
Remove useless FSZ
end while

1
2
3
4
5
6
7

8
9
10
11
12
13
14
15
16

free particle position is updated by particle swarm

optimization algorithm, first proposed by Kennedy and

Eberhart [56], [57]. Each particle i is represented by a

velocity vector
iv and the position vector

ix updated by

the version of Shi and Eberhart with the inertia weight

as follows [58]:

   '

1 1 2 2i

d d d d d d

i i pbest i gbest iv v c r x x c r x x     (1)

d d d

i i ix x v   (2)

 In the above equation, xi'd is the current position, xi
d is

the previous position, vi'd is the current speed, and vi
d is

the previous speed of the i-th particle in the d

dimension.
i

d

pbestx is the best position of the i-th particle

so far, and
i

d

gbestx is the best position in the whole

particles. ω ∈ (0, 1) is an inertia weight and determines

the effect of the previous velocity on the current

velocity of the particle; r1 and r2 are uniform random

variables between zero and one; c1 and c2 are called

acceleration coefficients and show the following of the

particle of their best (cognitive) and the best collective
(social component), respectively.

 Given the various tasks for free particles and focus

particles in idPSO, the acceleration coefficients and

inertia weight for the particle update, which are

responsible for finding probable areas in the entire

search space and focus particle that are required to find

and follow optimum on their own FSZ is considered

different. The values of c1, c2, and ω of free particles for

general search are considered to be 2, 2 and 0.4 and for

focus particles with exact searches are considered as 3,

1 and 0.5, respectively.
 In the next step, the convergence process of free

particles will be studied. Then the location of focused

particles of each FSZ is updated separately with a PSO

algorithm. And in the case of an improvement of the

best particle of each FSZ, the center of its FSZ will be

updated in the search space.

 In the following steps, FSZ’s overlapping is studied,

and then the mechanism for automatic deletion of
additional FSZ is presented according to what has been

laid down in the proposed framework.

3.3 Implementation of Framework on ALO

Algorithm

 In this section, a new algorithm named as increasing-

decreasing ant lion optimizer algorithm (idALO) is

introduced for the optimization of dynamic

environments (time-variable), as in what has been

introduced in the proposed framework.

 The Ant Lion optimizer is derived from the life cycle
of these creatures in nature [58]. To trap ants, a cone-

shaped cavity is created at the surface of the ground,

and at the bottom of the cone waiting for the ant to fall

into this cavity. When an ant falls into this cavity, it

A Framework for Adapting Population-Based and Heuristic

… S. M. Ejabati and S. H. Zahiri

Iranian Journal of Electrical and Electronic Engineering, Vol. 16, No. 2, June 2020 164

tries to get out of the hole. At this time, the Ant Lion

with the throw of sand to the top leads to the fall of the

ant to the end of the cone and capture in the forks of the

Ant Lion butter and finally the Ant Lion takes the prey

into the ground and splits it. This algorithm is inspired

by the interactions between Ant Lion and ant in the trap.

Ants tend to move in the entire search space, and Ant

Lions are allowed to hunt them and improve

themselves.

 Here ants are divided into two groups—free ants and

focused ants—in order to make the ant lion algorithm
prepared for solving optimization in dynamic

environments. The duty of free ants is to constantly

explore throughout the search space. When the ants are

drifted toward a trap, a number of them fall within an

area called focused search zone, and they are known

focused ants. The focused search zone surrounding lion-

ants is characterized by a radius called focused search

radius. With each reiteration of algorithm, FSZ’s center

is changed into its location if the lion-ant improves. And

other ants trapped in the zone are required to remain in

this subspace. All free ants are scattered across the
search space to find other optimal points. The pseudo-

code idALO is shown in Algorithm 5. The process

optimization proceeds according to the proposed

framework.

4 Simulation Results

 In this section, the dynamic algorithms derived from

the proposed framework have undergone a test. This

part can be divided into parts like investigation of

algorithm mechanisms and analysis of key parameters

in the process of algorithm optimization at the time of
facing a MPB problem, analogy of algorithm

performance with other methods set forth for solving

MPB problem, and application of algorithms in the

clustering when data are often changing.

4.1 Experimental Setup

1) MPB Problem is one of the most popular

optimization problems in dynamic environments, which

is widely used to evaluate dynamic optimization

Algorithm 5 idALO.

Initialize the Free Ants
while stop criteria is not satisfied do
 for Free Ants do
 ALO ();
 end for
 Convergence Checking (Free Ants)
 if FSZ exist then
 for each FSZ[i] do

 ALO (FSZ [i])
 Update FSZ centers
 end for
 end if
 FSZ Overlap Checking (FSZ, FSR)
 Remove Useless FSZ
end while

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15

algorithms [22]. In an MPB issue, the optimum can be

different with three features of position, height, and

width of peaks. This problem is defined in D dimension

as follows.

 
 

      
21. .

1

. max
1

i

Di p

i j ijj

H t
F x t

W t x t X t
 




 

 (3)

In (3) Hi(t) and Wi(t) are the height and width of the

peak i at time t, and Xij(t) is the j-th element of the peak

location at time t. The p independently specifies the

peaks blended together by the “max” function. The peak

position in a random direction is transmitted by the

vector
iv to a shift length of s, which represents the

sensitivity of the problem’s dynamics. The movement of

a single peak is defined as the following relation:

 
 

    1 1
1

i i

i

s
v t r v t

r v t
    

 
 (4)

The transition vector  i tv is a linear combination of

the random vector r and the previous transition vector

 1iv t  normalized to the shift length of s. The value

of the correlation parameter λ is zero, which indicates

the non-alignment of the peak movements.

Relationships of a peak change are expressed as:

   1 _i iH t H t height severity     (5)

   1 _i iW t W t width severity     (6)

      1i i iX t X t t v t   (7)

where σ is a random number with a normal distribution,

a mean of zero and a variance of one.
2) Test Settings: Default setting of benchmark function

in this study is shown in Table 1, similar to other

algorithms presented for comparison with the proposed

algorithm. The term "change of frequency U" means a

change in the environment after U time evaluation of

the fitness function. Peak location range is the range of

peak changes in each dimension. The height of the peak
varies randomly in the range of [30, 70] and the width

changes in the interval [1, 12].

Table 1 Default setting for MPB problem.
Value Parameter
[1,200] Number of peaks, p
5000 Change frequency, U
7.0 Height severity
1.0 Width severity
Cone Peak shape
No Basic function
1.0 Shift length, s
5 Number of dimensions, D
0 Correlation coefficient, λ
[0,100] Peaks location range
[30,70] Peak height, H
[1,12] Peak width, W
50.0 Initial value of peaks

A Framework for Adapting Population-Based and Heuristic

… S. M. Ejabati and S. H. Zahiri

Iranian Journal of Electrical and Electronic Engineering, Vol. 16, No. 2, June 2020 165

3) Performance Measurement: Several measurement

methods have been introduced to measure the

performance of algorithms in dynamic

environments [59]. In order to create comparable results

with other algorithms in this field, the offline error (OE)

criterion is used, which is defined as the average

difference in optimum value found by the algorithm

with the global optimum value in each environment.

 
1

1 K

k k

k

OE h f
K 

  (8)

In (8), fk is the best answer found by the algorithm
before the k-th change in the environment and hk is the

optimum value for the k-th environment. OE is mean

difference of fk and hk in total K changes in the

environment. All reported results represent more than

50 implementations of the program for 100 changes in

the environment.

4.2 Sensitivity of the Algorithms to Structural

Parameters

 In order to investigate the sensitivity of the algorithm

to the rconv parameters (convergence radius), pmean

(average coefficient of fitness) and FSR (focus search
radius) tests were performed on MPB with default

values (p = 10, U = 5000, s = 1).

 In fact, the offline error for the parameter changes at a

change frequency of 5000 is approximately equal to and

always reaches the smallest value. Thus, the effects of

variations in each parameter have been shown based on

average number of peaks found by the pattern.

 As shown in Figs. 1 and 2, the effect of rconv changes

on the number of peaks, resulting from the random

nature of the MPB problem in each replication,

indicates that the algorithms do not show much
sensitivity to rconv changes. This is because an increase

and/or decrease in rconv actually reduce and/or raise,

respectively, the time of transferring task of searching

for possible areas and optimum point of free individuals

to focus individuals. When rconv rises, free individuals

are detected earlier for convergence resulting in

formation of a new FSZ, and begin to find optimum

results, and free individuals return to their main task of

finding probable areas. When it is possible to create

local optimizations, this weakness is quickly modified

by control algorithms through elimination of FSZ or

enhancement of focus individuals. By contrast, by
reducing rconv, free individuals are in fact largely

condemned to find the optimum amount in addition to

searching for possible areas, which is among the tasks

of focus individuals. This occurs when the speed of

environmental changes increases (U variation frequency

decreases). Here, due to the ability of the algorithms,

rconv changes have little effect on the amount of offline

errors and the number of detected peaks.

 The impact of pmean changes of less than 0.7 on offline

Fig. 1 The effect of the change in rconv value on the mean of

the number of peaks found in idPSO algorithm.

Fig. 2 The effect of the change in rconv value on the mean of

the number of peaks found in idALO algorithm.

errors is almost negligible. The process of the
framework is in such a way that usually the optimum

value is between the first four peaks. By increasing the

amount of pmean (Figs. 3 and 4), similar to what happens

in rconv changes, probable areas are generated by

spending more time and delays until finding the peak.

An increase of more than 0.7 would disrupt the trend of

algorithms to find all possible areas and actually all the

peaks. In case the first peaks found have high degrees of

fitness, then they would have higher mean values and

other control algorithms do not allow finding the peaks

with minimum amounts of fitness. In such a case, it

should be noted that the algorithm finds the best
optimum point used in calculating offline errors. In the

case of severe changes in the environment, however, it

would not be possible to follow it by focus individuals,

instead, it can be found by spending time again by free

individuals in a new location. By contrast, with the

reduction of pmean to less than 0.3, the framework is

confused with identifying the real probable areas of the

local ones, and usually the number of FSZs exceeds the

number of peaks (n = 10). This would be seen again in

optimum global value and as a result, would not affect

offline errors and just unnecessarily leads to increased
number of individuals and consequently the amount of

algorithm calculation. By definition, the FSR (focus

search radius) determines the range of the focused

search area around the best focus individuals of that

A Framework for Adapting Population-Based and Heuristic

… S. M. Ejabati and S. H. Zahiri

Iranian Journal of Electrical and Electronic Engineering, Vol. 16, No. 2, June 2020 166

Fig. 3 The effect of the change in pmean value on the mean of the

number of peaks found in idPSO algorithm.

Fig. 4 The effect of the change in pmean value on the mean of the

number of peaks found in idALO algorithm.

Fig. 5 The effect of the change in FSR value on the mean of the

number of peaks found in idPSO algorithm.
Fig. 6 The effect of the change in FSR value on the mean of the

number of peaks found in idALO algorithm.

area in the entire optimization process. Two tasks are

considered for this area. The first task is to find an

optimum in the probable region and improve the

optimum optimization until no change happens in the

environment. The second task is when there are changes
in the environment, which is followed by an optimum

movement in such an environment. As a result, FSR

value is important for the optimum to be in the same

FSZ after environmental changes. Also, taking into

account the large amount of FSR to ensure optimum

change of location in the same area makes optimum

improvement (first task) more difficult due to

confronting with a larger area. Thus, there must be a

compromise between optimum improvement and the

presence of optimum after changes in the area. Figs. 5

and 6 show the effect of changing FSR values on the

number of peaks found. Low FSR values (less than 2)
improve the optimum as high as possible, but with a

change in the environment, most FSZs lose their

optimums and are eliminated by the Remove Useless

FSZ mechanism. It is true that ultimately the proposed

algorithm results in a great deal of time to optimize with

frequency of environmental changes (U) of 5,000 and

find the global optimum value with a high precision.

Nonetheless, it is important that free individuals have to

find new probable areas for creating FSZs and

improving optimizations by new focused individuals

meaning addition of extra calculation load and spending

Table 2 Framework settings for solving the default MPB
problem.

Value Parameter

20 Number of Free Individuals
0.5 rconv

0.3 pmean

4 FSR

more time for optimization. As noted above,

considering that high values (between 6 and 10) lead to

an optimum improvement performed at a lower speed

after a change in the environment, the probability of an

optimum point would increase in this FSZ. In practice,

high FSR values are mediated by the FSZ overlap

Checking mechanism and reduce to mean values. The

optimum values of parameters for solving the MPB

problem are given in Table 2.

4.3 Comparison With Other Algorithms

 In this part of the experiments, the proposed

algorithms in terms of solving the MPB problem with

different settings ware compared with other algorithms

discussed in this topic, including CPSO [20],

mCPSO [6], mQSO [6], CESO [32], SPSO [19],

AmQSO [60], mPSO [41], APSO [61], FTMPSO [62],

SFA [7], PSO-AQ [63], CDEPSO [64], rSPSO [65],

CbDE-wCA [66], WD2O [67], BfCS-wVN [68], and

cGA [69]. In the following, the effects of peak number

A Framework for Adapting Population-Based and Heuristic

… S. M. Ejabati and S. H. Zahiri

Iranian Journal of Electrical and Electronic Engineering, Vol. 16, No. 2, June 2020 167

changes, shift severity, and frequency of environmental

change U on offline errors of idPSO and idALO are

provided in three sections.

1) Changes in the Number of Peaks: The series of

experiments summarized in Table 3 indicate idPSO and

idALO dealing with different number of peaks in the

range 1 to 200 for the MPB problem. Comparisons were

made based on offline errors and standard deviations

with 17 algorithms derived from algorithms proposed in

other studies with optimum settings. According to

Table 3, the results of the proposed algorithm are better
than other methods for the majority of peaks.

 The algorithms settings for all peaks are the same as

default settings. The accurate error values of proposed

algorithms and other algorithms in Table 3 suggest that

the amount of offline errors decrease with an increase in

the number of peaks. It is more difficult for the

algorithm to work on finding and tracking a high

number of peaks. Though, it is logical that the closeness

of the fitness values of these optimums to the fitness

value of global optimum possibly increases with an

increase in the found local optimums. Also, more
regions are monitored and searched by focus individuals

in the search space, which as a result, the possibility of

optimum global presence in these areas would increase

more rapidly after changes in the environment.

 Given Fig. 7, a bar chart shows a difference in the

values of offline error for the two proposed algorithms

and other three algorithms within the changing

frequency 5000 and the number of different peaks.

2) Changes in Shift Severity: Table 4 presents the

offline error values of six similar algorithms and

proposed algorithms for four different shift severity.

The environment settings are the same change

frequencies of 5000 for 10 peaks and shift severity

values are 1, 2, 3, and 5, respectively. Obviously,
increasing amount of shift severity results in elevated

intensity of changes in the environment. In other words,

a higher increase in the shift severity moves the

optimum location to a further distance after a change in

the environment rendering the algorithm with much

more difficulty in tracking the optimum. Hence, the

values of offline errors for the algorithms (Table 4)

increase with rising shift severity values. Increased

amount of offline errors for the proposed algorithms

with the above-mentioned optimum settings can be

ignored, and this point is an indicator of a high
robustness of the proposed framework for finding and

tracking an optimum for each shift severity.

Table 3 Comparison of offline error algorithms for different peak numbers in the MPB problem at the change frequency of U=5000.

Number of peaks, p
Algorithm

200 100 50 30 20 10 5 1

1.24(0.06) 1.41(0.08) 1.54(0.12) 1.58(0.17) 1.59(0.22) 1.06(0.24) 0.72(0.30) 0.14(0.11) CPSO
2.44(0.04) 2.49(0.04) 2.65(0.06) 2.63(0.08) 2.64(0.07) 2.08(0.07) 2.07(0.08) 4.93(0.17) mCPSO
2.24(0.05) 2.35(0.06) 2.53(0.08) 2.51(0.10) 2.48(0.09) 1.85(0.08) 1.82(0.08) 2.24(0.05) mQSO(5,5q)

- 1.28(0.02) 1.45(0.01) 1.24(0.01) 1.72(0.02) 1.38(0.02) - 1.04(0.00) CESO
2.79(0.05) 2.93(0.06) 2.72(0.08) 2.62(0.07) 2.20(0.07) 1.50(0.08) 1.04(0.03) 1.42(0.06) rSPSO
3.82(0.05) 4.01(0.07) 3.86(0.08) 3.64(0.07) 3.21(0.07) 2.51(0.09) 2.15(0.07) 2.64(0.10) SPSO
2.62(0.10) 2.68(0.12) 2.43(0.13) 2.19(0.17) 2.00(0.15) 1.51(0.10) 1.01(0.09) 2.62(0.10) AmQSO
2.24(0.05) 2.35(0.06) 2.53(0.08) 2.51(0.10) 2.48(0.09) 1.85(0.08) 1.82(0.08) 2.42(0.05) mPSO
1.90(0.01) 1.95(0.01) 1.95(0.02) 1.78(0.02) 1.69(0.05) 1.31(0.03) 1.05(0.06) 0.53(0.01) APSO
1.67(0.03) 1.61(0.03) 1.32(0.04) 1.14(0.04) 0.93(0.04) 0.67(0.04) 0.47(0.05) 0.18(0.01) FTMPSO
1.99(0.06) 2.01(0.04) 1.87(0.05) 1.56(0.06) 1.48(0.05) 1.05(0.04) 0.89(0.07) 0.42(0.03) SFA
1.96(0.04) 1.95(0.05) 1.77(0.05) 1.52(0.04) 1.45(0.06) 0.89(0.03) 0.80(0.12) 0.34(0.02) PSO-AQ
2.11(0.01) 1.54(0.01) 2.20(0.01) 2.62(0.01) 1.54(0.01) 1.22(0.01) 0.97(0.01) 0.41(0.00) CDEPSO
1.29(0.02) 1.35(0.03) 1.31(0.04) 1.34(0.04) 0.98(0.05) 0.86(0.08) 0.30(0.02) 0.14(0.03) CbDE-wCA
1.95(0.01) 2.10(0.01) 1.87(0.01) 1.75(0.01) 1.22(0.01) 1.25(0.02) 0.76(0.003) 1.21(0.03) WD2O
1.71(0.05) 1.80(0.06) 1.65(0.07) 1.35(0.51) 1.18(0.06) 1.15(0.10) 1.06(0.07) 0.92(0.09) cGA
1.18(0.08) 1.11(0.06) 0.84(0.06) 1.00(0.11) 0.74(0.12) 0.51(0.11) 0.38(0.21) 0.30(0.06) BfCS-wVN
0.26(0.04) 0.25(0.02) 0.64(0.01) 0.67(0.04) 0.75(0.03) 0.62(0.05) 0.58(0.07) 0.12(0.02)e-7 idPSO
1.22(0.05) 1.20(0.09) 1.21(0.08) 1.30(0.07) 1.41(0.05) 0.71(0.06) 0.49(0.06) 0.09(0.02) idALO

Fig. 7 Comparison of the algorithms of the proposed

framework and other algorithms in a frequency of 5000 and
with respect to the number of different peaks.

Table 4 Comparison of the offline error of algorithms for
various shift Severity in MPB problem.

Shift severity, s
Algorithm

5 3 2 1

1.58(0.32) 1.36(0.28) 1.17(0.22) 1.06(0.24) CPSO

4.89(0.11) 3.57(0.08) 2.80(0.07) 2.05(0.07) mCPSO

4.24(0.10) 3.00(0.06) 2.40(0.06) 1.85(0.08) mQSO(5,5q)

2.52(0.06) 2.03(0.03) 1.78(0.02) 1.38(0.02) CESO

6.45(0.45) 3.31(0.25) 2.19(0.15) 0.92(0.09) cGA

2.39(0.20) 1.26(0.13) 0.89(0.16) 0.51(0.11) BfCS-wVN

0.91(0.09) 0.76(0.06) 0.67(0.07) 0.62(0.05) idPSO

1.09(0.08) 0.93(0.07) 0.81(0.07) 0.71(0.06) idALO

A Framework for Adapting Population-Based and Heuristic

… S. M. Ejabati and S. H. Zahiri

Iranian Journal of Electrical and Electronic Engineering, Vol. 16, No. 2, June 2020 168

Fig. 8 The value of the offline error of the algorithm idPSO for the degree of a different change in frequency of 5000.

Table 5 Comparison of offline error algorithms for different peak numbers in the MPB problem at the change frequency of U=1000.

Number of peaks, p
Algorithm

200 100 50 30 20 10 5 1

5.54(0.11) 5.83(0.13) 5.87(0.13) 5.81(0.15) 5.85(0.15) 5.71(0.22) 6.56(0.38) 18.60(1.63) mQSO(5,5q)
5.75(0.26) 4.77(0.45) 6.06(0.14) 5.20(0.38) 5.36(0.47) 4.56(0.40) 2.90(0.32) 2.33(0.31) AmQSO

5.78(0.09) 5.60(0.09) 5.33(0.10) 5.15(0.12) 4.97(0.13) 4.57(0.18) 3.93(0.16) 4.44(0.02) mPSO
4.21(0.02) 4.26(0.04) 4.11(0.03) 4.12(0.04) 4.13(0.06) 3.87(0.08) 2.99(0.09) 2.72(0.04) APSO
3.74(0.09) 3.63(0.09) 3.29(0.10) 3.06(0.10) 3.01(0.12) 2.36(0.09) 1.70(0.10) 0.89(0.05) FTMPSO
4.43(0.07) 4.40(0.07) 4.12(0.07) 4.02(0.08) 4.01(0.07) 3.64(0.04) 2.71(0.06) 2.45(0.12) SFA
2.20(0.11) 2.42(0.14) 2.56(0.10) 2.01(0.14) 1.76(0.09) 1.28(0.13) 1.12(0.11) 1.10(0.10) cGA
0.96(0.03) 0.92(0.03) 1.41(0.01) 1.70(0.04) 1.73(0.06) 1.61(0.03) 1.33(0.05) 0.21(0.02) idPSO
3.19(0.05) 3.21(0.08) 3.11(0.11) 2.96(0.06) 2.71(0.05) 2.12(0.08) 1.77(0.08) 1.05(0.06) idALO

Table 6 Comparison of offline error algorithms for different peak numbers in the MPB problem at the change frequency of U=10000.

Number of peaks, p
Algorithm

200 100 50 30 20 10 5 1

1.71(0.04) 1.85(0.05) 1.99(0.07) 2.00(0.09) 1.84(0.09) 1.10(0.07) 1.03(0.06) 1.90(0.18) mQSO(5,5q)
2.52(0.10) 1.89(0.14) 1.55(0.08) 1.78(0.09) 1.28(0.12) 0.76(0.06) 0.45(0.04) 0.19(0.02) AmQSO

1.48(0.02) 1.50(0.03) 1.47(0.04) 1.43(0.05) 1.34(0.08) 0.97(0.04) 0.70(0.10) 0.27(0.02) mPSO
1.36(0.01) 1.38(0.01) 1.46(0.01) 1.39(0.02) 1.23(0.02) 0.82(0.02) 0.57(0.03) 0.25(0.01) APSO
1.13(0.04) 1.08(0.03) 0.86(0.02) 0.69(0.09) 0.56(0.01) 0.43(0.03) 0.31(0.04) 0.09(0.00) FTMPSO
1.52(0.03) 1.44(0.04) 1.19(0.04) 0.99(0.04) 0.91(0.03) 0.72(0.02) 0.53(0.04) 0.26(0.03) SFA
0.85(0.05) 0.85(0.05) 0.54(0.70) 0.66(0.08) 0.84(0.05) 0.30(0.06) 0.20(0.02) 0.18(0.04) BfCS-wVN
0.19(0.00) 0.19(0.00) 0.43(0.05) 0.53(0.10) 0.44(0.07) 0.33(0.04) 0.12(0.03) 0.3(0.04)e-12 idPSO
0.77(0.03) 0.79(0.04) 0.77(0.04) 0.75(0.06) 0.58(0.03) 0.43(0.05) 0.31(0.03) 0.01(0.00) idALO

 To confirm this, in Fig. 8 the value of offline error for
the algorithm idPSO regarding the degree of various

changes is based on the number of the request made. As

can be seen, the effects of change on the degree of

change in the behavior of algorithm during optimization

are infinitesimal.

3) Changes in the Frequency of Environment

Changes: Changes in the frequency of environmental

changes U actually determines the time spent by the

algorithm to find an optimum in each environment

before occurrence of a change. Obviously, the lower the

amount of frequency, the lesser the time dedicated to
finding a new environment. On the other hand, the

suitable opportunity to find and optimize the best

optimum corresponds to the high frequency value. The

results of MPB problem with various numbers of peaks

and environmental change frequencies of 1000 and

10,000 are shown in Tables 5 and 6. For example, for
idPSO algorithm, for 10 peaks at a change frequency of

1000, the error rate was 1.61, while at a frequency of

10,000, the algorithm needs more time, hence, the

offline error reduced to 0.33. Other values for idPSO

algorithm are better than the other algorithms at both

frequencies.

 In Figs. 9 and 10, the offline error of both algorithms

derived from the proposed framework and other

algorithms in the number of a different peak for a

frequency of environment change is 1000 and 10000

respectively.

4.4 Application of the Proposed Framework in

Clustering

 In this section, the proposed algorithms for the

A Framework for Adapting Population-Based and Heuristic

… S. M. Ejabati and S. H. Zahiri

Iranian Journal of Electrical and Electronic Engineering, Vol. 16, No. 2, June 2020 169

Fig. 9 Comparison of the algorithms of the proposed

framework and other algorithms in a frequency of 1000 and
with respect to the number of different peaks.

Fig. 10 Comparison of the algorithms of the proposed

framework and other algorithms in a frequency of 10000 and
with respect to the number of different peaks.

clustering of data whose values change over time are

addressed. The difference between this part and

previous part revolving around solving MPB problem is
the definition of fitness function for algorithms. The

fitness function is based on quantized error and the

equation 9. Similarly, the structure of individuals is

defined with the equation 10, which includes the centers

of clusters. In what follows, since there is no database

with samples varying at a valid time, data of each class

are generated with different mean (μ) and standard

deviation (σ). The range of search area [0-50], and

change frequency in the data location is estimated to be

100. A change frequency of 100 suggests that the

algorithm of data location changes after every 100 times
fitness assessment.

   
1

1
fitness ,

j

k

j

j X C

p d X Z
N   

   (9)

1

1 2 1 2

1 1 1

k

D D

k k k

Z Z

z z z z z z
(10)

 In what follows, we deal with the algorithms

introduced in the different conditions of data and

environment. Since the samples generated with the

information provided, and we know the values of the

mean of samples of each class, these values are taken as

the real centers of each cluster. The assessment criterion

of the algorithm performance is similar to the

Table 7 Comparison of the proposed algorithms for the
number of different clusters in a 4-dimensional environment.

idALO idPSO clusters Change frequency

0.019 0.012 2

100
0.031 0.022 4

0.202 0.142 6

0.759 0.467 8

0.0082 0.0056 2

200
0.0105 0.0073 4

0.0817 0.0693 6

0.491 0.348 8

Table 8 Comparison of the proposed algorithms for the

different dimensions and the number of 4 clusters.

idALO idPSO dimensions change frequency

0.0018 0.0013 2

100
0.031 0.022 4

0.381 0.252 6

0.853 0.782 8

0.0009 0.0008 2

200
0.0105 0.0073 4

0.397 0.331 6

0.572 0.446 8

measurement criterion for MPB problem, i.e. the mean

of the distances of real centers of clusters with the

centers found with the algorithm for 20 times change in

the environment, and calculated according to (11).

 , ,

1 1

1
,

M K

m k m k

m k

OE d Z Center
M  

  (11)

In the above equation Zm,k, the best centers found by the

algorithm is somewhere before reaching m-th change in

the environment and Centerm,k is the real centers of

clusters in m-th environment. OE is the mean of

Euclidian distance Zn,k and Centern,k for the whole M

change in the environment.

 In Table 7, the proposed algorithms were compared
for the change frequencies of 100 and 200, and the

number of different clusters. It should be noted that the

dimensions of the problem are summed up in four

dimensions, and the number of samples in each class is

500. It is evident that as the number of clusters

increases, so does the value of the error obtained.

Moreover, as the frequency goes up to 200, the time of

algorithm for the improvement of the centers found

increases, and, in consequence, the values of the error

decrease.

 In Table 8, the analogy of the proposed algorithm
error is presented in different dimensions and four

clusters. As can be expected, as the number of data

dimension increases, so does the error of algorithms.

This increase in error can be somewhat modified as the

change frequency increases.

5 Conclusion and Discussion

 In this article, a general framework is presented to

boost the heuristic optimization algorithms based on

A Framework for Adapting Population-Based and Heuristic

… S. M. Ejabati and S. H. Zahiri

Iranian Journal of Electrical and Electronic Engineering, Vol. 16, No. 2, June 2020 170

swarm intelligence from static to dynamic

environments. The main idea of the framework is based

on the variability of the number of algorithm individuals

and formation of possible subspaces suitable for

environmental conditions.

 In dynamic optimization, it is important to reduce the

optimization time, in other words, a faster convergence

to optimize while maintaining diversity throughout the

search space. Most dynamic algorithms start with a

large number of individuals, and the number of

individuals is reduced with the advent of optimization
processes. It is a waste of time to calculate the fitness of

a high number of individuals in the early stages of

optimization. In order to avoid this, proposed

framework starts with low individuals, and always an

increase in the number of individuals is a function of

environmental condition, including increasing number

of optimum points. In contrast, the algorithm attempts to

reduce the number of individuals according to the

environmental conditions, which in turn reduces the

calculation load and increases the speed of optimization.

Environmental changes are not always detectable, as an
example, only a fraction of the total search area may

change, or changes in noisy environments cannot be

easily detected. In this case, the performances of

algorithms based on the detection of environmental

changes become a major problem. To overcome this

shortcoming, proposed framework is designed with no

need to detect changes in the environment and always

adapts itself to environmental conditions. The proposed

algorithms ware investigated regarding its efficiency for

solving MPB problem as one of the most popular

benchmark functions in dynamic environments. The
range of experiments for different settings of the MPB

problem, including number of various peaks, changes in

shift severity, and frequency of different environmental

changes, show the proper performance of the proposed

algorithm in comparison with other dynamic

optimization algorithms. In what follows, the introduced

algorithms for the clustering of dynamic data whose

values change over time were used, and we obtained

positive results.

 Future research suggestions include the use of an

algorithm to optimize real world problems. It is also

recommended to use the algorithm for dynamic
clustering such as web data. The use of adaptive and

self-adaptive mechanisms for structural parameters of

the algorithm can result in more rapid adaptability of the

method to environmental conditions.

References

[1] M. Mavrovouniotis, C. Li, and S. Yang, “A survey

of swarm intelligence for dynamic optimization:

algorithms and applications,” Swarm and

Evolutionary Computation, Vol. 33, pp. 1–17, 2017.

[2] T. T. Nguyen, S. Yang, and J. Branke,

“Evolutionary dynamic optimization: A survey of

the state of the art,” Swarm and Evolutionary

Computation, Vol. 6, pp. 1–24, 2012.

[3] R. Eberhart and Y. Shi, “Tracking and optimizing

dynamic systems with particle swarms,” in

Proceedings of the IEEE Congress on Evolutionary

Computation, Vol. 1, pp. 94–100, 2001.

[4] X. Hu and R. Eberhart, “Adaptive particle swarm

optimization: detection and response to dynamic

systems,” in Proceedings of the IEEE Congress on
Evolutionary Computation (CEC’02), pp. 1666–

1670, 2002.

[5] T. Blackwell and J. Branke, “Multi-swarm

optimization in dynamic environments. Applications

of evolutionary computing,” in Workshops on

Applications of Evolutionary Computation, Springer,

Berlin, Heidelberg, pp. 489–500, 2004.

[6] T. Blackwell and J. Branke, “Multiswarms,

exclusion, and anti-convergence in dynamic

environments,” IEEE Transactions on Evolutionary

Computation, Vol. 10, pp.459–472, 2006.

[7] B. Nasiri and M. Meybodi, “Speciation based

firefly algorithm for optimization in dynamic

environments,” International Journal of Artificial

Intelligence, Vol. 8, pp. 118–132, 2012.

[8] R. Takano, T. Harada, H. Sato, and K. Takadama,

“Artificial bee colony algorithm based on local

information sharing in dynamic environment,” in

Proceedings of the 18th Asia Pacific Symposium on

Intelligent and Evolutionary Systems, Vol. 1,

Springer, Cham, pp. 627–641, 2015.

[9] H. Wang, S. Yang, W. Ip, and D. Wang, “A
memetic particle swarm optimization algorithm for

dynamic multi-modal optimisation problems,”

International Journal of Systems Science, Vol. 43,

No. 7, pp. 1268–1283, 2012.

[10] H. Chen, L. Ma, M. He, X. Wang, X. Liang,

L. Sun, and M. Huang, “Artificial bee colony

optimizer based on bee life-cycle for stationary and

dynamic optimization,” IEEE Transactions on

Systems, Man, and Cybernetics: Systems, Vol. 47,

No. 2, pp. 327–346, 2016.

[11] H. Wang, D. Wang, and S. Yang, “Triggered

memory-based swarm optimization in dynamic
environments,” in Workshops on Applications of

Evolutionary Computation, Springer, Berlin

Heidelberg, pp 637–646, 2007.

[12] B. Nasiri and M. Meybodi, “History-driven firefly

algorithm for optimization in dynamic and uncertain

environments,” International Journal of Bio-

Inspired Computation, Vol. 8, pp. 326–339, 2016.

A Framework for Adapting Population-Based and Heuristic

… S. M. Ejabati and S. H. Zahiri

Iranian Journal of Electrical and Electronic Engineering, Vol. 16, No. 2, June 2020 171

[13] B. Nasiri, M. Meybodi, and M. Ebadzadeh,

“History-driven particle swarm optimization in

dynamic and uncertain environments,”

Neurocomputing, Vol. 172, pp. 356–370, 2016.

[14] C. Li, T. T. Nguyen, M. Yang, S. Yang, and

S. Zeng, “Multi-population methods in

unconstrained continuous dynamic environments:

The challenges,” Information Sciences, Vol. 296,

pp. 95–118, 2015.

[15] W. Du and B. Li, “Multi-strategy ensemble particle

swarm optimization for dynamic optimization,”
Information Sciences, Vol. 178, pp. 3096–3109,

2008.

[16] A. Sharifi, J. K. Kordestani, M. Mahdaviani, and

M. R. Meybodi, “A novel hybrid adaptive

collaborative approach based on particle swarm

optimization and local search for dynamic

optimization problems,” Applied Soft Computing,

Vol. 32, pp. 432–448, 2015.

[17] A. Hashemi and M. Meybodi, “Cellular PSO: A

PSO for dynamic environments,” in International

Symposium on Intelligence Computation and
Applications, Springer, Berlin Heidelberg,

Vol. 5821, pp. 422–433, 2009.

[18] L. Liu, S. R. Ranjithan, and G. Mahinthakumar,

“Contamination source identification in water

distribution systems using an adaptive dynamic

optimization procedure,” Journal of Water

Resources Planning and Management, Vol. 137,

pp.183–192, 2010.

[19] D. Parrott and X. Li, “Locating and tracking

multiple dynamic optima by a particle swarm model

using speciation,” in IEEE Transactions on
Evolutionary Computation, Vol. 10, pp. 440–458,

2006.

[20] C. Li and S. Yang, “A clustering particle swarm

optimizer for dynamic optimization,” in IEEE

Congress on Evolutionary Computation (CEC),

pp. 439–446, 2009.

[21] S. Yang and C. Li, “A clustering particle swarm

optimizer for locating and tracking multiple optima

in dynamic environments,” IEEE Transactions on

Evolutionary Computation, Vol. 14, pp. 959–974,

2010.

[22] J. Branke, “The moving peaks benchmark,” 1999.
[Online]. Available:

http://people.aifb.kit.edu/jbr/MovPeaks/movpeaks.

[23] Y. Jin and J. Branke, “Evolutionary optimization in

uncertain environments-a survey,” IEEE

Transactions on Evolutionary Computation, Vol. 9,

pp. 303–317, 2005.

[24] M. Mavrovouniotis and S. Yang, “Ant colony

optimization with self-adaptive evaporation rate in

dynamic environments,” in IEEE Symposium on

Computational Intelligence in Dynamic and

Uncertain Environments (CIDUE), pp. 47–54, 2014.

[25] B. Van Veen, M. Emmerich, Z. Yang, T. Bäck, and

J. Kok, “Ant colony algorithms for the dynamic

vehicle routing problem with time windows, in

International Work-Conference on the Interplay

Between Natural and Artificial Computation,

Springer, pp. 1–10, 2013.

[26] Z. Yang, M. Emmerich, and T. Bäck, “Ant based

solver for dynamic vehicle routing problem with

time windows and multiple priorities,” in IEEE

Congress on Evolutionary Computation (CEC),

pp. 2813–2819, 2015.

[27] L. Melo, F. Pereira, and E. Costa, “Multi-caste ant

colony algorithm for the dynamic traveling

salesperson problem,” in International Conference

on Adaptive and Natural Computing Algorithms,

Springer, pp. 179–188, 2013.

[28] L. Melo, F. Pereira, and E. Costa, “Extended
experiments with ant colony optimization with

heterogeneous ants for large dynamic traveling

salesperson problems,” in 14th International

Conference on Computational Science and Its

Applications (ICCSA), pp. 171–175, 2014.

[29] U. Boryczka and Ł. Strąk, “Heterogeneous DPSO

algorithm for DTSP,”. in Computational Collective

Intelligence, Springer, pp. 119–128, 2015.

[30] M. R. Khouadjia, E. Alba, L. Jourdan, and

E. G. Talbi, “Multi-Swarm optimization for dynamic

combinatorial problems: A case study on dynamic
vehicle routing problem,” in ANTS Conference,

Springer, pp. 227–238, 2010.

[31] M. Okulewicz and J. Mańdziuk, “Two-phase multi-

swarm PSO and the dynamic vehicle routing

problem,” in IEEE Symposium on Computational

Intelligence for Human-like Intelligence (CIHLI),

pp. 1–8, 2014.

[32] R. Lung and D. Dumitrescu, “A collaborative

model for tracking optima in dynamic

environments,” in IEEE Congress on Evolutionary

Computation (CEC), pp. 564–567, 2007.

[33] X. Zheng and H. Liu, “A different topology multi-
swarm PSO in dynamic environment,” in IEEE

International Symposium on IT in Medicine

Education (ITIME ’09), Vol. 1, pp. 790–795, 2009.

[34] R. I. Lung and D. Dumitrescu, “Evolutionary

swarm cooperative optimization in dynamic

environments,” Natural Computing, Vol. 9, pp. 83–

94, 2010.

http://people.aifb.kit.edu/jbr/MovPeaks/movpeaks

A Framework for Adapting Population-Based and Heuristic

… S. M. Ejabati and S. H. Zahiri

Iranian Journal of Electrical and Electronic Engineering, Vol. 16, No. 2, June 2020 172

[35] J. Branke, T. Kaußler, C. Smidt, and H. Schmeck,

“A multi-population approach to dynamic

optimization problems,” in Evolutionary Design and

Manufacture, Springer, pp. 299–307, 2000.

[36] H. Cheng and S. Yang, “Multi-population genetic

algorithms with immigrants scheme for dynamic

shortest path routing problems in mobile Ad Hoc

networks,” in European Conference on the

Applications of Evolutionary Computation, Springer,

Berlin, Heidelberg, pp. 562–571, 2010.

[37] T. Blackwell, “Particle swarm optimization in
dynamic environment,” in Evolutionary

Computation in Dynamic and Uncertain

Environments, Springer, Berlin, Heidelberg, pp. 29–

49, 2007.

[38] T. T. Nguyen and X. Yao, “Benchmarking and

solving dynamic constrained problems,” in IEEE

Congress on Evolutionary Computation, pp. 690–

697, 2009.

[39] F. O. DeFranca and F. J. VonZuben, “A dynamic

artificial immune algorithm applied to challenging

benchmarking problems,” in IEEE Congress on
Evolutionary Computation, Piscataway, NJ, USA,

pp. 423–430, 2009.

[40] C. Li and S. Yang, “Fast multi-swarm optimization

for dynamic optimization problems,” in Fourth

International Conference on Natural Computation,

Vol. 7, pp. 624–628, 2008.

[41] M. Kamosi, A. Hashemi, and M. Meybodi, “A new

particle swarm optimization algorithm for dynamic

environments,” Swarm, Evolutionary, and Memetic

Computing, Vol. 129–138, 2010.

[42] I. G. Del Amo, D. A. Pelta, J. R. González, “Using
heuristic rules to enhance a multiswarm PSO for

dynamic environments,” in IEEE Congress on

Evolutionary Computation (CEC), pp 1–8, 2010.

[43] M. Daas and M. Batouche, “Multi-bacterial

foraging optimization for dynamic environments,” in

6th International Conference of Soft Computing and

Pattern Recognition (SoCPaR), pp 237–242, 2014.

[44] D. Yazdani, B. Nasiri, A. Sepas-Moghaddam,

M. Meybodi, and M. Akbarzadeh-Totonchi,

“mNAFSA: a novel approach for optimization in

dynamic environments with global changes,” Swarm

and Evolutionary Computation, Vol. 18, pp. 38–53,
2014.

[45] F. B. Ozsoydan and A. Baykasoglu, “A multi-

population firefly algorithm for dynamic

optimization problems,” in IEEE International

Conference on Evolving and Adaptive Intelligent

Systems (EAIS), pp. 1–7, 2015.

[46] C. Li and S. Yang, “A general framework of

multipopulation methods with clustering in

undetectable dynamic environments,” IEEE

Transactions on Evolutionary Computation, Vol. 16,

pp. 556–577, 2012.

[47] G. Dun-wei and S. Xiao-yan, “Decision-making

models for resource allocation in multi-population

co-evolutionary genetic algorithms implemented on

networks,” International Journal of Computer

Science & Network Security, Vol. 6, pp. 239–245,

2006.

[48] B. Xu, Y. Zhang, D. Gong, Y. Guo, and M. Rong,

“Environment sensitivity-based cooperative co-

evolutionary algorithms for dynamic multi-objective

optimization,” IEEE/ACM Transactions on

Computational Biology & Bioinformatics, Vol. 15,

No. 6, pp. 1877–1890, 2017.

[49] H. Richter, “Detecting change in dynamic fitness

landscapes,” in IEEE Congress on Evolutionary

Computation (CEC), pp. 1613–1620, 2009.

[50] A. Simões and E. Costa, “Evolutionary algorithms

for dynamic environments: Prediction using linear
regression and Markov chains,” in International

Conference on Parallel Problem Solving from

Nature, Springer, Berlin, Heidelberg, pp. 306–315,

2008.

[51] T. T. Nguyen, “Continuous dynamic optimization

using evolutionary algorithms,” Ph.D. dissertation,

School of Computer Science, University of

Birmingham, January 2011.

[52] X. Zou, M. Wang, A. Zhou, and B. McKay,

“Evolutionary optimization based on chaotic

sequence in dynamic environments,” in IEEE
International Conference on Networking, Sensing

and Control, Vol. 2, pp. 1364–1369, 2004.

[53] A. Carlisle and G. Dozier, “Adapting particle

swarm optimization to dynamic environments,” in

International Conference on Artificial Intelligence,

Vol. 1, pp. 429–434, 2000.

[54] H. G. Cobb, “An investigation into the use of Hyper

mutation as an adaptive operator in genetic

algorithms having continuous,” Time-Dependent

Non-stationary Environments, Technical Report

AIC-90-001, Naval Research Laboratory,

Washington, USA, 1990.

[55] R. W. Morrison, “Designing evolutionary

algorithms for dynamic environments,” Springer-

Verlag, Berlin, 2004.

[56] R. Eberhart and J. A. Kennedy, “New optimizer

using particle swarm theory,” in IEEE Proceedings

of the Sixth International Symposium on Micro

Machine and Human Science (MHS), pp. 39–43,

1995.

A Framework for Adapting Population-Based and Heuristic

… S. M. Ejabati and S. H. Zahiri

Iranian Journal of Electrical and Electronic Engineering, Vol. 16, No. 2, June 2020 173

[57] J. Kennedy, “Particle swarm optimization,” in

Encyclopedia of Machine Learning, Springer,

pp. 760–766, 2011.

[58] S. Mirjalili, “The ant lion optimizer,” Advances in

Engineering Software, Vol. 83, pp. 80–98, 2015.

[59] Y. Shi and R. Eberhart, “A modified particle swarm

optimizer,” in IEEE World Congress on

Computational Intelligence (CEC), pp. 69–73, 1998.

[60] T. Blackwell, J. Branke, and X. Li, “Particle

swarms for dynamic optimization problems,” in

Swarm Intelligence, Springer, pp. 193–217, 2008.

[61] I. Rezazadeh, M. Meybodi, and A. Naebi, “Particle

swarm optimization algorithm in dynamic

environments: Adapting inertia weight and

clustering particles,” in Fifth UKSim European

Symposium on Computer Modeling and Simulation

(EMS), pp 76–82, 2011.

[62] D. Yazdani, B. Nasiri, A. Sepas-Moghaddam, and

M. R. Meybodi, “A novel multi-swarm algorithm for

optimization in dynamic environments based on

particle swarm optimization,” Applied Soft

Computing, Vol. 13, No. 4, pp. 2144–2158, 2013.

[63] D. Yazdani, B. Nasiri, R. Azizi, A. Sepas-

Moghaddam, and M. R. Meybodi, “Optimization in

dynamic environments utilizing a novel method

based on particle swarm optimization,” International

Journal of Artificial Intelligence, Vol. 11, No. A13,

pp. 170–192, 2013.

[64] J. K. Kordestani, A. Rezvanian, and

M. R. Meybodi, “CDEPSO: A bi-population hybrid

approach for dynamic optimization problems,”

Applied Intelligence, Vol. 40, No. 4, pp. 682–694,

2014.

[65] W. Du and B. Li, “Multi-strategy ensemble particle

swarm optimization for dynamic optimization,”

Information Sciences, Vol. 178, pp. 3096–3109,

2008.

[66] R. Mukherjee, G. R. Patra, R. Kundu, and S. Das,

“Cluster-based differential evolution with crowding

archive for niching in dynamic environments,”

Information Sciences, Vol. 267, pp. 58–82, 2014.

[67] A. Boulesnane and S. Meshoul, “WD2O: A novel

wind driven dynamic optimization approach with

effective change detection,” Applied Intelligence,

Vol. 47, pp. 488–504, 2017.

[68] J. Kazemi Kordestani, H. Abedi Firouzjaee and

M. Meybodi, “An adaptive bi-flight cuckoo search

with variable nests for continuous dynamic
optimization problems,” Applied Intelligence,

Vol. 48, pp. 97–117, 2018.

[69] M. Mohammadpour, H. Parvin and M. Sina,

“Chaotic genetic algorithm based on explicit

memory with a new strategy for updating and

retrieval of memory in dynamic environments,” AI

and Data Mining, Vol. 6, pp. 191–205, 2018.

S. M. Ejabati received his B.Sc. and
M.Sc. degrees in Electrical and Electronic
Engineering from Guilan University in
2010 and Birjand University in 2013,
respectively. In 2019, he completed his

Ph.D. in Electrical and Electronics
Engineering at University of Birjand, and
his research interests include model
recognition, dynamic optimization, and

signal processing.

S. H. Zahiri received the B.Sc., M.Sc.
and Ph.D. degrees in Electronics
Engineering from Sharif University of
Technology, Tehran, Tarbiat Modarres
University, Tehran, and Mashhad
Ferdowsi University, Mashhad, Iran, in

1993, 1995, and 2005, respectively.
Currently, he is a Professor with the
Department of Electronics Engineering,

University of Birjand, Birjand, Iran. His research interests
include pattern recognition, evolutionary algorithms, swarm
intelligence algorithms, and soft computing.

© 2020 by the authors. Licensee IUST, Tehran, Iran. This article is an open access article distributed under the
terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
license (https://creativecommons.org/licenses/by-nc/4.0/).

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

	1 Introduction
	2 Multi-Population Methods
	3 Proposed Framework
	3.1 Dynamic Environments With Undetectable Changes
	3.2 Implementation of Framework on PSO Algorithm
	3.3 Implementation of Framework on ALO Algorithm

	4 Simulation Results
	4.1 Experimental Setup
	4.2 Sensitivity of the Algorithms to Structural Parameters
	4.3 Comparison With Other Algorithms
	4.4 Application of the Proposed Framework in Clustering

	5 Conclusion and Discussion
	References

