
 

Iranian Journal of Electrical and Electronic Engineering, Vol. 16, No. 2, June 2020 137 

 

Iranian Journal of Electrical and Electronic Engineering 02 (2020) 137–145 

 

Capacity Bounds and High-SNR Capacity of the Additive 

Exponential Noise Channel With Additive Exponential 

Interference 
 

M. Monemizadeh*(C.A.), H. Fehri**, Gh. Abed Hodtani***, and S.Hajizadeh**** 
 

 
Abstract: Communication in the presence of a priori known interference at the encoder has 

gained great interest because of its many practical applications. In this paper, additive 

exponential noise channel with additive exponential interference (AENC-AEI) known non-

causally at the transmitter is introduced as a new variant of such communication scenarios. 

First, it is shown that the additive Gaussian channel with a priori known interference at the 

encoder when the transmitter suffers from a fast-varying phase noise can be modeled by the 

AENC-AEI. Then, capacity bounds for this channel under a non-negativity constraint as 
well as a mean value constraint on input are derived. Finally, it is shown both analytically 

and numerically that the upper and lower bounds coincide at high signal to noise ratios 

(SNRs), and therefore, the capacity of the AENC-AEI at high SNRs is obtained. 

Interestingly, this high SNR-capacity has a simple closed-form expression and is 

independent of the interference mean, analogous to its Gaussian counterpart. 
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1 Introduction1 

N the information theory, the Gaussian channel is the 

most important, popular and widely analyzed 

continuous alphabet channel. The main reasons are as 

follows [1-4]: 

 The Gaussian channel provides a simple model for 

several real-world communication channels.  

 The Gaussian distribution plays a key role in 

                                                        
Iranian Journal of Electrical and Electronic Engineering, 2020. 

Paper first received 07 September 2018, revised 06 August 2019, and 

accepted 10 August 2019. 

* The author is with the Department of Electrical Engineering, 

University of Neyshabur, Neyshabur, Iran. 

E-mail: monemi@neyshabur.ac.ir. 

** The author is with the Department of Electrical Engineering, 

University of Zabol, Zabol, Iran. 

E-mail: hamedfehri@uoz.ac.ir. 

*** The author is with the Department of Electrical Engineering, 

Ferdowsi University of Mashhad, Mashhad, Iran. 

E-mail: hodtani@um.ac.ir. 

**** The author is with the Department of Electrical and Computer 

Engineering, University of Illinois at Chicago, Chicago, USA. 

E-mail: shajiz2@uic.edu. 

Corresponding Author: M. Monemizadeh. 

achieving simple closed-form expressions for the 

Gaussian channel capacity and some information-

theoretic quantities.  

 Among variance-constrained random variables 

(RVs), the Gaussian distribution maximizes 

differential entropy.  

 For an additive channel with the Gaussian input (and 

a given average power), the Gaussian noise is the 

worst noise.  

   As demonstrated in [3, 4], the exponential channel is 
of interest because of sharing a number of analogous 

traits: 

 The exponential channel has applications in optical 

communications and non-coherent communications.  

 The exponential distribution plays a key role in 

achieving simple closed-form expressions for the 

exponential channel capacity and some information-

theoretic quantities.  

 Among all nonnegative RVs with a given mean, the 

exponentially distributed RV is the differential 

entropy-maximizing one.  

 For an additive channel with a non-negative additive 

noise (and a given mean), the exponential noise is 

the worst noise.  

I 
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   Specifically, Verdu in [3] obtained the capacity of the 

additive exponential noise (AEN) channel and the 

capacity-achieving (optimal) input distribution. He 

showed that  

 The capacity of the AEN channel in terms of the 

signal-to-noise ratio (SNR) is log(1+SNR). This 

capacity is completely analogous to the capacity of 

the complex-valued additive white Gaussian noise 

(AWGN) channel.  

 The capacity-achieving input distribution in the 
AEN channel is not purely exponential, while the 

optimal input distribution in the AWGN channel is 

Gaussian, the same distribution that the noise has.  

   In spite of a number of notable similarities between 

the exponential channel and Gaussian channel [3, 4], 

there are basic and intrinsic differences between them 

due to a few reasons. One of the main reasons is that the 

sum of two independent Gaussian RVs is a Gaussian 

RV, while the sum of two independent exponential RVs 

is not an exponential RV, especially when the two 

added RVs have different mean values. Another reason 
is that in contrast to a Gaussian RV, an exponential RV 

is distributed only on the right-hand side of the 

Euclidean two-dimensional space. Therefore, for 

exponential RVs, we cannot enjoy the flexibilities that a 

symmetric system brings into the hand. 

   The “dirty paper channel” is a famous group of 

communication channels in which, besides noise, the 

transmitted signal is also corrupted by a priori known 

interference [5-12]. The study of such channels is of 

interest because of capability of the transmitter in 

mitigating the negative effect of the interference and 

improving data-rate. The multiple-input multiple-
output (MIMO) broadcast channels, cooperative 

networks, intersymbol interference (ISI) precoding, 

watermarking and storage systems with defective cells 

are a few application areas of the dirty paper 

channel [1]. 

   Costa [5] introduced the Gaussian dirty paper channel 

in which the transmitted signal is corrupted by an 

additive white Gaussian noise as well as an additive 

white Gaussian interference (AWGI). This Gaussian 

interference (dirt) is assumed to be a priori known at the 

encoder. Here, we denote Costa’s dirty paper channel 
which is indeed a dirty AWGNC with Gaussian dirt by 

AWGNC-AWGI, for convenience. Costa showed 

the surprising result that the capacity of the AWGNC-

AWGI is the same as the capacity of the interference-

free AWGNC (clean AWGNC). This means that the 

optimal encoder can adapt its signal to a priori known 

interference and completely eliminate the negative 

effect of the interference [5]. 

 

1.1 Our Motivation and Work 

   As mentioned in [4, 13, 14], the AEN channel has 

practical importance in non-coherent communication 
settings and in optical communication scenarios. One 

communication scenario in which the AEN channel 

appears as its natural model is the continuous-time 

Gaussian channel when the transmitted signal suffers 

from a fast-varying phase noise. Due to the incoherency 

between signal and noise components, information can 

only be sent by modulating the signal energy. In this 

case, the receiver uses a non-coherent detector, inspired 

in optical direct detection, to recover the transmitted 

information. Moreover, as mentioned above, knowing 

the interference at the transmitter leads to better 

communications performance. 
   In this paper, we introduce the AEN channel afflicted 

by an extra additive exponential interference (AEI) in 

which full knowledge of the additive interference is 

given to the transmitter. This channel, denoted here by 

AENC-AEI, is, in fact, an exponential version of the 

Costa’s dirty paper channel. Similar to [3, 4], the input 

of the AENC-AEI is assumed to be a non-negative real 

RV and is also subject to a mean value constraint. By 

extending the Gelfand-Pinsker capacity Theorem [16], 

we obtain lower and upper bounds on the capacity of the 

AENC-AEI. Then, we write the lower bound in terms of 
an infinite series which coincides with the upper bound 

at high SNR and hence, the capacity of the channel at 

high SNRs is derived. Interestingly, this high SNR-

capacity, which is independent of the interference mean, 

has a simple closed-form expression, analogous to its 

Gaussian counterpart. Some numerical results are also 

provided to evaluate the proposed bounds. 

 

1.2 Paper Organization 

   We begin by describing a communication scenario 

that models the AENC-AEI in Section 2. All main 
results are presented in Section 3, where we first derive 

lower and upper bounds on the capacity of the AENC-

AEI. Then, we show both analytically and numerically 

that the upper and lower bounds coincide at high SNRs. 

In Section 4, the exact evaluation of the lower bound is 

given. Finally, Section 5 concludes the paper. 

 

2 The AENC-AEI Model and Direct (Non-

Coherent) Detection  

   In this section, we describe a communication scenario 

that its discrete-time model is the AENC-AEI. In this 

paper, Gaussian variables are assumed to be zero-mean 
and complex-valued. 

   In [4] Martinez has shown how an AWGN channel 

with an extra phase noise may lead to an AEN channel. 

Similarly, we briefly show here that an AWGNC-AWGI 

with an extra fast time-varying phase noise leads to an 

AENC-AEI. To do this, consider a continuous dirty 

AWGNC with Gaussian dirt (AWGNC-AWGI ) 

modeled by 
 

       .y t x t s t z t    (1) 
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In (1), x(t) and y(t) are transmitted and received signals, 

respectively, z(t) is an AWGN, and s(t) is an additive 

Gaussian interference known non-causally at the 

transmitter and is independent of z(t). This additive 

interference can be considered as a part of noise that the 

encoder is informed of it or can be an interfering signal 

sent by the neighboring transmitter which is known a 

priori to the main transmitter [1, 5]. 

   To obtain the discrete-time variant of the channel (1), 

we can decompose the signals in (1) using a set of 

orthonormal functions ψ(t), k = 0, 1, … (like Fourier 
decomposition). For example, the signal y(t) can be 

decomposed as 
 

   .k k

k

y t y t  (2) 

 

Discretization in (2) can be considered as the Fourier 

decomposition of y(t) in which y'k is the k-th Fourier 

mode (component) and is actually the projection of y(t) 

onto the ψk(t).  

   In coherent detection, the receiver uses a bank of 

correlators to calculate the received signal components 

y'k (k = 0, 1, …). The output of the k-th correlator is 
 

   *

0

T

k k k k ky t t dt y x s z         (3) 

 

where, ψk
*(t) is the complex conjugate of ψk(t), x'k, s'k, 

and z'k are the k-th components of the transmitted signal, 

interference and noise, respectively. As seen in (3), the 

desired component x'k is corrupted by the interference 

and noise components. Note that y'k, x'k, s'k, and z'k are 

complex numbers. In addition, since s(t) and z(t) are 

Gaussian random processes, s'k and z'k are Gaussian 

RVs. Therefore, expression (3) shows the discrete-time 

complex-valued AWGNC-AWGI. 

   Phase noise in oscillators can (severely) degrade the 

performance of communication systems. Multiple-input 

multiple-output (MIMO) systems ([17]) and orthogonal 

frequency division multiplexing (OFDM) systems ([18]) 

are two important instances of such systems. Optical 

communication systems are another significant instance 

in which phase noise is often a serious impairment. To 

consider such a noise in a communication system, it is 

sufficient to replace the transmitted signal x(t) by ([4, 
19, 20]) 
 

     .kj t

k k

k

x t x e t


  (4) 

 

In (4) the phase noise θk(t), which is modeled by a 

continuous Brownian motion (Wiener) process ([4, 19, 

20]), is a Gaussian process with zero mean and 

Var[θk(t)] 2βkt, βk ≥ 0 [19, 21, 22]. Therefore, when the 

received signal is degraded by the phase noise, additive 

interference and noise, the k-th component of the 

received signal is 
 

 
.kj t

k k k ky x e s z
       (5) 

 

In the presence of the fast time-varying phase noise (i.e., 

when βkT → ∞), coherent detection fails to detect the 

transmitted signal because in this case, the transmitted 

(desired) signal x(t) at the k-th correlator appears as 
 

      

 

*

0

0

1

1

k

k

k

T
j t

k k k

TT
ktk

k

x e t t dt
T

x ex
e dt

T T







 







 
 

 

 
 




 

 

 

 

(6) 

 

This shows that for βk > 0, if T → ∞, then 

 1
0

k
T

k

k

x e

T





 
 , and therefore, the coherent detector 

cannot detect the desired signal. Note that to obtain the 

first equality in (6) we have used 
 k k

j t t
e e

 
   which 

can be proved by considering the characteristic function 

of a Gaussian RV and the point that θk(t) is a Gaussian 

process with zero mean and Var[θk(t)] 2βkt [21,22]. 

   A solution to the problem of vanishing the desired 

signal x(t) at the k-th correlator in the presence of the 

fast time-varying phase noise (due to coherent 

detection) is to use a direct detection receiver with a 

bank of Mach-Zehnder interferometers (Fig. 1) [4]. 

Similar to [4], we can show that the bank of Mach-

Zehnder interferometers acts as a demultiplexer and 

produces a collection of parallel signals ξk(t) as 
 

       ,         1,2,kj t

k k k k kt x e s z t k


      
 

(7) 

 

   As shown in Fig. 1, after passing the signal ξk(t) 

through an envelope detector and integrating over (0, T), 

the output y'k is generated as 
 

 

    

 
  

2

0

2 2 2

* *

0

2 2 2

* *

1

2
Re

2 1
Re .

k

k

T

k k

k k k

T
j t

k k k

k k k

T

k k

k

y t dt
T

x s z

x e s z dt
T

x s z

e
x s z

T











 
   

 

    

    
 

    


   





 

 

 

 
 

 

 

 

 

 

(8) 

 

By considering (8), we see that in the presence of the 

fast time-varying phase noise (i.e., βkT → ∞), the output 

y'k tends to the sum of the energies of the transmitted 

signal, interference and noise, that is 
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Fig. 1 Direct detection using a bank of Mach-Zehnder 

interferometers. 

 
2 2 2

lim .
k

k k k k
T

y x s z
 

       (9) 

 

   Now, let xk = |x'k|2, sk = |s'k|2 and zk = |z'k|2, i.e., 

unprimed letters denote the signal energies and primed 

letters denote the corresponding complex amplitudes. In 

this case, sk and zk are exponentially distributed because 

the energies |s'k|2 and |z'k|2 are the squared amplitudes of 

circularly-symmetric complex Gaussian variables. 

Moreover, if we define the energy of a variable as its 

squared amplitude, then the average energy of the 

interference component s'k and noise component z'k are 

the mean of the interference component sk and noise 

component zk, respectively, i.e.,  
2

k k s
S S    

   

and  
2

k k z
Z Z    

  . Therefore, in the presence 

of the fast time-varying phase noise and using direct 

detection, the variance-constrained complex-valued 

AWGNC-AWGI leads to the mean-constrained non-

negative real-valued AENC-AEI. In the AENC-AEI, 

output yk is an energy and defined as the sum of the 

energies of x'k, s'k and z'k, that is, yk = xk + sk + zk. 

   The relationship between the AWGNC-AWGI and its 

AENC-AEI counterpart is shown in Fig .2. Note that in 

Fig. 2, the primed letters are AWGNC-AWGI variables 

and unprimed letters are AENC-AEI variables. Also, 

s'k ~ CN(0, Εs) means that s'k is a complex Gaussian 

(Normal) RV with mean 0 and variance Εs, and 

sk ~ exp(Εs) means that s'k is an exponential RV with 

mean Εs. Similar notation is used for z'k and zk. It is 

worth noting that an average energy constraint (e.g., 

2

1

1 n

x

k

kx E
n 

  ) in the complex-valued AWGNC-

AWGI corresponds to a mean constraint (i.e., 

1

1 n

i x

i

X E
n 

 ) in its AENC-AEI counterpart. Therefore, 

the discrete-time AENC-AEI, depicted in Fig. 2, can be 

modeled by 
 

 ,       1,2, , .k k k kY X S Z k n     (10) 
 

where zk is the k-th component of additive exponential 
 

 
Fig. 2 AENC-AEI model and its AWGNC-AWGI counterpart. 

 

noise with mean Ez and sk is the k-th component of 

additive exponential interference with mean Es, known a 

priori at the encoder and independent of zk, the k-th 

components of input Xk and output Yk are non-negative 

real numbers. Also, the channel input X is subject to 

input mean constraint Ex. 

Background and Notation Conventions: Fix positive 

scalars Ex, Es, and Ez. Let S and Z be two independent 

exponential RVs with means Es and Ez, respectively, 

and X be a non-negative RV subject to a mean 

constraint Ex. Moreover, let X̄ be a non-negative RV, 

independent of S and Z, and with mean Ex and a mixed 

distribution as (the capacity-achieving input distribution 

of the AEN channel [3,4]) 
 

   
 

 
2

 x z

x

E Ez x

X

x z x z

E E
f x x e u x

E E E E





 

 
 (11) 

 

where δ(x) is the Dirac delta function and u(x) is the unit 

step function. The Laplace transform of the mixed 

distribution fX̄(x) is 
 

    

 

0

1
.

1

sx

X X

z x

x z x z x z

f x e f x dx

E E

E E E E E E s




 
   


 

 
 

(12) 

 

It is easy to show that the random variable T = X̄ + Z is 

exponentially distributed with mean Et = Ex + Ez. 

Throughout this paper, h(.) denotes the differential 

entropy, Y = X + S + Z and Ȳ = X̄ + S + Z. 

   Gelfand and Pinsker [16] showed that the capacity of 

a single-user discrete memoryless channel with side 
information, when side information sequence Sn is non-

causally available at the transmitter, is given by 
 

    
( , | )
max ; ; .

p u x s
C I U Y I U S   (13) 

 

In (13) the maximum is over all joint distributions 

p(s, u, x, y) that factor as p(s)p(u, x|s)p(y|x, s) and U is 

an auxiliary RV. Note that the channel is characterized 

by a conditional probability p(y|x, s) and by the state 

probability p(s) and U → S, X → Y form a Markov 

chain [1]. Also Note that although (13) has been derived 

for the discrete memoryless case but, as mentioned 
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in [5] and [23], it can be extended to memoryless 

channels with discrete-time and continuous alphabets 

(AENC-AEI in this case) by finely quantizing the 

continuous variables [24]. The Gaussian version of the 

Gelfand-Pinsker problem was studied by Costa in [5], 

where he surprisingly showed that the capacity of the 

AWGNC-AWGI is equal to the capacity of the 

interference-free AWGNC. 

 

3 Lower and Upper Bounds on the Capacity of the 

AENC-AEI 

   We here derive upper and lower bounds on the 

capacity of the AENC-AEI which coincide with each 

other at high SNRs and hence the high SNR-capacity of 

the AENC-AEI is obtained. 

 

3.1 An Upper Bound on the Capacity of the AENC-

AEI 

Theorem 1.  log 1 log 1 SNRx

out

z

E
C

E
  

 
 
 

 is an 

upper bound on the capacity of the AENC-AEI. 

Proof. By considering a genie which reveals Sn to the 

receiver, we can reach to Cout which is equal to the 

capacity of the interference-free AEN channel, that is 
 

 
( | )

max ; |
p x s

C I X Y S   

    
( | )

max
p x s

h X h ZC Z    (14) 

   h X h ZC Z    (15) 

log 1 x

z

E

E
C

 
  

 
 (16) 

 

where (14) follows from the facts that (i) Y = X + S + Z, 

(ii) conditioning does not increase entropy and (iii) Z is 

independent of X and S, (15) follows from the facts that 

(i) for a fixed p(z), the maximization in (14) is done 

only over h(X + Z), (ii) random variable T ≜ X̄ + Z is 
exponentially distributed ([3,4]) and (iii) the exponential 

distribution maximizes the entropy for a given mean 

constraint ([2]), (16) follows from the facts that the 

differential entropy of the exponential distribution with 

mean E is equal to log(Ee) [3]. Note that the upper 

bound Cout holds for all U and X. 

 

3.2 A Lower Bound for the Capacity of the AENC-

AEI 

Theorem 2. Cin defined in (17) is a lower bound on the 

capacity of the AENC-AEI, where 
1 1

s x z

A
E E E

 


, 

  
s z x z

x s

E E E E
B

E E

 
 ,  

1

s x z

k k
F k

E E E


 


, and 

 
1

x z s

k k
G k

E E E


 


. 

Proof. First note that by using any distribution for input 

RV, we can obtain a lower bound for the capacity. To 

obtain a lower bound, we choose X = X̄ and utilize the 
Costa strategy at high SNR, i.e., define U = X + S. 

Therefore, considering (5) and (13) we can write: 
 

    
( , | )
max ; ;

p u x s
C I U Y I U S    

    
* ( , | )

max ; ;
p u x s

I UC Y I U S   (18) 

        
* ( , | )

max | |
p u x s

h Y h Y U h U h U SC       

        inh X S Z h Z h X SC h X C      
 

(19) 
 

where p*(u, x|s) is a subset of the set of all distributions 

p(u, x|s) in which X = X̄ and thereupon U = Ū = X̄ + S. 

Note that choosing X = X̄ makes X̄ + Z an exponential 

RV that maximize h(X + Z) subject to a mean 

constraint [2]. Before exact evaluation of Cin (in Section 
4), we show that at high SNRs, term {h(X̄ + S + Z) – h(X̄ 

+ S)} tends to zero and therefore, Cin coincides with Cout 

and gives the AENC-AEI capacity at high SNRs. 

 

3.3 The Capacity of the AENC-AEI at High SNRs 

Theorem 3.  log log SNRx

hsnr

z

E
C

E


 
 
 

 is the capacity

 

 

 

 

 
  

2

1

log log 11
log 1

, 0 ,  1 1
1

log log
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log

kk
s zx x z x

z x

zz sx z

kx z x z s

x z
x z z

in x s z x zz

x z s s z

B E EE E E B E
E E

EE EE Ee
A B

E E E E E k F k F k

E E
E E eE

C E E E E EE e

E E E E E





      
       
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of the AENC-AEI at high SNRs. 

Proof. We can easily see from (11) that at high SNRs, 

fX̄(x) gets closer to an exponential distribution. In other 

words, fT(t) tends to fX̄(x) as SNR increases and gets 

closer to infinity. Therefore, h(T + S) tends to h(X̄ + S) 

as SNR tends to infinity. Consequently, we can evaluate 

the lower bound (19) at high SNRs as 
 

     
SNR
lim log SNR .inC h X h Z


    (20) 

 

By considering (16) and (20) we obtain the capacity of 

AENC-AEI at high SNRs which is equal to the capacity 

of interference-free AENC. 

Remark 1: From the Theorems, we see that there are 

some similarities between the AENC-AEI and its 

Gaussian counterpart (i.e., the complex-valued 

AWGNC-AWGI): (i) the high SNR-capacity of both 
channels (i.e., Chsnr) is completely analogous (in terms 

of the SNR) and has a simple closed-form expression 

which is given by log(SNR); (ii) in the AENC-AEI 

(resp. in the complex-valued AWGNC-AWGI) the 

capacity Chsnr is independent of interference mean (resp. 

interference variance) and is attained by an exponential 

input (resp. a Gaussian input) that satisfies the mean 

constraint (resp. the variance constraint). 

 

3.4 Numerical Results 

   We here compute the upper and lower bounds of the 

capacity of AENC-AEI shown in (16) and (17), 
respectively. Fig. 3 depicts the capacity bounds and 

capacity gap of AENC-AEI for two values of Ez = 102 

and Ez = 104. It is seen that the lower bound coincides 

with the upper bound at high SNRs and hence, gives the 

capacity of AENC-AEI at high SNRs. As seen in Fig. 3, 

at high SNRs the capacity is linearly increasing in SNR, 

because Chsnr = log(SNR) and SNR is in dB in this 

figure. 

 

4 Exact Evaluation of Cin 

   We now calculate each entropy term h(.) in (19) 
separately. The random variable Z has an exponential 

density as    
1

 z

z

E

Z

z

f z e u z
E



  with differential 

entropy h(z) = log(eEz). Note that u(z) denotes the unit 

step function. Considering (11), the differential entropy 

of X̄ is 
 

 

 
2

log

log

z z

x z x z

x zx

x z x

E E
h X

E E E E

e E EE

E E E

 
  

  

 
 
 
 

 

 

 
 

(21) 

 

   To calculate h(Ȳ) we need to find the probability 

density function (PDF) of the random variable 

Ȳ = X̄ + S + Z. The random variable T = X̄ + Z has an  
 

 
(a) 

 
(b) 

Fig. 3 Capacity bounds and capacity gap of AENC-AEI for 
two values of a) Ez = 102 and b) Ez = 104. 

 

exponential PDF with mean Ex + Ez. Therefore, the 

Laplace transform of the PDF of the random variable 

Ȳ = T+ S is 
 

  
   

1

1 1

sx z

Y

x z s x z s

EE E
f y

E E E E E s E s


 

    

 
 
 

 

(22) 

 

where, (22) follows from the facts (i) the PDF fȲ(y) is 

given by the convolution of the PDFs fT(t) and fS(s), (ii) 

the Laplace transform of the convolution of two 

functions is equal to product of their Laplace 

transforms, and (iii) the Laplace transform of an 

exponential PDF with mean μ is 1/(1+μs). By applying 

the inverse Laplace transform to (22) we have 
 

   
1

.sx z

yy

EE E

Y

x z s

f y e e u y
E E E




 

  
    

  (23) 

 

where, (23) follows from the fact 

 
1 1

t

K K
Ke u t

s
s










 




  
 
  

. Consequently, 

 
0

log
s sx z x z

y yy y

E EE E E E

x z s x z sy

e e e e
h Y dy

E E E E E E

  

 



   
    

           
   



  

(24) 

 

   Before evaluating the integral of (24), we need to 
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express the Taylor series of the ln(1+x) around x = 0. 

Remark 2: The Taylor series of the ln(1+x) around 

x = 0 (Maclaurin series) is: 
 

 
 

1

1

1
ln 1 ,     1 1

k

k

k

x x x
k







       

(25) 

 

   Note that the series approximation converges to the 

function only in the region –1 < x ≤ 1. 

By considering the convergence region of ln(1+x) and 

also knowing that y > 0, the term ln sx z

yy

EE E
e e






 
 
 
 

 in 

(24) can be written as  ln   1x z

y

E E yA
e e



 


 
  
 

 for A > 0 and 

as  ln   1s

y

E yA
e e



 
 
 
 
 

 for A < 0, where 

1 1

s x z

A
E E E

 


. We first calculate h(Ȳ) for A > 0. 

Utilizing Remark 2, if A > 0 (or equivalently 

Ex + Ez > Es) then ln(1-e–ya) = 
1

kyA

k

e

k





 . Therefore, for 

A > 0 we have 
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(26) 

 

where F(k) 
1

s x z

k k

E E E


 


. Similarly, for A < 0 (or 

equivalently Ex + Ez < Es): 
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(27) 

 

where  
1

x z s

k k
G k

E E E


 


. Finally, to calculate 

h(Ū), we should find the PDF of the random variable 

Ū = X̄ + S. Using Laplace transform we have  
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(28) 

 

By applying the inverse Laplace transform to (28) we 

obtain 
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Consequently, 
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Similar to the expansion of (24), considering the 

convergence region of ln(1 + x) and knowing that u > 0, 

the term ln sx z

uu

EE E s zx
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E EE
e e

E E E
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
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 in (30) can 

be written as  ln 1x z
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–1 ≤ 1/B < 1 where A is as before and 
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Therefore, for A > 0 and –1 ≤ B < 1 we have 
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where F(k) is the same as before. Similarly, for A < 0 

and –1 ≤ 1/B ≤ 1, h(Ū) is 
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(32) 

 

where G(k) is the same as before. Therefore, the lower 

bound for the capacity of AENC-AEI is obtained as 

shown in (17). Note that the lower bound (17) tends to 

the lower bound (20) as SNR = Ex/Ez tends to infinity. 

This was also shown numerically in the previous 
section. 

 

5 Conclusion 

   We first introduced the exponential version of the 

Costa’s dirty paper channel (denoted by the AENC-

AEI) and modeled a noncoherent communication 

scenario by the AENC-AEI. We then derived upper and 

lower bounds on the capacity of the AENC-AEI that 

coincide at high SNRs. Hence the high SNR-capacity of 

the channel is established which is completely parallel 

to its well-known Gaussian counterpart. 
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