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Abstract: In this paper, a general framework was presented to boost heuristic optimization 

algorithms based on swarm intelligence from static to dynamic environments. Regarding 

the problems of dynamic optimization as opposed to static environments, evaluation 

function or constraints change in the time and hence place of optimization. The subject 
matter of the framework is based on the variability of the number of algorithm individuals 

and the creation of feasible subspaces appropriate to environmental conditions. 

Accordingly, to prevent early convergence along with the increasing speed of local search, 

the search space is divided with respect to the conditions of each moment into subspaces 

labeled as focused search area, and focused individuals are recruited to make search for it. 

Moreover, the structure of the design is in such a way that it often adapts itself to 

environmental condition, and there is no need to identify any change in the environment. 

The framework proposed for particle swarm optimization algorithm has been implemented 

as one of the most notable static optimization and a new optimization method referred to as 

ant lion optimizer. The results from moving peak benchmarks (MPB) indicated the good 

performance of the proposed framework for dynamic optimization. Furthermore, the 
positive performance of practices was assessed with respect to real-world issues, including 

clustering for dynamic data. 
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1 Introduction1 

 great number of optimization problems occur in 

the real world within dynamic environments, in 

that global optimization value change over time. For 

instance, we can refer to clustering problem when the 
values of sample change over time. The purpose of 

clustering is to assume the dataset postulated for spaces 

separated from one another, and is expressed with a 

clustering center. Once the values of data change, so 

does global optimization, which is the centers of 

clusters here, where the conventional algorithms that 

work in static environments are no more unable to find 
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new optimization, and we need dynamic optimization 

algorithms. In a general case, engineering processes 

consists of uncertain and complex problem 
optimization, in that objective function, constraints, and 

some components of a problem change over time. 

   It is obvious that following the change in the 

foregoing problems, global optimization will undergo 

change. By considering this, the goal of dynamic 

optimization is to search for the path to the changes of 

optimization place over time, besides finding 

optimizations. This issue is addressed within static 

optimization. 

   Many of the dynamic algorithm have been developed 

by disclosing a change in the environment, where there 
are some techniques to disclose the change in the 

environment. Disclosing change in a workplace is 

difficult and eve it can be impossible at some time. 

Suppose that only a fraction of the entire search space 

receives change, in this case predicting this subspace or 

disclosing the change will be quite difficult. This is why 

methods that do not require change disclosure in an 
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environment can demonstrate better performance in a 

variety of environments. 

   Considering their dynamic nature, heuristic algorithms 

have a good potential to be used in a dynamic 

optimization. Since the optimization process of the 

algorithms is derived from a natural or biological 

evolution, and the nature is constantly changing, a 

variety of methods have been proposed recently to boost 

classic evolutionary algorithms that are used in static 

environments [1, 2]. The methods can be divided into 

five groups: 

1) Increasing Diversity After a Change 

   Many strategies used to solve dynamic problems 

depend on the recognition of changes to the 

environment. Hence, this class of algorithms enhance 

the diversity through reinitiating the algorithm after 

discovering the change in the environment. Some part 

of the population is assigned a value at random when a 

change occurs in the environment [3, 4]. In these 

researches, a conventional particle swarm 

optimization (PSO) algorithm was applied on a time-

varying parabolic function that reflects a simple 
unimodal fitness landscape. 

1.2) Maintaining Diversity During Execution 

   In this class, the diversity is maintained during the 

time the program runs using different techniques. For 

example, Blackwell and Branke introduced two 

algorithms of multi-charged particle swarm 

optimization (mCPSO) and multi-quantum swarm 

optimization (mQSO) inspired by a nuclear field [5]. In 

mCPSO, some part of the swarm particle in each 

population is introduced as charged particles, which 

repel each other and revolve around the neutral particles 
in circles. The quantum particles move around the best 

particle in mQSO algorithm [6]. Both algorithms 

improved through re-initialization of the worst 

population when all swarms converge in order to 

maintain diversity. The same quantum principle was 

employed in the specification (SFA) algorithm [7]. 

   A modified artificial bee colony (MABC) was 

proposed by Takano et al. with the restriction of 

communication among those bees that are closer 

only [8]. 
   A PSO-based memetic algorithm was proposed by 

Wang et al. in which two local search operators were 
employed to maintain the diversity when implementing 

the algorithm [9]. Chen et al. employed a method 

similar to that of honeybee life cycle to adjust the 

colony size during optimization [10]. 

1.3) Memory Schemes 
   The memory schemes are used to transfer useful 

information from the search in the previous 

environment to the current one to speed up the search 

process. Usually, hopeful solutions are stored in the 

memory and reused when a change is made to the 

environment. An external archive is usually required to 
implement a memory scheme. The population archive is 

created to store the best solutions when a change is 

made to the environment, or when a peak is found [11]. 

Nasiri and Meybodi used two types of memories one of 

which used to store the information of current 

environment and the other one to store the information 

of the previous setting [12]. Such a mechanism has been 

also employed for PSO [13]. 

1.4) Multiple Population Methods 

   In the multi-population scheme, the search space is 

divided into some sub-spaces and each swarm is 

responsible for searching in one of the sub-spaces, 

which has multiple advantages [14], including 
maintenance of the global diversity since the start of the 

search at different areas, the possibility of tracking some 

optima at the same time, and facilitation of expanding 

the schemes based on single-swarm and multi-swarm 

approaches. 

1.5) Hybridizations 

   Hybridizations are in fact a combination of methods 

with different knowledge domains such as genetic 

algorithms, differential evolution, or other meta-

heuristic methods. For example, Multi-strategy 

ensemble PSO (MEPSO) uses Gaussian local search 
and differential mutation for exploration and 

exploitation [15]. A fuzzy cognition with multiple local 

searches was used by Sharifi et al. [16]. A hybrid model 

of cellular automata and PSO was also provided by 

Hashemi and Meybodi [17]. The search space was 

divided into discrete cells by automata and a particular 

number of particles was placed in each cell to maintain 

the diversity. 

   As mentioned earlier, the goal of dynamic 

optimization is to find and pursue the global 

optimization over time. Obviously, pursuing global 
optimization in a set of the best optimization has proved 

to be more functional when the environment 

changes [18, 19]. Accordingly, in many of the studies, 

the use of multi-population methods is suggested. 

   The principles of work are such that the entire search 

space is divided into subspaces. Each sub space covers 

one or a few local optimums and represents a sub-

population. The algorithm then individually updates the 

particles of each sub-population and searches for 

optimum results. The challenging topic in multi-

population methods is how to create the right number of 

sub-populations and that of people to cover different 
sub-domains in the search space. For example, the 

hierarchical clustering method [20, 21] was used to 

automatically divide the search space into sub-

populations. 

   In this paper, a new framework with a simple yet 

robust mechanism has been introduced to boost 

heuristic algorithms based on swarm intelligence from 

optimization in static environment to dynamic 

environments. Similarly, new practices have been 

introduced for problems like how sub-populations can 

occur, preventing early convergence, and excessive 
swarm of individuals, and how individuals’ behavior 

can adapt to the conditions of dynamic environments. 
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For performance evaluation, the algorithms PSO and 

AL have prepared for the proposed framework in order 

to solve the problems with dynamic environments. 

   The proposed algorithms are used to solve moving 

peak benchmark (MPB) problem with different 

settings [22]. Similarly, the method of optimization 

proposed to solve the problems in real world, e.g., 

clustering is used when samples are changing. 

   Organization of this paper is in a way that a review of 

multiple-population method developed for solving 

dynamic problems is presented in Section 2; the 
structure of the proposed framework and developed 

algorithms is introduced with a framework in Section 3. 

Section 4 includes the results obtained from algorithm 

performance when encountering MPB problem with 

different settings and dynamic clustering. In the end, 

section 5 ends with a conclusion and discussion. 

 

2 Multi-Population Methods 

   In optimizing dynamic environments, preserving the 

diversity of population is one of the most fundamental 

issues. In the same vein, many research studies on multi 
modal problems in dynamic environments have shown 

that to preserve the diversity of population, the multi-

population approach is highly effective. 

   A multi-colony ant colony optimization (ACO) 

algorithm was developed in which each colony uses a 

separate pheromone table to maximize exploration in 

the entire search space [24-26]. Although there is no 

explicit method for maintaining colonies in the entire 

search space, the results showed a better performance 

than single-clone algorithm. 

   Melo et al. used a multi-colony ACO algorithm with 
the difference that the pheromone table is similar for all 

clones called castes, and that the differences in the 

settings of parameters cause different behaviors of 

castes to cover more areas of search space [27], [28]. A 

similar idea was also proposed in the PSO [29]. 

Khouadjia et al. introduced a multi-population PSO 

algorithm based on the island model, so that particles 

migrate regularly between different populations [30]. 

According to Okulewicz and Mańdziuk, the algorithm 

functions differently, and communication between 

populations occurs only when changes occur in the 

environment [31]. 
   Two groups of heterogeneous populations cooperate 

in collaborative evolutionary swarm optimization 

algorithm (CESO) [32]. The first group is responsible 

for maintaining diversity, and the second group 

undertakes tracking of global optimum. The groups 

follow crowding differential evolution (CDE) and PSO 

model respectively. Similarly, the binary population was 

employed by Zheng and Liu [33]. The number of 

populations exchanging information through 

evolutionary swarm cooperative algorithm reached three 

through adding a further population by Lung and 
Dumitrescu [34]. 

A self-organizing scout (SOS) algorithm was proposed 

by Branke et al. [35]. In the present research, a large 

main population (parents) is used to search for optima, 

and several small populations (children) have been 

employed to follow each optimum point. Whenever a 

new peak is found, a new population will be created for 

tracking. This approach was adopted in different types 

of EAs and meta-heuristics, e.g. GA [36], DE [32], and 

PSO [37]. An amendment GA algorithm was proposed 

for this purpose, i.e. making use of a great population to 

search and a small population to follow the changes 
[38]. The only difference that only two populations with 

the capability of overlapping have been employed in 

this algorithm. 

   The other approach is to combine both duties of 

searching and following in both populations such that 

each population can find and follow new solutions [39]. 

When a sub-population finds a new peak, it is divided 

into two sub-populations to ensure that each peak is 

followed by one sub-population. 

   In a number of studies, sub-populations are created 

through separation from the main population. For 
example, the fast multi-swarm optimization (FMSO) 

algorithm starts with a parent population [40]. When the 

best particle achieves a certain improvement criterion, 

the offspring population, which is a collection of the 

best particles, and also a number of its surrounding 

particles, are born. A similar idea viz. hibernation multi-

swarm optimization algorithm (HmSO) was introduced 

by Kamosi et al. [41], in which the offspring population, 

if not effective, undergoes so-called hibernation until it 

feels a change in the environment. 

   The properties of atoms and the principle of repulsion 
of particles with the same name were used to preserve 

diversity in populations [5], [6]. In this way, charged 

populations are presented separately to cover 

optimizations. In an improved version, two innovative 

laws were added to increase diversity [42]. According to 

one of the rules, the number of quantum particles 

increases and that of particle paths decreases in case of 

an environmental change. Particles with inappropriate 

performances are initialized or stopped in the second 

law. Similar ideas of the exclusion principle were 

adopted in such other algorithms as multi-Bacterial 

foraging optimization (multi-BFO) [43], multi-swarm 

modified AFSO [44], and multi-swarm firefly 

algorithm (FA) [45]. 

   The clustering PSO algorithm was provided by Yang 

and Li in which a hierarchical clustering method was 

used to divide the initial population into sub-populations 

to cover different local areas after recognizing a change 

to the environment [20, 21]. Then, a new version was 
introduced to avoid the recognition of an environmental 

change [46]. In this method, random particles are 

clustered in the new populations when the number of 

particles is less than a certain threshold value. 

   A decision-making model was proposed by Dun-wei 

and Xiao-yan in order to improve MPCEGAs on the 
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networks [47]. In this model, the objective of 

optimization is to minimize maximal computational 

time for average one-step iteration of a computational 

node. However, a limitation is considered to be the fact 

that each evolutionary population is allocated at most to 

one computational node. Accordingly, the 

computational resource can be allocated logically 

leading to a dramatic decrease in the implementation 

time on the computational nodes for the evolutionary 

populations. 

   A cooperative co-evolution strategy has been 
proposed based on the environmental sensitivity through 

analyzing the relationship between decision variables 

and environment [48]. According to this strategy, 

decision variables are divided into two subgroups 

namely the environmental subgroup and non-

environmental subgroup, which are then optimized by 

two sub-populations, respectively. Therefore, the search 

space of each sub-population decreases and the 

algorithm capability of exploring improves. If 

environmental changes are examined during the 

evolution process, the sub-populations are adjusted 
based on the results of linear prediction and the Cauchy 

perturbation strategies. 

 

3 Proposed Framework 

   In this section, a new design is introduced as 

increasing-decreasing optimization for optimization in 

dynamic environments. For the synchronization of 

heuristic algorithm based on swarm intelligence for 

dynamic environments, individuals are divided into two 

groups; free individuals and focused individuals. By 

individuals, we mean active components of optimization 
algorithm based on swarm intelligence in an 

optimization. For instance, in PSO algorithm noun as a 

particle in inclined planes system optimization (IPO) 

algorithm, ball or ant lion optimizer algorithm (ALO), 

ant is the active component of an optimization. The duty 

of free individuals is to always search throughout a 

searching space. 

   When these individuals advance toward convergence, 

some of them are referred to as focus individuals in a 

region called the focused search zone donated as FSZ. 

The area of FSZ is determined around the best focus 

individuals with a radius, called the focal search 
radius (FSR). By refreshing the focus individuals in 

case of improvement of the best individual, the FSZ 

center will also shifts to the location of the best 

individual, and other focus individuals in this FSZ will 

require to search in this subarea. At the same time, all 

free individuals are scattered to find other optimum 

points in the search space. In fact, the task of free 

individuals is to conduct an elementary search to find 

the probable subareas. Focus individuals function to 

find and improve the optimum and follow it during 

environmental changes. Thus, the number of individuals 
increases with respect to the creation of FSZs, and 

consequently the production of new focus individuals. 

The structure of the algorithm is such that at any time 

all focus individuals of that zone are eliminated 

depending on optimum environment conditions 

associated with each FSZ leading to constant changes in 

the number of individuals. 

   The main circle of the proposed plan begins with 

initialization of free individuals and then in the next 

phase the locations of these individuals are updated with 

a heuristic algorithm based on swarm intelligence. In 

what follows, free individuals’ convergence is 
investigated. In the case of recognizing the possibility of 

convergence, individuals who are in a focused search 

zone (FSZ), (i.e., within the range of focused search 

radius that revolves around the best individual) are 

recognized as the focused individuals, creating a new 

search focused zone. Now the location of focused 

individuals in each search zone is separately updated 

with a heuristic algorithm. In the case of optimization 

improvement, any FSZ is transferred to the center of a 

better optimization. In the next phase, focused search 

zone is studied with respect to overlapping dimension 
and finally the FSZs that lost their optimization because 

of critical changes in the environmental conditions are 

deleted. It is because we assume that any change in an 

optimal location fall within FSZ area after being 

changed. Thus the total numbers of individuals are 

always a function of environmental conditions during 

operation, and this feature exempt the plan from 

constant updating constraints for the large number of 

individuals. 

    In the first step, free individuals are updated by a 

heuristic algorithm. In the next phase of the main circle 
of the proposed plan, the convergence process of free 

individuals will be investigated. 

   The initial convergence condition is that the rate of 

change in the position of the best free individual and its 

fitness is measured relative to the previous stage, 

followed by investigating the process of free individual 

convergence in Algorithm 1. If the best free individual 

changes are less than rconv/5 and their fitness variations 

are less than rconv, then the algorithm recognizes the 

possibility of free individual convergence. The position 

of the best point is examined in this stage. If it is located 

in each of the FSZs and its fitness value is more 
optimized than that of the center of the FSZ located 

therein, then the FSZ and, consequently, the focused 

member individuals are removed, and the new FSZ with 

the number of free individuals in the FSR range are 

formed with a centrality of the best free individual. 

Then, all free individuals are scattered throughout the 

search space to search for other possible areas. On the 

other hand, if the best free individual fitness value is not 

more optimal than the center of FSZ located therein, all 

of the free individuals would be scattered. 

   After satisfying the initial condition of convergence, if 
the position of the best free individual point is not 

located at any of the FSZs, then the total lengths of the 
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Algorithm 1 convergence Checking (). 

if (f(xgbest)t-1-f(xgbest)t < rconv) and (||(xgbest)t-1- (xgbest)t|| < 
rconv/5) then 
     if xgbest  was within FSZ[i] then 
          if f(xgbest) better than f(centerFSZ[i]) then 
             Replace selected free individual with focus 
individuals in FSZ[i] 
             re-initialize the free individuals 

          else 
             re-initialize the free individuals 
          end if 
     else 
          create a new FSZ with selected free individuals as 
the focus individuals 
          re-initialize the free individuals 
     end if 

end if 

1 
 
2 
3 
4 
 
5 

6 
7 
8 
9 
10 
 
11 
12 

13 
 

two free individuals are discussed, which has the 

smallest distance from the best free individual. If this 

sum is also somewhat less than rconv, it indicates that the 

free individuals are convergent, and best free individual 

is considered to be the center of FSZ. The number of 
free individuals up to a maximum of four individuals 

within the FSR range relative to the center are 

introduced as the focus individual. The title of its 

centralized individual is FSZ, and all free individuals 

are scattered throughout the search space to search for 

other possible areas. If there are less than two free 

individuals in the new FSZ range, two individuals closer 

to best free individual will be accepted as focus 

individuals for the mentioned FSZ. 

   In the next step, the position of focus individuals for 

each FSZ will be updated separately by the heuristic 
algorithm. If the best individual of each FSZ is 

improved, its center of FSZ will shift to the position of 

the best individual. In this way, the FSZs’ location will 

also be updated in the search space. The framework also 

monitors the speed of focus individuals by scattering the 

mentioned focus individuals in their FSZ range when 

they are close to zero at any time, thereby, preventing 

their trapping in the local optimizations. 

   In the proposed framework, a mechanism has been 

used to prevent overlap of FSZs and the parallelization 

of focus individuals. In this method, the distances 
between FSZ centers are calculated and two 

neighboring FSZs are considered with a distance less 

than two times the FSR. In order to avoid the influence 

of local optimizations on the framework, average 

optimum performance is calculated by other FSZs. If 

the fitness of two FSZ centers were better than the 

average fitness (pmean) of centers of other FSZs, the 

search radius would be reduced to half the distance 

between the centers of two FSZs in order for both FSZs 

to pursue their own optimums. 

   Now if the fitness of one or both FSZs was worse than 

the average fitness (pmean) of the centers of other FSZs, 
the one whose optimum fitness was found to be worse 

than the other is considered as the local optimum. This 
 

Algorithm 2 FSZ overlap Checking (FSZ,FSR). 

if distance between FSZ[i] center and FSZ[j] center  < 
2*FSR then 
     fmean(centerFSZ) = Calculation of mean fitness for 
other centers 
     if f(centerFSZ[i]) and f(centerFSZ[j]) better than 
Pmean×fmean(centerFSZ) and FSR > 1 then 
          FSR = (distance between FSZ[i] center and FSZ[j] 

center) / 2 
     else 
          delete FSZ with worst fitness between FSZ[i] and 
FSZ[j] 
     end if 
end if 

1 
 
2 
 
3 
 
4 

 
5 
6 
 
7 
8 

 
Algorithm 3 Remove Useless FSZ. 

fmean(centerFSZ) = Calculation of mean all fitness centers 
if worst f(centerFSZ[i]) > Pmean×fmean(centerFSZ) then 
     delete FSZ with worst fitness FSZ[i]  
end if 

1 
2 
3 
4 

 

is followed by elimination of the mentioned FSZ and 
the associated focus individuals. This way prevents the 

search for several FSZs in a search area and also avoids 

trapping in the local optimizations resulting in an 

increase in the speed of the framework in finding the 

most optimum points in the entire search space within a 

more limited time. Algorithm 2 shows the FSZ overlap 

checking process. 

   Another idea used in the proposed framework 

presented in Algorithm 3 is the automatic removal of 

FSZs that do not have an optimum point in the region 

after severe changes in another environment, or the 
removal of focus individuals locally trapped in local 

optimizations. In this case, the coefficient of optimum 

optimization average (pmean) is found as the 

measurement criterion. The worst-performing optimum 

in somewhat worse FSZs is compared with this criterion 

at each step, which eliminates the corresponding FSZ 

with its focus individuals. 

 

3.1 Dynamic Environments With Undetectable 

Changes 

   Many studies carried out to solve dynamic 
optimization problems (DOPs) according to 

evolutionary algorithms are based on either detection of 

environmental changes [6, 20, 21, 34, 49], or prediction 

of a change assuming that such changes follow a pattern 

of properties [50]. When changes are detected or 

predicted, then different strategies are employed to 

increase diversity. 

   One of the common methods to detect a change is to 

re-evaluate the solutions. The algorithm re-evaluates 

regularly a number of solutions to recognize a change in 

the environment. Detectors can be a part of the 

population such as the best current optima [51], a 
memory-based sub-population [52], or a feasible sub-

population [51]. In addition, the detectors can be 

selected separately from the searching population. For 
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example, they can be merely a fixed point (Carlisle and 

Dozier, 2000) [53] or a collection of random 

solutions [49]. 

   Another detection idea is to supervise reductions in 

average values of the best points found during some 

iterations [54]. The changes that are based on statistical 

hypotheses tests are used to find the difference in the 

population distribution of two consecutive 

generations [49]. As stated by Morrison, studies on the 

detection of a change to the environment are based on 

the diversity, the relationship between diversity, value 
of fitness function, and the rate of success in detecting 

the change [55]. 

   Given the importance of maintaining diversity in 

solving dynamic optimization problems and their 

dependence on environmental changes, it is important to 

note that performances of algorithms proposed for 

dynamic environments should not be dependent on the 

detection of changes in the environment, which are very 

difficult and impossible to discover in some cases. For 

example, imagine that changes occur in some areas of 

the search environment only making the algorithm very 
problematic to detect environmental changes. If it fails 

to detect, all common strategies will lose out 

deteriorating the algorithm. Also, detection of changes 

in noisy environments is very difficult for algorithms 

working based on detection of a change. The proposed 

algorithm does not need to detect a change in the 

environment and always adapts itself to environmental 

conditions. 
 

3.2 Implementation of Framework on PSO 

Algorithm 

   In this section, a new algorithm called increasing-

decreasing particle swarm optimization (idPSO) is 

introduced for optimization in dynamic environments. 

Due to its short and abstract mechanism, this algorithm 

has a good speed for dynamic optimization. The general 

framework is shown in Algorithm 4. 

   The main ring of the proposed algorithm starts with 
initialization for free particles, and in the next step, the  
 

Algorithm 4 idPSO. 

Initialize free particles 
while stop criteria is not satisfied do 
for free particles do 
    PSO (); 
end for 
convergence checking (free particles) 
if FSA exists then 

    for each FSZ[i] do 
        PSO(FSZ[i]) 
        Update FSZ centers 
        Check velocity of focus particles 
    end for 
end if 
FSA overlap checking (FSZ, FSR) 
Remove useless FSZ 
end while 

1 
2 
3 
4 
5 
6 
7 

8 
9 
10 
11 
12 
13 
14 
15 
16 

free particle position is updated by particle swarm 

optimization algorithm, first proposed by Kennedy and 

Eberhart [56], [57]. Each particle i is represented by a 

velocity vector 
iv and the position vector 

ix updated by 

the version of Shi and Eberhart with the inertia weight 

as follows [58]: 
 

   '

1 1 2 2i

d d d d d d

i i pbest i gbest iv v c r x x c r x x      (1) 

d d d

i i ix x v    (2) 
 

   In the above equation, xi'd is the current position, xi
d is 

the previous position, vi'd is the current speed, and vi
d is 

the previous speed of the i-th particle in the d 

dimension. 
i

d

pbestx  is the best position of the i-th particle 

so far, and 
i

d

gbestx is the best position in the whole 

particles. ω ∈ (0, 1) is an inertia weight and determines 

the effect of the previous velocity on the current 

velocity of the particle; r1 and r2 are uniform random 

variables between zero and one; c1 and c2 are called 

acceleration coefficients and show the following of the 

particle of their best (cognitive) and the best collective 
(social component), respectively. 

   Given the various tasks for free particles and focus 

particles in idPSO, the acceleration coefficients and 

inertia weight for the particle update, which are 

responsible for finding probable areas in the entire 

search space and focus particle that are required to find 

and follow optimum on their own FSZ is considered 

different. The values of c1, c2, and ω of free particles for 

general search are considered to be 2, 2 and 0.4 and for 

focus particles with exact searches are considered as 3, 

1 and 0.5, respectively. 
   In the next step, the convergence process of free 

particles will be studied. Then the location of focused 

particles of each FSZ is updated separately with a PSO 

algorithm. And in the case of an improvement of the 

best particle of each FSZ, the center of its FSZ will be 

updated in the search space. 

   In the following steps, FSZ’s overlapping is studied, 

and then the mechanism for automatic deletion of 
additional FSZ is presented according to what has been 

laid down in the proposed framework. 

 

3.3 Implementation of Framework on ALO 

Algorithm 

   In this section, a new algorithm named as increasing-

decreasing ant lion optimizer algorithm (idALO) is 

introduced for the optimization of dynamic 

environments (time-variable), as in what has been 

introduced in the proposed framework. 

   The Ant Lion optimizer is derived from the life cycle 
of these creatures in nature [58]. To trap ants, a cone-

shaped cavity is created at the surface of the ground, 

and at the bottom of the cone waiting for the ant to fall 

into this cavity. When an ant falls into this cavity, it 
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tries to get out of the hole. At this time, the Ant Lion 

with the throw of sand to the top leads to the fall of the 

ant to the end of the cone and capture in the forks of the 

Ant Lion butter and finally the Ant Lion takes the prey 

into the ground and splits it. This algorithm is inspired 

by the interactions between Ant Lion and ant in the trap. 

Ants tend to move in the entire search space, and Ant 

Lions are allowed to hunt them and improve 

themselves. 

   Here ants are divided into two groups—free ants and 

focused ants—in order to make the ant lion algorithm 
prepared for solving optimization in dynamic 

environments. The duty of free ants is to constantly 

explore throughout the search space. When the ants are 

drifted toward a trap, a number of them fall within an 

area called focused search zone, and they are known 

focused ants. The focused search zone surrounding lion-

ants is characterized by a radius called focused search 

radius. With each reiteration of algorithm, FSZ’s center 

is changed into its location if the lion-ant improves. And 

other ants trapped in the zone are required to remain in 

this subspace. All free ants are scattered across the 
search space to find other optimal points. The pseudo-

code idALO is shown in Algorithm 5. The process 

optimization proceeds according to the proposed 

framework. 

 

4 Simulation Results 

   In this section, the dynamic algorithms derived from 

the proposed framework have undergone a test. This 

part can be divided into parts like investigation of 

algorithm mechanisms and analysis of key parameters 

in the process of algorithm optimization at the time of 
facing a MPB problem, analogy of algorithm 

performance with other methods set forth for solving 

MPB problem, and application of algorithms in the 

clustering when data are often changing. 

 

4.1 Experimental Setup 

1) MPB Problem is one of the most popular 

optimization problems in dynamic environments, which 

is widely used to evaluate dynamic optimization  
 

Algorithm 5 idALO. 

Initialize the Free Ants 
while stop criteria is not satisfied do 
     for Free Ants do 
           ALO (); 
     end for 
     Convergence Checking (Free Ants) 
     if FSZ exist then 
           for each FSZ[i] do 

                 ALO (FSZ [i]) 
                Update FSZ centers 
           end for 
     end if 
     FSZ Overlap Checking (FSZ, FSR) 
     Remove Useless FSZ 
end while 

1 
2 
3 
4 
5 
6 
7 
8 

9 
10 
11 
12 
13 
14 
15 

algorithms [22]. In an MPB issue, the optimum can be 

different with three features of position, height, and 

width of peaks. This problem is defined in D dimension 

as follows. 
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In (3) Hi(t) and Wi(t) are the height and width of the 

peak i at time t, and Xij(t) is the j-th element of the peak 

location at time t. The p independently specifies the 

peaks blended together by the “max” function. The peak 

position in a random direction is transmitted by the 

vector 
iv to a shift length of s, which represents the 

sensitivity of the problem’s dynamics. The movement of 

a single peak is defined as the following relation: 
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1
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The transition vector  i tv  is a linear combination of 

the random vector r and the previous transition vector 

 1iv t  normalized to the shift length of s. The value 

of the correlation parameter λ is zero, which indicates 

the non-alignment of the peak movements. 

Relationships of a peak change are expressed as: 
 

   1 _i iH t H t height severity      (5) 

   1 _i iW t W t width severity      (6) 

      1i i iX t X t t v t    (7) 
 

where σ is a random number with a normal distribution, 

a mean of zero and a variance of one. 
2) Test Settings: Default setting of benchmark function 

in this study is shown in Table 1, similar to other 

algorithms presented for comparison with the proposed 

algorithm. The term "change of frequency U" means a 

change in the environment after U time evaluation of 

the fitness function. Peak location range is the range of 

peak changes in each dimension. The height of the peak 
varies randomly in the range of [30, 70] and the width 

changes in the interval [1, 12]. 
 

Table 1 Default setting for MPB problem. 
Value Parameter 
[1,200] Number of peaks, p 
5000 Change frequency, U 
7.0 Height severity 
1.0 Width severity 
Cone Peak shape 
No  Basic function 
1.0 Shift length, s 
5 Number of dimensions, D 
0 Correlation coefficient, λ 
[0,100] Peaks location range 
[30,70] Peak height, H 
[1,12] Peak width, W 
50.0 Initial value of peaks 
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3) Performance Measurement: Several measurement 

methods have been introduced to measure the 

performance of algorithms in dynamic 

environments [59]. In order to create comparable results 

with other algorithms in this field, the offline error (OE) 

criterion is used, which is defined as the average 

difference in optimum value found by the algorithm 

with the global optimum value in each environment. 
 

 
1

1 K

k k

k

OE h f
K 

   (8) 

 

In (8), fk is the best answer found by the algorithm 
before the k-th change in the environment and hk is the 

optimum value for the k-th environment. OE is mean 

difference of fk and hk in total K changes in the 

environment. All reported results represent more than 

50 implementations of the program for 100 changes in 

the environment. 

 

4.2 Sensitivity of the Algorithms to Structural 

Parameters 

   In order to investigate the sensitivity of the algorithm 

to the rconv parameters (convergence radius), pmean 

(average coefficient of fitness) and FSR (focus search 
radius) tests were performed on MPB with default 

values (p = 10, U = 5000, s = 1). 

   In fact, the offline error for the parameter changes at a 

change frequency of 5000 is approximately equal to and 

always reaches the smallest value. Thus, the effects of 

variations in each parameter have been shown based on 

average number of peaks found by the pattern. 

   As shown in Figs. 1 and 2, the effect of rconv changes 

on the number of peaks, resulting from the random 

nature of the MPB problem in each replication, 

indicates that the algorithms do not show much 
sensitivity to rconv changes. This is because an increase 

and/or decrease in rconv actually reduce and/or raise, 

respectively, the time of transferring task of searching 

for possible areas and optimum point of free individuals 

to focus individuals. When rconv rises, free individuals 

are detected earlier for convergence resulting in 

formation of a new FSZ, and begin to find optimum 

results, and free individuals return to their main task of 

finding probable areas. When it is possible to create 

local optimizations, this weakness is quickly modified 

by control algorithms through elimination of FSZ or 

enhancement of focus individuals. By contrast, by 
reducing rconv, free individuals are in fact largely 

condemned to find the optimum amount in addition to 

searching for possible areas, which is among the tasks 

of focus individuals. This occurs when the speed of 

environmental changes increases (U variation frequency 

decreases). Here, due to the ability of the algorithms, 

rconv changes have little effect on the amount of offline 

errors and the number of detected peaks. 

   The impact of pmean changes of less than 0.7 on offline  
 

 
Fig. 1 The effect of the change in rconv value on the mean of 

the number of peaks found in idPSO algorithm. 

 

 
Fig. 2 The effect of the change in rconv value on the mean of 

the number of peaks found in idALO algorithm. 

 

errors is almost negligible. The process of the 
framework is in such a way that usually the optimum 

value is between the first four peaks. By increasing the 

amount of pmean (Figs. 3 and 4), similar to what happens 

in rconv changes, probable areas are generated by 

spending more time and delays until finding the peak. 

An increase of more than 0.7 would disrupt the trend of 

algorithms to find all possible areas and actually all the 

peaks. In case the first peaks found have high degrees of 

fitness, then they would have higher mean values and 

other control algorithms do not allow finding the peaks 

with minimum amounts of fitness. In such a case, it 

should be noted that the algorithm finds the best 
optimum point used in calculating offline errors. In the 

case of severe changes in the environment, however, it 

would not be possible to follow it by focus individuals, 

instead, it can be found by spending time again by free 

individuals in a new location. By contrast, with the 

reduction of pmean to less than 0.3, the framework is 

confused with identifying the real probable areas of the 

local ones, and usually the number of FSZs exceeds the 

number of peaks (n = 10). This would be seen again in 

optimum global value and as a result, would not affect 

offline errors and just unnecessarily leads to increased 
number of individuals and consequently the amount of 

algorithm calculation. By definition, the FSR (focus 

search radius) determines the range of the focused 

search area around the best focus individuals of that
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Fig. 3 The effect of the change in pmean value on the mean of the 

number of peaks found in idPSO algorithm. 

Fig. 4 The effect of the change in pmean value on the mean of the 

number of peaks found in idALO algorithm. 

 

  
Fig. 5 The effect of the change in FSR value on the mean of the 

number of peaks found in idPSO algorithm. 
Fig. 6 The effect of the change in FSR value on the mean of the 

number of peaks found in idALO algorithm. 

 

area in the entire optimization process. Two tasks are 

considered for this area. The first task is to find an 

optimum in the probable region and improve the 

optimum optimization until no change happens in the 

environment. The second task is when there are changes 
in the environment, which is followed by an optimum 

movement in such an environment. As a result, FSR 

value is important for the optimum to be in the same 

FSZ after environmental changes. Also, taking into 

account the large amount of FSR to ensure optimum 

change of location in the same area makes optimum 

improvement (first task) more difficult due to 

confronting with a larger area. Thus, there must be a 

compromise between optimum improvement and the 

presence of optimum after changes in the area. Figs. 5 

and 6 show the effect of changing FSR values on the 

number of peaks found. Low FSR values (less than 2) 
improve the optimum as high as possible, but with a 

change in the environment, most FSZs lose their 

optimums and are eliminated by the Remove Useless 

FSZ mechanism. It is true that ultimately the proposed 

algorithm results in a great deal of time to optimize with 

frequency of environmental changes (U) of 5,000 and 

find the global optimum value with a high precision. 

Nonetheless, it is important that free individuals have to 

find new probable areas for creating FSZs and 

improving optimizations by new focused individuals 

meaning addition of extra calculation load and spending 
 

Table 2 Framework settings for solving the default MPB 
problem. 

Value Parameter 

20 Number of Free Individuals 
0.5 rconv 

0.3 pmean 

4 FSR 

 

more time for optimization. As noted above, 

considering that high values (between 6 and 10) lead to 

an optimum improvement performed at a lower speed 

after a change in the environment, the probability of an 

optimum point would increase in this FSZ. In practice, 

high FSR values are mediated by the FSZ overlap 

Checking mechanism and reduce to mean values. The 

optimum values of parameters for solving the MPB 

problem are given in Table 2. 
 

4.3 Comparison With Other Algorithms 

   In this part of the experiments, the proposed 

algorithms in terms of solving the MPB problem with 

different settings ware compared with other algorithms 

discussed in this topic, including CPSO [20], 

mCPSO [6], mQSO [6], CESO [32], SPSO [19], 

AmQSO [60], mPSO [41], APSO [61], FTMPSO [62], 

SFA [7], PSO-AQ [63], CDEPSO [64], rSPSO [65], 

CbDE-wCA [66], WD2O [67], BfCS-wVN [68], and 

cGA [69]. In the following, the effects of peak number 
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changes, shift severity, and frequency of environmental 

change U on offline errors of idPSO and idALO are 

provided in three sections. 

1) Changes in the Number of Peaks: The series of 

experiments summarized in Table 3 indicate idPSO and 

idALO dealing with different number of peaks in the 

range 1 to 200 for the MPB problem. Comparisons were 

made based on offline errors and standard deviations 

with 17 algorithms derived from algorithms proposed in 

other studies with optimum settings. According to 

Table 3, the results of the proposed algorithm are better 
than other methods for the majority of peaks. 

   The algorithms settings for all peaks are the same as 

default settings. The accurate error values of proposed 

algorithms and other algorithms in Table 3 suggest that 

the amount of offline errors decrease with an increase in 

the number of peaks. It is more difficult for the 

algorithm to work on finding and tracking a high 

number of peaks. Though, it is logical that the closeness 

of the fitness values of these optimums to the fitness 

value of global optimum possibly increases with an 

increase in the found local optimums. Also, more 
regions are monitored and searched by focus individuals 

in the search space, which as a result, the possibility of 

optimum global presence in these areas would increase 

more rapidly after changes in the environment. 

   Given Fig. 7, a bar chart shows a difference in the 

values of offline error for the two proposed algorithms 

and other three algorithms within the changing 

frequency 5000 and the number of different peaks. 

2) Changes in Shift Severity: Table 4 presents the 

offline error values of six similar algorithms and 

proposed algorithms for four different shift severity. 

The environment settings are the same change 

frequencies of 5000 for 10 peaks and shift severity 

values are 1, 2, 3, and 5, respectively. Obviously, 
increasing amount of shift severity results in elevated 

intensity of changes in the environment. In other words, 

a higher increase in the shift severity moves the 

optimum location to a further distance after a change in 

the environment rendering the algorithm with much 

more difficulty in tracking the optimum. Hence, the 

values of offline errors for the algorithms (Table 4) 

increase with rising shift severity values. Increased 

amount of offline errors for the proposed algorithms 

with the above-mentioned optimum settings can be 

ignored, and this point is an indicator of a high 
robustness of the proposed framework for finding and 

tracking an optimum for each shift severity. 

 

Table 3 Comparison of offline error algorithms for different peak numbers in the MPB problem at the change frequency of U=5000. 

Number of peaks, p 
Algorithm 

200 100 50 30 20 10 5 1 

1.24(0.06) 1.41(0.08) 1.54(0.12) 1.58(0.17) 1.59(0.22) 1.06(0.24) 0.72(0.30) 0.14(0.11) CPSO 
2.44(0.04) 2.49(0.04) 2.65(0.06) 2.63(0.08) 2.64(0.07) 2.08(0.07) 2.07(0.08) 4.93(0.17) mCPSO 
2.24(0.05) 2.35(0.06) 2.53(0.08) 2.51(0.10) 2.48(0.09) 1.85(0.08) 1.82(0.08) 2.24(0.05) mQSO(5,5q) 

- 1.28(0.02) 1.45(0.01) 1.24(0.01) 1.72(0.02) 1.38(0.02) - 1.04(0.00) CESO 
2.79(0.05) 2.93(0.06) 2.72(0.08) 2.62(0.07) 2.20(0.07) 1.50(0.08) 1.04(0.03) 1.42(0.06) rSPSO 
3.82(0.05) 4.01(0.07) 3.86(0.08) 3.64(0.07) 3.21(0.07) 2.51(0.09) 2.15(0.07) 2.64(0.10) SPSO 
2.62(0.10) 2.68(0.12) 2.43(0.13) 2.19(0.17) 2.00(0.15) 1.51(0.10) 1.01(0.09) 2.62(0.10) AmQSO 
2.24(0.05) 2.35(0.06) 2.53(0.08) 2.51(0.10) 2.48(0.09) 1.85(0.08) 1.82(0.08) 2.42(0.05) mPSO 
1.90(0.01) 1.95(0.01) 1.95(0.02) 1.78(0.02) 1.69(0.05) 1.31(0.03) 1.05(0.06) 0.53(0.01) APSO 
1.67(0.03) 1.61(0.03) 1.32(0.04) 1.14(0.04) 0.93(0.04) 0.67(0.04) 0.47(0.05) 0.18(0.01) FTMPSO 
1.99(0.06) 2.01(0.04) 1.87(0.05) 1.56(0.06) 1.48(0.05) 1.05(0.04) 0.89(0.07) 0.42(0.03) SFA 
1.96(0.04) 1.95(0.05) 1.77(0.05) 1.52(0.04) 1.45(0.06) 0.89(0.03) 0.80(0.12) 0.34(0.02) PSO-AQ 
2.11(0.01) 1.54(0.01) 2.20(0.01) 2.62(0.01) 1.54(0.01) 1.22(0.01) 0.97(0.01) 0.41(0.00) CDEPSO 
1.29(0.02) 1.35(0.03) 1.31(0.04) 1.34(0.04) 0.98(0.05) 0.86(0.08) 0.30(0.02) 0.14(0.03) CbDE-wCA 
1.95(0.01) 2.10(0.01) 1.87(0.01) 1.75(0.01) 1.22(0.01) 1.25(0.02) 0.76(0.003) 1.21(0.03) WD2O 
1.71(0.05) 1.80(0.06) 1.65(0.07) 1.35(0.51) 1.18(0.06) 1.15(0.10) 1.06(0.07) 0.92(0.09) cGA  
1.18(0.08) 1.11(0.06) 0.84(0.06) 1.00(0.11) 0.74(0.12) 0.51(0.11) 0.38(0.21) 0.30(0.06) BfCS-wVN 
0.26(0.04) 0.25(0.02) 0.64(0.01) 0.67(0.04) 0.75(0.03) 0.62(0.05) 0.58(0.07) 0.12(0.02)e-7 idPSO 
1.22(0.05) 1.20(0.09) 1.21(0.08) 1.30(0.07) 1.41(0.05) 0.71(0.06) 0.49(0.06) 0.09(0.02) idALO 

 

 
Fig. 7 Comparison of the algorithms of the proposed 

framework and other algorithms in a frequency of 5000 and 
with respect to the number of different peaks. 

 

Table 4 Comparison of the offline error of algorithms for 
various shift Severity in MPB problem. 

Shift severity, s 
Algorithm 

5 3 2 1 

1.58(0.32) 1.36(0.28) 1.17(0.22) 1.06(0.24) CPSO 

4.89(0.11) 3.57(0.08) 2.80(0.07) 2.05(0.07) mCPSO 

4.24(0.10) 3.00(0.06) 2.40(0.06) 1.85(0.08) mQSO(5,5q) 

2.52(0.06) 2.03(0.03) 1.78(0.02) 1.38(0.02) CESO 

6.45(0.45) 3.31(0.25) 2.19(0.15) 0.92(0.09) cGA 

2.39(0.20) 1.26(0.13) 0.89(0.16) 0.51(0.11) BfCS-wVN 

0.91(0.09) 0.76(0.06) 0.67(0.07) 0.62(0.05) idPSO 

1.09(0.08) 0.93(0.07) 0.81(0.07) 0.71(0.06) idALO 
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Fig. 8 The value of the offline error of the algorithm idPSO for the degree of a different change in frequency of 5000. 

 
Table 5 Comparison of offline error algorithms for different peak numbers in the MPB problem at the change frequency of U=1000. 

Number of peaks, p 
Algorithm 

200 100 50 30 20 10 5 1 

5.54(0.11) 5.83(0.13) 5.87(0.13) 5.81(0.15) 5.85(0.15) 5.71(0.22) 6.56(0.38) 18.60(1.63) mQSO(5,5q) 
5.75(0.26) 4.77(0.45) 6.06(0.14) 5.20(0.38) 5.36(0.47) 4.56(0.40) 2.90(0.32) 2.33(0.31) AmQSO 

5.78(0.09) 5.60(0.09) 5.33(0.10) 5.15(0.12) 4.97(0.13) 4.57(0.18) 3.93(0.16) 4.44(0.02) mPSO 
4.21(0.02) 4.26(0.04) 4.11(0.03) 4.12(0.04) 4.13(0.06) 3.87(0.08) 2.99(0.09) 2.72(0.04) APSO 
3.74(0.09) 3.63(0.09) 3.29(0.10) 3.06(0.10) 3.01(0.12) 2.36(0.09) 1.70(0.10) 0.89(0.05) FTMPSO 
4.43(0.07) 4.40(0.07) 4.12(0.07) 4.02(0.08) 4.01(0.07) 3.64(0.04) 2.71(0.06) 2.45(0.12) SFA 
2.20(0.11) 2.42(0.14) 2.56(0.10) 2.01(0.14) 1.76(0.09) 1.28(0.13) 1.12(0.11) 1.10(0.10) cGA 
0.96(0.03) 0.92(0.03) 1.41(0.01) 1.70(0.04) 1.73(0.06) 1.61(0.03) 1.33(0.05) 0.21(0.02) idPSO 
3.19(0.05) 3.21(0.08) 3.11(0.11) 2.96(0.06) 2.71(0.05) 2.12(0.08) 1.77(0.08) 1.05(0.06) idALO 

 
Table 6 Comparison of offline error algorithms for different peak numbers in the MPB problem at the change frequency of U=10000. 

Number of peaks, p 
Algorithm 

200 100 50 30 20 10 5 1 

1.71(0.04) 1.85(0.05) 1.99(0.07) 2.00(0.09) 1.84(0.09) 1.10(0.07) 1.03(0.06) 1.90(0.18) mQSO(5,5q) 
2.52(0.10) 1.89(0.14) 1.55(0.08) 1.78(0.09) 1.28(0.12) 0.76(0.06) 0.45(0.04) 0.19(0.02) AmQSO 

1.48(0.02) 1.50(0.03) 1.47(0.04) 1.43(0.05) 1.34(0.08) 0.97(0.04) 0.70(0.10) 0.27(0.02) mPSO 
1.36(0.01) 1.38(0.01) 1.46(0.01) 1.39(0.02) 1.23(0.02) 0.82(0.02) 0.57(0.03) 0.25(0.01) APSO 
1.13(0.04) 1.08(0.03) 0.86(0.02) 0.69(0.09) 0.56(0.01) 0.43(0.03) 0.31(0.04) 0.09(0.00) FTMPSO 
1.52(0.03) 1.44(0.04) 1.19(0.04) 0.99(0.04) 0.91(0.03) 0.72(0.02) 0.53(0.04) 0.26(0.03) SFA 
0.85(0.05) 0.85(0.05) 0.54(0.70) 0.66(0.08) 0.84(0.05) 0.30(0.06) 0.20(0.02) 0.18(0.04) BfCS-wVN 
0.19(0.00) 0.19(0.00) 0.43(0.05) 0.53(0.10) 0.44(0.07) 0.33(0.04) 0.12(0.03) 0.3(0.04)e-12 idPSO 
0.77(0.03) 0.79(0.04) 0.77(0.04) 0.75(0.06) 0.58(0.03) 0.43(0.05) 0.31(0.03) 0.01(0.00) idALO 

 

   To confirm this, in Fig. 8 the value of offline error for 
the algorithm idPSO regarding the degree of various 

changes is based on the number of the request made. As 

can be seen, the effects of change on the degree of 

change in the behavior of algorithm during optimization 

are infinitesimal. 

3) Changes in the Frequency of Environment 

Changes: Changes in the frequency of environmental 

changes U actually determines the time spent by the 

algorithm to find an optimum in each environment 

before occurrence of a change. Obviously, the lower the 

amount of frequency, the lesser the time dedicated to 
finding a new environment. On the other hand, the 

suitable opportunity to find and optimize the best 

optimum corresponds to the high frequency value. The 

results of MPB problem with various numbers of peaks 

and environmental change frequencies of 1000 and 

10,000 are shown in Tables 5 and 6. For example, for 
idPSO algorithm, for 10 peaks at a change frequency of 

1000, the error rate was 1.61, while at a frequency of 

10,000, the algorithm needs more time, hence, the 

offline error reduced to 0.33. Other values for idPSO 

algorithm are better than the other algorithms at both 

frequencies. 

   In Figs. 9 and 10, the offline error of both algorithms 

derived from the proposed framework and other 

algorithms in the number of a different peak for a 

frequency of environment change is 1000 and 10000 

respectively. 
 

4.4 Application of the Proposed Framework in 

Clustering 

   In this section, the proposed algorithms for the 
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Fig. 9 Comparison of the algorithms of the proposed 

framework and other algorithms in a frequency of 1000 and 
with respect to the number of different peaks. 

 

 
Fig. 10 Comparison of the algorithms of the proposed 

framework and other algorithms in a frequency of 10000 and 
with respect to the number of different peaks. 

 

clustering of data whose values change over time are 

addressed. The difference between this part and 

previous part revolving around solving MPB problem is 
the definition of fitness function for algorithms. The 

fitness function is based on quantized error and the 

equation 9. Similarly, the structure of individuals is 

defined with the equation 10, which includes the centers 

of clusters. In what follows, since there is no database 

with samples varying at a valid time, data of each class 

are generated with different mean (μ) and standard 

deviation (σ). The range of search area [0-50], and 

change frequency in the data location is estimated to be 

100. A change frequency of 100 suggests that the 

algorithm of data location changes after every 100 times 
fitness assessment. 
 

   
1

1
fitness ,

j

k

j

j X C

p d X Z
N   

    (9) 

1

1 2 1 2

1 1 1                       

k

D D

k k k

Z Z

z z z z z z  
(10) 

 

   In what follows, we deal with the algorithms 

introduced in the different conditions of data and 

environment. Since the samples generated with the 

information provided, and we know the values of the 

mean of samples of each class, these values are taken as 

the real centers of each cluster. The assessment criterion 

of the algorithm performance is similar to the 

 

Table 7 Comparison of the proposed algorithms for the 
number of different clusters in a 4-dimensional environment. 

idALO idPSO clusters Change frequency 

0.019 0.012 2 

100 
0.031 0.022 4 

0.202 0.142 6 

0.759 0.467 8 

0.0082 0.0056 2 

200 
0.0105 0.0073 4 

0.0817 0.0693 6 

0.491 0.348 8 

 
Table 8 Comparison of the proposed algorithms for the 

different dimensions and the number of 4 clusters. 

idALO idPSO dimensions change frequency 

0.0018 0.0013 2 

100 
0.031 0.022 4 

0.381 0.252 6 

0.853 0.782 8 

0.0009 0.0008 2 

200 
0.0105 0.0073 4 

0.397 0.331 6 

0.572 0.446 8 

 
measurement criterion for MPB problem, i.e. the mean 

of the distances of real centers of clusters with the 

centers found with the algorithm for 20 times change in 

the environment, and calculated according to (11). 
 

 , ,

1 1

1
,

M K

m k m k

m k

OE d Z Center
M  

   (11) 

 

In the above equation Zm,k, the best centers found by the 

algorithm is somewhere before reaching m-th change in 

the environment and Centerm,k  is the real centers of 

clusters in m-th environment. OE is the mean of 

Euclidian distance Zn,k and Centern,k for the whole M 

change in the environment.  

   In Table 7, the proposed algorithms were compared 
for the change frequencies of 100 and 200, and the 

number of different clusters. It should be noted that the 

dimensions of the problem are summed up in four 

dimensions, and the number of samples in each class is 

500. It is evident that as the number of clusters 

increases, so does the value of the error obtained. 

Moreover, as the frequency goes up to 200, the time of 

algorithm for the improvement of the centers found 

increases, and, in consequence, the values of the error 

decrease. 

   In Table 8, the analogy of the proposed algorithm 
error is presented in different dimensions and four 

clusters. As can be expected, as the number of data 

dimension increases, so does the error of algorithms. 

This increase in error can be somewhat modified as the 

change frequency increases. 

 

5 Conclusion and Discussion 

   In this article, a general framework is presented to 

boost the heuristic optimization algorithms based on 
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swarm intelligence from static to dynamic 

environments. The main idea of the framework is based 

on the variability of the number of algorithm individuals 

and formation of possible subspaces suitable for 

environmental conditions. 

   In dynamic optimization, it is important to reduce the 

optimization time, in other words, a faster convergence 

to optimize while maintaining diversity throughout the 

search space. Most dynamic algorithms start with a 

large number of individuals, and the number of 

individuals is reduced with the advent of optimization 
processes. It is a waste of time to calculate the fitness of 

a high number of individuals in the early stages of 

optimization. In order to avoid this, proposed 

framework starts with low individuals, and always an 

increase in the number of individuals is a function of 

environmental condition, including increasing number 

of optimum points. In contrast, the algorithm attempts to 

reduce the number of individuals according to the 

environmental conditions, which in turn reduces the 

calculation load and increases the speed of optimization. 

Environmental changes are not always detectable, as an 
example, only a fraction of the total search area may 

change, or changes in noisy environments cannot be 

easily detected. In this case, the performances of 

algorithms based on the detection of environmental 

changes become a major problem. To overcome this 

shortcoming, proposed framework is designed with no 

need to detect changes in the environment and always 

adapts itself to environmental conditions. The proposed 

algorithms ware investigated regarding its efficiency for 

solving MPB problem as one of the most popular 

benchmark functions in dynamic environments. The 
range of experiments for different settings of the MPB 

problem, including number of various peaks, changes in 

shift severity, and frequency of different environmental 

changes, show the proper performance of the proposed 

algorithm in comparison with other dynamic 

optimization algorithms. In what follows, the introduced 

algorithms for the clustering of dynamic data whose 

values change over time were used, and we obtained 

positive results. 

   Future research suggestions include the use of an 

algorithm to optimize real world problems. It is also 

recommended to use the algorithm for dynamic 
clustering such as web data. The use of adaptive and 

self-adaptive mechanisms for structural parameters of 

the algorithm can result in more rapid adaptability of the 

method to environmental conditions. 
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