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Abstract: The Circuit Breaker (CB) is one of the most important equipment in power 

systems. CB must operate reliably to protect power systems as well as to perform tasks 

such as load disconnection, normal interruption, and fault current interruption. Therefore, 

the reliable operation of CB can affect the security and stability of power network. In this 

paper, effects of Condition Monitoring (CM) of CB on the maintenance process and related 
costs are analyzed. For this, A mathematical formulation to categorize and model 

equipment failures based on their severity is developed. By CM, some of the high severity 

failures, named major failures, can be early detected and be corrected as a minor failure. 

This formulation quantifies the effect of CM on the outage rate and Predictive Maintenance 

(PDM) rate of equipment. Also, by combining the predictive maintenance to preventive 

maintenance, the Integrated Preventive and Predictive Maintenance Markov model is 

presented to analyze the effect of CM on the maintenance process. Finally, the optimal 

inspection rates of CBs based on the minimum maintenance cost in the traditional and the 

proposed Markov model are determined. To verify the effectiveness and applicability of the 

method, the proposed approach is applied to the CBs of KREC in Iran. 
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Nomenclature1 

Ax Factor failure type x of equipment 
nx Number of failure type x occurred 

Ay Factor failure type y of equipment 

ny Number of failure type y occurred 

ns Number of failure type x occurred with Sensor 

detection 

As Number of failure type y occurred with Sensor 

detection 
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PS Probability of being healthy sensors 

Qm Probability of being faulty m sensor 

Qn Probability of being faulty n sensor 

fi Frequency of occurrence of each state in the 

maintenance model 

CI Average cost per inspection activity 

CM Average cost per minor maintenance activity 

CMM Average cost per major maintenance activity 

CR Average cost per equipment replacement 

iIf  Frequency of occurrence of the i-th inspection 

state in the PM 

iMf  Frequency of occurrence of the i-th minor 

maintenance state in the PM 

iMMf

 

Frequency of occurrence of the i-th major 

maintenance state in the PM 

fF Frequency of occurrence of equipment 

replacement 

iIf   Frequency of occurrence of the i-th inspection 

state in the proposed Markov model 

iMf   Frequency of occurrence of the i-th minor 

maintenance state in the proposed Markov 

model 
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iMMf 
 

Frequency of occurrence of the i-th major 

maintenance state in the proposed Markov 

model 

 

1 Introduction 

M systems are wildly used currently in power 

substations to monitor the health condition of a 

piece of equipment [1]. Equipping substation elements 

with CM has a direct impact on the reliability studies 

and the maintenance scheduling of the network. The 

scheduled maintenances are divided into three groups: 
Preventive Maintenance (PM), condition-based 

maintenance (CBM), and predictive maintenance 

(PDM) [2]. 

 

1.1 Preventive Maintenance (PM) 

   In the PM, the inspections and maintenance process is 

performed periodically on the equipment.  PM activities 

are often modeled through using a classical state 

diagram with a periodic inspection rate [3-5]. The 

maintenance activities were modified in order to 

increase the frequency of inspection based on 
knowledge of the level of equipment failure so that non-

periodic inspection rates could be introduced to 

illustrate state diagrams in maintenance modeling [6-

12]. The majority of the study reported in the literature 

focus on designing a maintenance problem to determine 

the optimal maintenance rates [13-19]. Many of the 

probabilistic maintenance models designed for PM are 

based on classical state diagrams. Maintenance models 

provide accurate results based on classical state 

diagrams when the inspection rate is periodic. However, 

the results of classic state diagrams are not accurate 
under the non-periodic inspection rate. Therefore, it is 

necessary to propose a better model to present the actual 

situation and provide accurate results for using state 

diagrams in future maintenance modeling. In some other 

applications [6-8], [10], state diagrams are used to 

model maintenance policies with a non-periodic 

inspection rate, which in them, the frequency of 

inspection, increases with the increase of the failures. 

To this end, Markov's maintenance model, which is the 

most popular approach in maintenance modeling, was 

proposed to solve problems. The probabilistic Markov 

maintenance model is used to quantify the effect of 
various inspection and maintenance rates on the 

equipment lifetime and the associated costs [13-15] 

and [20, 21]. Optimal inspection and maintenance rates 

reduce the costs associated with the equipment 

replacements, while improving the equipment’s 

lifetime [13-15]. Reference [15] applies a maintenance 

model, which combines both repairable and aging 

failure modes with maintenance activities, with a mixed 

set of equipment consisting of CBs and transformers. 

This reference optimizes the inspection rate using 

minimization of the total cost counting maintenance, 
failure, loss, repair, replacement, and patrol costs. The 

organization of the maintenance process of the system 

components based on the reliability of the system is 

known as Reliability-Cantered Maintenance (RCM) 

which is discussed comprehensively in [16, 17]. Some 

studies reported in the literature [18] were aimed at 

determining the optimal maintenance strategy for an 

electric power supply as a realistic complex system with 

a given reliability constraint. 

   Reference [22] utilizes the proportional hazard model 

to understand and quantify the impact of explanatory 

variables on the failure rate of circuit breakers (CB). 
Particularly, 4496 work orders with 2622 high voltage 

CBs are investigated with an occurrence of 281 major 

failures. Different explanatory variables such as CB 

type, manufacturer, preventive maintenance (PM), and 

others are gathered to quantify their significance and 

magnitude of their effect. The results present that PM 

has a positive impact, the number of operations within 

the last year a negative impact, and age has a small but 

negative impact on the failure rate. The CB type is not 

significant in all analyses which can be explained by 

examining the PM and age of these CB types. This 
paper contributes to the understanding of how 

explanatory variables impact the failure rate which is 

essential for power system asset management. 

   Reference [23] presents a hybrid approach for 

prognostics of CBs, which integrates deterministic and 

stochastic operation through piecewise deterministic 

Markov processes. The main contributions of this paper 

are: 1) the integration of hybrid prognostics models with 

dynamic reliability concepts for a more accurate RUL 

forecasting and 2) the uncertain failure threshold 

modeling to integrate and propagate uncertain failure 
evaluation levels in the prognostics estimation process. 

Results show the effect of dynamic operation conditions 

on prognostics predictions and confirm the potential for 

its use within a condition-based maintenance strategy. 

 

1.2 Condition-Based Maintenance (CBM) and 

Predictive Maintenance (PDM) 

   In recent decades, there has been observed a rapid 

increase in the number of studies on condition-based 

maintenance, partly due to the recent development of 

monitoring technologies. The proper design of CBM 

can be effective in improving the reliability of 
equipment. [24, 25]. A review of CBM researches is 

presented in [24]. In [19], implementing different 

maintenance approaches on a mechanical component to 

compare their relative benefits, the researcher concludes 

that, in general, the advanced CBM and PDM policies 

show a comparatively better performance. However, 

there are a number of situations in which the PM shows 

a more desirable performance. In [26], it is revealed that 

the maintenance policies in which real-time monitoring 

technologies are used can improve the performance of 

manufacturing systems. Sadiki et al. [26] proposed the 
integration of intelligent sensor networks to monitor the 

C 



Integrated Preventive and Predictive Maintenance Markov 
 

… A. Karimabadi et al. 
 

Iranian Journal of Electrical and Electronic Engineering, Vol. 16, No. 2, June 2020 217 

 

equipment in its predictive maintenance activity. 

Reference [27] represents two main challenges in the 

PM strategies. First, many actual engineering systems 

have complex characteristics and so the fixed inspection 

strategies are not suitable decisions. Second, by 

increasing the operation time of equipment a fixed 

interval inspection is not tailored in practice. Therefore, 

this reference proposes a mixed time/condition-based 

probabilistic maintenance model. 

   Reference [28] proposes a new approach on the 
identification of CB’s deterioration/recovery states, i.e., 
the so-called life-cycle assessment, using its control 

circuit condition monitoring data. Reliability-oriented 

performance indicators, which can assess the condition 

of different physical parts of an HV CB in real-time, are 

introduced first. Then, a quantitative methodology to 

define the probability of the CB falling into each class 

of deterioration/recovery states i.e., healthy, vulnerable, 
troubled, and failed, is proposed. 
   Reference [29] proposes a transformer automated self-

diagnosis system that can be installed on every power 

supply as a part of SCADA to extract Frequency 
Response Analysis (FRA) graphs from transformers and 

offers high repeatability which is a great benefit for 

FRA test. So we will have an intelligent system which is 

able to predict the future of the transformer using the 

experience of not only own self but also all the 

transformers in an integrated network. 

   Reference [30] introduces the indicators for surge 

arrester condition assessment based on the leakage 

current analysis. The maximum amplitude of 

fundamental harmonic of the resistive leakage current, 

the maximum amplitude of the third harmonic of the 
resistive leakage current, and the maximum amplitude 

of the fundamental harmonic of the capacitive leakage 

current were used as indicators for surge arrester 

condition monitoring. 

   Artificial neural network (ANN) methods are robust 

and less model-dependent for fault diagnosis when the 

fault signature can be directly achieved using the 

sampling data. In this procedure, the state of the internal 

process will be ignored. Therefore, generalized 

regression neural network (GRNN) based method is 

presented in [31] that uses negative sequence currents 

(calculated from the machine’s currents) as inputs to 
detect and locate an inter-turn fault in the stator 

windings of the induction motor. 

   Reference [32] attempts to model the effect of 

condition monitoring on the reliability improvement and 

maintenance costs of substations. However this 

reference does not account for the types of failures, 

therefore the proposed analytical model is not realistic. 

Moreover, the inspection rate is considered constant and 

the case study is very simple.  

   As mentioned in the literature on CBM, The use of 

CM devices does not mean that the PM is not required. 
However, a comprehensive model to evaluate the 

combined preventive and predictive maintenance is not 

presented in researches. Although the effect of CM on 

the failure rate of the equipment has been investigated, 

the effect of CM devices on the PDM rate of equipment 

has not been investigated. The main focus of this paper 

is to present a new integrated preventive and predictive 

maintenance Markov model for the CB which are 

equipped with CM. Equipment maintenance scheduling 

can be carried out periodically. By CM and early 

detection of minor failures, requirement based 

maintenance, which is referred to as PDM, can be added 

to the periodical maintenance schedule. CM can change 
the time of periodic maintenance. This paper, also, 

determines the optimal inspection rates of equipment in 

the PM and the proposed Markov models. Three steps 

have been taken in this paper. 

First Step: The unique novel idea the first step is to 

provide a mathematical formulation to categorize and 

model the failures of equipment based on their severity. 

CM employs information from multiple sensors. The 

failure Probability of smart sensors has been taken into 

account. In fact, by CM, some of the severity failures, 

known as major failures, can be readily detected and 
corrected as minor failures. The proposed mathematical 

formulation quantifies the effect of CM on the outage 

rate and PDM rate of the equipment. The PDM rate is 

used in the second step as the smart inspection rate of 

the equipment. 

Second Step: In the second step, at first, a new 

integrated preventive and predictive maintenance 

Markov model is proposed to analyses the effect of the 

CM on the maintenance process and its associated costs. 

The proposed Markov model is the development of the 

previous Markov models of PM [7]. In the proposed 
Markov model, the PDM rates have been added to the 

previous maintenance model according to the relations 

of the first step. Then, the optimal inspection rates in the 

PM and the proposed Markov models are determined by 

minimizing the total maintenance cost. It must be noted 

that one of the most novelty of this paper is to determine 

the effect of CM on the optimal inspections rates using 

the proposed Markov model. 

Third Step: Finally in step three, the proposed model is 

applied to the 132KV CBs in the Khorasan Regional 

Electricity Company (KREC) in Iran. 

   In the next section, we describe the problem including 
the Markov maintenance model and the calculation of 

its parameters. In the third section, mathematical 

formulation to categorize and model the failures of 

equipment and the effect of the CM on the failure rate 

of the equipment has been investigated. Section 4 

addresses the proposed Markov Model. Section 5 deals 

with case studies. Finally, some conclusions are drawn 

from the obtained results in the sixth section. 

 

2. Statement of the Problem 

2.1 Markov Maintenance Model 

   In PM, the equipment is inspected and maintained 
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periodically. The Markov model is used for the 

quantitative evaluation of the PM on the aging process. 

Fig. 1 depicts a sample state diagram for equipment, 

which includes the aging process [7]. The aging process 

is shown in Fig. 1 with the help of three S1, S2, and S3 

states. In these three conditions, despite the aging, the 

equipment has the correct function, if no maintenance is 

performed on the equipment, with the continuation of 

the process of aging and passing through the states of 

S1, S2, and S3, The equipment will eventually enter into a 

state of F, which needs to be replaced. After 
replacement, the new equipment will be returned to S1 

again. In Fig. 1, λ1, λ2, and λ3 are the transition rates 

among different situations. I1, I2, and I3 are the 

inspection states. γ1, γ2, and γ3 are equipment inspection 

rates. In each inspection state based on the physical 

conditions of the equipment, It is decided what type of 

repair is to be done. The M and MM states stand for the 

minor and major PM. After minor and major PM are 

performed, considering the possibilities shown in Fig. 1, 

the equipment status may be better, remain in the same 

state of the past, or even worsen due to human error [7]. 
   In the model of Fig. 1 for the aging condition S2, two 

states S2,1 and S2,2 are considered. In S2,1, the equipment 

is entered into the aging state S2, But since the operator 

does not notice this change, the inspection is still done 

at γ1 rate. In this case, after the first inspection or 

maintenance, the aging condition of the equipment will 

be determined. For this reason, after the I2, M2, and MM2 

states, there is a possibility to move to the S2,2 state. In 

other words, in the S2,2 state, the equipment is brought to 

the second aging stage, and since the operator knows 

these conditions, the inspection is performed with the 
new γ2 rate [7]. 

   In the PM scheduling, equipment repair is conducted 

based on a predetermined plan, regardless of the 

condition of the equipment. With CM and performing 

PM based on the equipment needs can reduce the cost of  

 

 
Fig. 1 State diagram of the maintenance model [7]. 

repairs and increase reliability. As yet, the Markov 

model has not been presented to demonstrate the effect 

of PDM on the maintenance and repair process. 

 

2.2 Calculating Markov Model Parameters 

   According to the governing equations for Markov's 

parameters, important indices of the Markov model are 

probabilistic, frequency-based, and duration-based 

indices. The steady-state probability vector Π is 

calculated by the steady-state equilibrium equation (1) 

and considering the sum of probabilities is equal to the 
unit [33]. 
 

0Q   (1) 
 

where Q is the transfer rate matrix: 
 

[ ], ,ijQ q i j K    (2) 
 

The diagonal elements of the matrix Q are qii = 

-∑j,i ≠ j qij. 

By removing the row and column of Q for each state, 

the Q' matrix is created. Matrix Q' is used to determine 

the average duration time before the system enters the 

state as (3) [33]: 
 

 
1

MTTF Q

   (3) 

 

The frequency occurrence of state i is: 
 

1

( )

i i

i i ijj

T f

f q



   
 

 

(4) 

 

   The mean time to replacement is obtained from the 

average time before the system enters the state F in 

Fig. 1: 
 

1 FMTTRL f  (5) 

 

2.3  Condition Monitoring in the Substation 

   CM in high voltage substations plays an important 

role in improving utilization, real-time monitoring, 

preventing major failures in equipment, and thus 

increasing the strength of the power grid. Measurement 

of specific parameters and quantities of power supplies 

by CM allows for the prediction of possible failures in 

equipment [34]. Table 1 describes the sensors used to 

CM in substation [35-38]. 

 

3 Analytical Modeling of Equipment Failures with 

CM 

   By CM on equipment, a set of failure of the 

equipment is detected before they become a major 

failure. By detecting the failure in the minor stage and 

with the scheduled outage by predictive maintenance, 

the minor failure is corrected [34]. This will definitely 

reduce the major failure that would lead to outages. On
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Table 1 Types of sensors that can be installed on Substation equipment. 

Picture of sensor Sensor application Types of sensors Row 

 

Identification oil leakage of transformer, current 
transformer (CT), voltage transformer (VT), tap 
changer, SF6 gas leakage of CBs 

Acoustic emission sensors 1 

 

Gas analysis of transformer, Tap changer and hydraulic 
oil of CBs 

Chemical sensors 2 

 

Identification arcing faults in CBs, transformer, VT, CT Optical and radiation sensors 3 

 

Identification vibration and shock in CBs, transformer 
and tap changer 

Acceleration, shock, and vibration 
sensors 

4 

 

Measuring Oil pressure of transformer, hydraulic oil 
pressure in CBs and gas pressure in SF6 CBs 

Pressure sensors 5 

 
the other hand, it can increase the lifetime of the 

equipment and reduce the maintenance costs due to 

major failures. Therefore, for analytical modeling of the 

effect of CM on equipment reliability, it is necessary to 

model the failure factors along with their failure 

frequency in the equipment. 

 

3.1 Analytical Modeling of Equipment Failures 

   Equation (6) shows the set of failures of equipment A, 

which includes X type of failure: 
 

 , 1,...,xA A x X   (6) 

 

where Ax is the failure type x of equipment A. The total 
number of failures for N equipment of type A, in the 

study period of T, is in accordance with (7): 
 

 , 1,...,A xn n x X   (7) 

 

In (8), the general relation of the failure rate of 

equipment A is expressed based on the failure type x: 
 

.

x

x

n

N T
   (8) 

 

   In this paper, failures can be divided into four 

categories, based on their severity: 

1) The failure x does not create a problem for the 
system; In fact, there is a minor failure; Therefore, it can 

be waited for its maintenance and will be corrected in 

the scheduled outage. In this case, the failure rate of 

equipment A, which can be corrected in scheduled 

outage, is defined in accordance with (9): 
 

1

X

M x xx
M 


  (9) 

 

where 
 

corrected in sche1 Failure  wil duled outagel be 

0 Other
x

x
M


 


 

(10) 

 

2) The failure x can be corrected in on loaded repair 

while there is no need to outage the equipment; In fact, 

there is a minor failure; In this case, the failure rate of 

equipment A, which is corrected in on loaded repair, is 

defined in accordance with (11): 
 

1

X

p x xx
P 


  (11) 

 

where 
 

1  Failure  can be corrected loaded in on  repair

0 Other
x

x
P


 


 

(12) 

 

3) The failure x is important and requires immediate 

sending of the repair team and emergency outage of 

equipment A; In fact, there is a minor failure; The 

failure rate of equipment A, which is corrected by the 

emergency outage of repair team is: 
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1 x xE

X

x
E 


  (13) 

 

where 
 

1 Failure  requires an emergency outage

0 Other
x

x
E


 


  

(14) 

 

4) The failure x cause trip of equipment A. In fact, there 

is a major failure; this type of failures constructs the 

outage rate of equipment in (15): 
 

1

X

T x xx
T 


  (15) 

 

where 
 

1 Failure  causes equipment outage

0 Other
x

x
T


 


  (16) 

 

where we always have: 
 

1
x x x x

E P M T     (17) 
 

Ax in (6) is the failure type x of equipment A and 

occurred with the failure rate λx [f/yr]. This type of 

failure is belonged to the one category of failures based 

on its severity and indicated by the values Mx, Px, Ex, 

and Tx. It must be noted that the equation (17) 

guarantees each type of failure only belong to one of the 
failure categories. 

 

3.2 Analytical Modeling of CM on Equipment 

Failure Rate 

   The sensor S is supposed to be able to detect a subset 

of failures of equipment A in accordance with (18) and 

(19): 
 

 ,s y sA A A A   (18) 

  ,s y s An n n n   (19) 

 

Assuming S sensors are installed on equipment A, the 

set of failure factors detected by smart sensors, ASEN, is 

shown in (20): 
 

1
, 1:

N

SEN s ss
A A A A s N


    (20) 

 

   The total number of failures detected by smart sensors 

is defined in (21): 
 

1
,

N

SEN s SEN As
n n n n


   (21) 

 

   The CM reduces the outage rate. By installing a set of 

sensors, if the failure of x is of the fourth type (Tx = 1) 
which can be detected by the CM devices (Sx = 1), then 

the failure of type x will not cause equipment outage 

and will be deducted from the fourth type failure rate. 

Since the CM devices cannot detect all of the fourth-

type failures, the outage rate does not reach zero. With 

these definitions, (22) define the outage rate of 

equipment A when the CM devices detect the failures. 
 

1
( )

X

Tnew x x x xx
T S T 


   (22) 

 

where 
 

1 Failure  is detected by sensors

0 Other
x

x
S


 


 (23) 

 

   Certainly, an early detection of failure type x through 

CM adds this failure in accordance with (24) to the 

second or third failure type, which will be corrected by 
the action of the repair team in predictive repair. In (24), 

λPDM is the PDM rate: 
 

1
( )

x x x x x

X

PDM x
P E S T   


  (24) 

 

3.3 Considering Failure Probability of the Sensor 

and its Impact on the Failure Rates 

   The outage rate in (22) can be corrected by 

considering the failure probability of sensors using the 

conditionally probability method [35]. For example, the 

outage rate of equipment A with CM by sensor s is: 
 

(1 sensor failure probability) (sensor is Healthy)

(sensor failure probability) ( without sensor)

TnewTnew

T

 



   

 
 

 

(25) 
 

   If considering a set of sensors, the outage rate of 

equipment A with considering the sensors failure 

probability is: 
 

11

,

,

N N

Tnew s m s mTnew
ms N m

n m s n m

n m N n m

P P Q

P Q Q

  





 



    
      

    

  
    

  

 

 

 

 

 
 

(26) 

 

   That λm is the outage rate A, assuming the proper 

function of all CM devices except CM device m. λn,m is 

also the equipment outage rate, assuming the proper 

function of CM devices except CM devices n and m. In 

this study, it is assumed that the probability of 

simultaneous failure of the two CM devices and more is 

equal to zero. The PDM rate in (24) can be corrected 
similarly. 

 

4 Integrated Preventive and Predictive 

Maintenance Markov Model 

   In PM, the equipment is periodically inspected and 

maintained. The Markov model is used for quantitative 

evaluation of the PM on the aging process, maintenance 

activities, and their associated costs. By CM of  the 

equipment using smart sensors and early detection of 

failures the major failures are corrected in minor
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Fig. 2 A new state diagram of the Integrating preventive and predictive maintenance Markov modeling. 

 

condition. In other words, by CM, the PDM can be 

added to the PM. Markov model has not been presented 
to demonstrate the effect of PDM, in the maintenance 

process, so far. Therefore, we propose a new Markov 

model. If, in accordance with reference [7], the aging 

process of equipment is considered in 3 modes, Fig. 2 

shows the presented Markov model in this paper. 

   PM includes periodic inspections, periodic minor 

maintenances, and periodic major maintenances. On the 

other hand, PDM involves inspections based on need, 

minor maintenance based on the need, and major 

maintenance based on need. The aging process given in 

Fig. 2 is illustrated by the three states S1, S2, and S3. In 

these three states, despite the aging, the equipment is 
functioning correctly. If no maintenance is performed 

on the equipment, by continuing the aging process and 

passing S1, S2, and S3, the equipment will eventually 

enter the F-state. In F, the equipment needs to be 

replaced, and after replacing, the new equipment is 

reinstated to S1. In Fig. 2, λ1, λ2, and λ3, are the transition 

rates (or the rates of the aging process of equipment) 

between different states. I1, I2, and I3 are inspection 

states in the PM mode. I'2 and I'3 are smart inspection 

status in PDM mode. γ1, γ2, and γ3 are the equipment 

inspection rates for PM mode. Also, γ'1, γ'2, and γ'3 are 
the smart inspection rates for equipment in PDM mode. 

Smart inspection rates are the same as the failure rate 

detected by smart sensors with the possibility of sensor 

failure. In each inspection state, the type of maintenance 

depends on the physical conditions of the equipment. 

The M and MM represent minor and major maintenance 

in the PM. The M' and MM' states, show the minor and 

major maintenances in the PDM, respectively. After 

performing minor and major PM, with regard to the 

possibilities shown in Fig. 2, the aging mode of 

equipment may be better, no change, or even worse due 

to human error. 

 

4.1 Costs of the Proposed Markov Model 

   The annual cost of the PM model includes the 

inspection cost; the minor maintenance cost, the major 

maintenance cost, and the cost of replacing the 

equipment in a steady-state (F status) which are shown 

in (27)-(30), respectively. 
 

3

1 i

Inspection I

Ii
C C f


                 [$/years/Device] (27) 

 3

1 i

Minor Maintenanc M

Mi

eC C f


     [$/years/Device] (28) 

 3

1 i

Major Maintenan MM

MMi

ceC C f


   [$/years/Device] (29) 

Replacement R

fC C f                       [$/years/Device] (30) 
 

CI, CM, CMM, and CR are the mean cost per inspection 

activity, minor maintenance, major maintenance, and 

equipment replacement, respectively. Furthermore, fIi, 

fMi, fMMi, and fF are the frequency occurrence of the 
inspection, minor maintenance, major maintenance, and 

equipment replacement, respectively. The annual costs 

of the PDM are shown in (31)-(34) respectively.  
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FC C F                       [$/years/Device] (34) 
 

Equation (35) Indicates the annual maintenance costs. 

The frequency occurrence of the PDM states is zero, if 

the PM is applied. 



Integrated Preventive and Predictive Maintenance Markov 
 

… A. Karimabadi et al. 
 

Iranian Journal of Electrical and Electronic Engineering, Vol. 16, No. 2, June 2020 222 

 

 

' '

'

3 3 3 3

1 2 1 2

3 3

1 2

( ) ( )

( )

i ii i

i i

Mai I M

I MI M
i i i i

MM R

MM

nt

Total

FMM
i i

C f f C f f

C f f C F

C
   

 

   

  

   

 
 

 

 
 

(35) 

 

4.2 Determining the Optimal Inspection Rates 

   Most of the literatures analyze a strategy where 

inspections and maintenance are performed with a 

constant rate, which is independent of the condition of 

the system. This means that the inspection rates in Fig. 2 

are equal having the same value [4, 5]. In some other 

applications [6, 10], however, state diagrams are used to 
model maintenance policies with non-periodic 

inspections where the inspection rate increases as 

deterioration increases. The inspection rate usually 

depends on the stage of deterioration of the equipment. 

In this paper, the optimal inspection rates are 

determined by minimizing the total maintenance cost 

in (35). For this, the inspection rates γ1, γ2, and γ3 are 

varied from minimum value, such as 0.1, to the 

maximum possible value. Using that, the optimal values 

of inspection rates γ1, γ2, and γ3 are determined at the 

minimum annual maintenance cost. It must be noted 
that the optimal inspection rates are determined in two 

situations, PM and the proposed Markov models. 

Therefore, proposed Markov model is implemented to 

determine the effect of the CM devices on the optimal 

inspections rates. The cost function (35) includes the 

following: 

 Costs of inspection, minor maintenance, and 

major maintenance in the PM. 

 Costs of inspection, minor maintenance, and 

major maintenance in the PDM. 

 Costs of replacing the equipment. 

 

5 Case Studies 

   In this section, the failures of CBs in the Khorasan 
Regional Electricity Company (KREC) in Iran, and the 

effect of applying the CM on CBs have been studied. To 

do so, a statistical study was first performed on the 

132kV CBs in KREC in Iran. The study was conducted 

during 4 years, from 2014 to 2017. The number of 

132kV substations is 111, with 471 CBs. CBs failures 

are reported by operators and signals presented at the 

substation and repaired by the maintenance team. In 

KREC, the CBs failures are divided into four categories: 

1. The failures that are corrected in scheduled 

outage;  

2. The failures that are corrected in on load repair; 
3. The failures that are corrected in emergency 

outage; 

4. The failures that cause the trip of the equipment. 

   Table 2 shows the set of failure occurred in 132kV 

CBs in KREC during the study period. Values Mx, Px, 

 
Table 2 The set of the failures occurred in 132kV-CBs in KREC. 

Sx Tx Ex Px Mx Rate Failure [1/Yr] Nu [/4Yr] Ax Failure factor 

1 1 0 0 0 0.016454 31 A1 

SF6 gas pressure low 1 0 1 0 0 0.005308 10 A2 

1 0 0 0 1 0.002654 5 A3 

1 1 0 0 0 0.003715 7 A4 

Hydraulic oil leakage 1 0 1 0 0 0.000531 1 A5 

1 0 0 0 1 0.000531 1 A6 

0 0 0 0 1 0.001062 2 A7 Indicator 

0 0 0 1 0 0.000531 1 A8 Door panel 

0 0 0 1 0 0.000531 1 A9 
Heater  

0 0 0 0 1 0.000531 1 A10 

0 0 0 1 0 0.002654 5 A11 
Numerator 

0 0 0 0 1 0.001592 3 A12 

0 1 0 0 0 0.001062 2 A13 Disconnect or connect coil 

0 1 0 0 0 0.001592 3 A14 
Spring charging mechanism 

0 0 0 1 0 0.001592 3 A15 

1 1 0 0 0 0.001062 2 A16 Sf6 gas leakage 

0 0 0 1 0 0.001062 2 A17 Manual command 

0 0 0 0 1 0.001062 2 A18 Panel micro switches 

0 1 0 0 0 0.002123 4 A19 
Contactor 

0 0 0 1 0 0.001062 2 A20 

0 0 1 0 0 0.000531 1 A21 Loose of connections 

0 0 0 0 1 0.000531 1 A22 False signal 

1 1 0 0 0 0.001062 2 A23 Arched and defective insulators 

1 1 0 0 0 0.009023 17 A24 

Heavy leakage of oil 1 0 0 1 0 0.003715 7 A25 

1 0 0 0 1 0.002123 4 A26 

0 0 0 0 1 0.001062 2 A27 Other 
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Table 3 The set of factors and number of the failure detected. 

Set of number of failures detected by the sensors Set of failures factors detected by the sensors Equation 

 
1

7,1,1, 2
s

n    
1

4 5 6 16
, , ,

s
A A A A A  

(18), (19)  
2

2
s

n    
2

23S
A A  

 
3

31,10,5,17,7,4
s

n    
3

1 2 3 24 25 26
, , , , ,

s
A A A A A A A  

 
1 2 3

31,10,5, 7,1,1, 2, 2,17, 7, 4
SEN s s s

n n n n      
1 2 3

1 6 16 23 26
: , , :

SEN s s s
A A A A A A A A A     (20), (21) 

 
Table 4 CB failure rates with the probability of failure of sensors. 

λPDM• [1/Yr] λTnew• [1/Yr] λPDM [1/Yr] λTnew [1/Yr] λT [1/Yr] CB 

0.048801 0.004808 0.048832 0.004777 0.036093 132KV 

 
Table 5 Transition rates of the Markov model. 

Proposed model PM Rate [1/year] 

1.8 1.7 γ1 

12 8.5 γ2 

12 12 γ3 

 

Ex, Tx, and Sx are in accordance with (10), (12), (14), 

(16), and (23). In addition, based on (8), (9), (11), (13), 

and (15), failures that are needed scheduled outage, 

failures that are corrected in the on loaded repair, 

failures that corrected by the emergency outage, and the 

outage failures are calculated. 

   Major failures are the results of minor failures. 

Therefore, the prediction of minor failures can easily 

avoid major failures, which ultimately results in less 

cost and irreversible incidents in high-voltage electricity 
substations [34]. One way to achieve this is CM. CM 

leads to early diagnosis of minor failures resulting in 

reduced outage failure of the CBs. Assume three sensors 

S1, S2, and S3 are installed on a circuit breaker. Sensor S1 

represents the acoustic emission sensor. Sensor S2 

represents the optical sensor and sensor S3 represents the 

radiation sensor. Table 3 shows the failure type and the 

number of failures that are detected by sensors. 

   λT in Table 4 indicates the outage rate of CB without 

CM and calculated by (15). The sensor failure 

probability is considered 0.001. λTnew and λPDM in 
Table 4 show the outage rate and PDM rate of CB 

without considering the sensor failure probability, 

according to (22) and (24). λTnew• and λPDM• show the 

outage rate and PDM rate of CB with considering 

sensor failure probability, according to (26). The outage 

rate of the circuit breaker decreases from 0.036093 f/yr 

to 0.004808 f/yr by CM. The PDM rate is 0.048801 f/yr. 

It must be noted that by considering the failure 

probability of sensors, the outage rate is increased and 

the PDM rate is decreased. 

   The PDM rate, λPDM•, is used as the smart inspection 

rate in the proposed Markov model in Fig. 2. The 
proposed Markov model is used to calculate the mean 

time to failure (MTTF), mean time to 

replacement (MTTRL), inspections cost, maintenance 

costs, and total cost. The mean duration of inspections, 

minor maintenances, major maintenances, and 

replacement in CBs 132KV are considered 1-hours, 1-

day, 3-day and 0.1-year, respectively. The costs of 

inspection, minor maintenance, major maintenance, and 

replacement are U.S. $250, 1000, 3500, and 40000, 

respectively. In addition, λ1, λ2, and λ3 are 0.33, 0.29, 

and 0.5, respectively. The terms γ1, γ2, and γ3 in Table 5 

show optimal inspection rates in the PM and the 

proposed Markov models. The inspection rates at KREC 

are performed periodically and once a year. By 

optimizing the inspection rates to reduce the total cost 
of the maintenance, the periodic inspection rates are 

obtained 2 per year, that is, every 6 months once. In Fig. 

3, Sensitivity analysis of inspection rate on the total cost 

of the maintenance in the PM and the proposed Markov 

models have been done. The periodic inspection rates in 

the PM and the proposed Markov models with a value 

of 2 and 1.9 [1/year] are optimized respectively. Figures 

4-6 show the variation of the total cost of the 

maintenance with γ1, γ2, and γ3 in the PM and the 

proposed Markov models. As can be seen in these 

figures, the results of the two models suggest 
possibilities of selecting optimal values for γ1, γ2, and γ3 

which minimize the total cost of the maintenance. The 

results of the PM and the proposed Markov models 

show that the optimal values of γ1, γ2, and γ3 which 

minimize the total cost of the maintenance exist 

between 0.1 to 12 per year (TMax = 12). 

   Table 6 compares the proposed Markov model with 

the PM model. Results show improvement of Markov 

model parameters by applying the proposed Markov 

model. According to the results, the inspection cost 

increases, while the maintenance and replacement cost 

decrease. The CM cost should be considered as an 
additional cost for the proposed Markov model. In 

Table 6 the installation cost of smart sensors is the 

difference between the total cost of the PM and the 

proposed Markov models. The proposed Markov model 

helps to calculate the lifetime of the CB by CM.
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Fig. 3 Total expected cost versus inspection rate. Fig. 4 Variation of the total cost of the maintenance with γ1. 

 

  
Fig. 5 Variation of the total cost of the maintenance with γ2. Fig. 6 Variation of the total cost of the maintenance with γ3. 

 
Table 6 Probability indices and costs for maintenance models. 

State 

Periodic & non-optimal 

γ1 = γ2 = γ3 = 1 [1/year] 

Periodic & optimal PM: γ1 = γ2 = γ3 = 2 [1/year] 

Proposed model: γ1 = γ2 = γ3 = 1.9 [1/year] 
Non-periodic & optimal 

PM Proposed model PM Proposed model PM Proposed model 

MTTRL [years] 36.8732 49.0081 84.8301 115.1851 105.3056 122.3197 

MTTF from S1 [years] 36.7662 48.9012 84.7231 115.0782 105.1987 122.2127 

MTTF from S2 [years] 33.7356 45.8706 81.6921 112.0472 102.1678 119.1818 

MTTF from S3 [years] 24.8857 32.5678 67.7879 90.2871 81.70193 96.41642 

Inspection cost [$/years] 233.1865 252.2502 498.4654 475.8864 462.3336 459.1905 

Maintenance cost [$/years] 523.7372 365.4864 609.6895 397.1379 629.6931 397.3237 

Replacement cost [$/years] 1084.799 816.1905 471.531 347.2672 379.8467 327.012 

Total cost of maintenance 

[$/years] 

1841.723 1433.9271 1579.6859 1220.292 1471.873 1183.526 

Sensor cost [$/years] 0 407.7959 0 359.3939 0 288.347 

 
Table 7 The probability of being in each state. 

Number State Probability in PM Probability in proposed model Number State Probability in PM Probability in proposed model 

1 S1,1 0.82062 0.847669 11 S3,1 0.017938 0.016148 

2 I1 0.000159 0.000174 12 I3 4.65E-06 3.60E-06 

3 S2,1 0.136083 0.130789 13 M3 1.12E-05 4.31E-05 

4 I2 4.72E-05 3.11E-05 14 MM3 0.000328 0.000194 

5 M2 0.001133 0.000746 15 S3,2 0.000691 7.07E-05 

6 MM2 0.00017 4.47E-05 16 S3,3 0.000363 0.000132 

7 S2,2 0.021437 0.003059 17 I'
3 0 9.11E-08 

8 I'
2 0 7.46E-07 18 M3 0 2.16E-06 

9 M'
2 0 1.79E-05 19 MM'

3 0 3.90E-07 

10 MM'
2 0 5.97E-07 20 F 0.001015 0.000874 

 

The lifetime of the CB increases by the proposed 
Markov model. Table 6 shows the lifetime of the CB in 

the periodic inspection rates and non-optimal increased 

by 12.1350 years and in the periodic inspection rates 

and optimal increased by 30.355 years and in the non-

periodic inspection rates and optimal increased by 

17.0141 years. 

   In Table 7 the probability of being at replacement 

state F in the non-periodical inspection rates and 
optimal has been calculated. The probability of being at 

replacement state F decreases in the proposed Markov 

model, as indicated in Table 7. On the other hand, the 

probabilities of states S1, S2, and S3 increase in the 

proposed Markov model. In fact, by CM, the aging 

process of equipment is delayed and the equipment 

needs to replace later. Bolded values in Table 7 show  
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Table 8 Frequency to going to major maintenances [1/year]. 

 FMM (The proposed Markov model) FMM (PM) 
Frequency MM2 F6=0.0054 F6= 0.0206 

Frequency MM'2 F10=0 F10=0 
Frequency MM3 F14=0.0236 F14=0.0399 

Frequency MM'3 F19=0 F19=0 

 

that the probabilities of being in major maintenance 

states In the proposed Markov Model decrease 

significantly compared to the PM. Moreover, the 

frequencies of going to major maintenances in the 

proposed Markov model have a significant reduction 

compared to the PM, in Table 8. 

 

6 Conclusion 

   By CM and early detection of minor failures, the 
PDM can be added to the PM schedule. Therefore, the 

integrated preventive and predictive maintenance 

scheduling was presented and modeled in three steps in 

this paper. The equipment failures were classified and 

modeled into 4 types of failures in the first step. This 

formulation investigated the effect of CM on the outage 

rate and PDM rate of the equipment. In the presented 

formulation, the failure probability of sensors was also 

modeled. The second step involves the usage of the 

proposed Markov model. Then, the optimal inspection 

rates in the PM and the proposed Markov models are 

determined by minimizing the total maintenance cost. In 

the third step, the failures of CBs in the KREC in Iran 

and the effect of applying smart sensors on them have 

been studied. The obtained results verify that the 

proposed Markov model not only decreases the outage 

rate of the CBs decreased, but also significantly 

increases the lifetime of CBs. 
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