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Abstract: Accurate gender classification is useful in speech and speaker recognition as 

well as speech emotion classification, because a better performance has been reported when 

separate acoustic models are employed for males and females. Gender classification is also 

apparent in face recognition, video summarization, human-robot interaction, etc. Although 

gender classification is rather mature in applications dealing with images, it is still in its 

infancy in speech processing. Age classification, on the other hand, is also concerned as a 

useful tool in different applications, like issuing different permission levels for different 

aging groups. This paper concentrates on a comparative study of gender and age 

classification algorithms applied to speech signal. Experimental results are reported for the 

Danish Emotional Speech database (DES) and English Language Speech Database for 

Speaker Recognition (ELSDSR). The Bayes classifier using sequential floating forward 

selection (SFFS) for feature selection, probabilistic Neural Networks (PNNs), support 

vector machines (SVMs), the K nearest neighbor (K-NN) and Gaussian mixture model 

(GMM), as different classifiers, are empirically compared in order to determine the best 

classifier for gender and age classification when speech signal is processed. It is proven that 

gender classification can be performed with an accuracy of 95\% approximately using 

speech signal either from both genders or male and female separately. The accuracy for age 

classification is about 88%. 
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1 Introduction 1 

Automatic speech recognition and speaker verification 

can be successfully accomplished under rather highly 

constrained conditions [1]. Factors that limit speech and 

speaker recognition systems include the inability to 

identify acoustic features sensitive to the task and yet 

robust enough to accommodate speaker articulation 

differences, prosodic variations, vocal tract differences, 

that influence recognition ability [1]. An automatic 

gender classifier assists the development of improved 

male and female voice synthesizers [2–4]. One should 

bear in mind that gender information is time-invariant, 

phoneme-independent, and identity-independent for 

speakers of the same gender [1]. In [5], an accent 

classification method is introduced on the top of gender 

classification. Vergin et al. claim that the use of gender-
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dependent acoustic-phonetic models reduces the word 

error rate of the baseline speech recognition system by 

1.6% [6]. In [7], a set of acoustic and pitch features 

along with different classifiers is tested for gender 

identification. The fusion of features and classifiers is 

shown to perform better than any individual classifier. 

A gender classification system is proposed in [8] 

based on Gaussian mixture models of speech features. 

Metze et al. have compared four approaches for age and 

gender recognition using telephone speech [9]. Gender 

cues extracted from the speech signal are useful in 

content-based multimedia indexing as well [7]. Gender-

dependent speech emotion recognizers have been shown 

to perform better than gender-independent ones for five 

emotional state [10, 11] in the Danish Emotional Speech 

Database (DES) [12]. However, gender information is 

taken for granted there. The most closely related work 

to the present one is that of Xiao et al. [13], where 

gender classification was incorporated in emotional 

speech recognition system using a wrapper approach 

based on back-propagation neural networks with 
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sequential forward selection. An accuracy of 94.65% 

was reported for gender classification in the Berlin 

dataset [14]. 

The interest in gender classification is not limited to 

speech processing. A successful gender classification 

approach can boost the performance of many other 

applications including face recognition or human-

computer interfaces [3]. A remarkable success has been 

achieved in biometric person authentication, such as 

face detection and recognition. Moghaddam et al. have 

employed support vector machines (SVMs) for visual 

gender classification [15]. A gender classifier with good 

performance using frontal facial images has been 

reported in [16]. An experimental study on automatic 

face gender classification is presented in [17] where a 

system is built that mainly consists of four parts: face 

detection, face alignment, texture normalization, and 

gender classification. Kim et al. have investigated the 

discrimination between facial images of men and 

women [18]. Gender classification is considered as a 

fundamental estimation problem, where classification is 

achieved by boosting local binary pattern-based 

classifiers [19]. An automated system classifying gender 

by utilizing a set of human gait data is proposed in [20]. 

The problem of gender classification has burgeoned at a 

rapid rate in the past decade and widely studied in 

psychology. Algorithms employed by humans in order 

to classify facial images with respect to their gender are 

investigated in [21]. 

Age, on the other hand, is concerned as an important 

automatic classification parameter in lots of 

applications, e.g., permitting special age groups to get 

access to special premises, or issuing different prices 

when buying goods for different aging groups. It has 

also been stated by many researchers [22–27]. The 

proposed method in [24] by Schotz estimates speaker 

age with an aim at increasing the phonetic knowledge of 

age. Acoustic features are extracted from the four 

phonemes of the Swedish word /ra:sa/ (collapse) 

produced by 428 adult Swedish speakers, and then used 

to build classification and regression trees for prediction 

of age, age group and gender. Minematsu et al. in [28] 

carried out age estimation tests with 30 listeners for 400 

male speakers, and then used two methods to model the 

speakers with GMMs (Gaussian Mixture Models) [24]. 

Kwon et. al. in [29] present a theory and practical 

computations for visual age classification from facial 

images for three age groups of a baby, young adult, and 

senior adult. An age group classification system for 

gray-scale facial images is proposed in [30]. Four age 

groups, including babies, young adults, middle-aged 

adults, and old adults, are used in their classification 

system. A framework of age-group classification using 

facial images under various lighting conditions is 

reported in [31]. Age classification based on speech has 

been reported in [9, 32–34]. 

The aforementioned research motivated us to 

employ several classifiers and assess their performance 

in gender and age classification by processing emotional 

speech, i.e. utterances from DES database [12] as an 

emotional speech and ELSDSR [35] which is a normal 

speech database. The author has already investigated 

gender classification in emotional speech [4]. In this 

paper, different classifiers are examined on both 

databases, such as the Bayes classifier with sequential 

floating forward feature selection (SFFS) [36, 37], 

probabilistic neural networks (PNNs) [38], SVMs [39, 

40], K-nearest neighbor (K-NNs) [41, 42] and GMM 

classifiers [24, 43, 44]. Although techniques based on 

hidden Markov models (HMMs) [45] could be applied 

for gender and age classification in principle, they are 

not included in this study, because temporal information 

is ignored. In this research related to age classification, 

we only aim to classify whether the speaker’s age is 

below and/or above a pre-determined years, i.e., a 

binary decision for senior/non-senior adults. 
The outline of the paper is as follows. The extracted 

features are enumerated in Section 2. The classifiers 

included in the comparative study are described in 

Section 3. Section 4 briefly describes DES and 

ELSDSR. Experimental results for gender and age 

classification are reported in Section 5, and conclusions 

are drawn in Section 6. 

 

2 Feature extraction 

The statistical features employed in our study are 

grouped in several classes and have been demonstrated 

below. The same features have been adopted from [46].  

 

• Formant features: The set of formants features 

indexed by 1-16 is comprised by statistics of the 4 

formant frequency contours. 

1-4: Mean value of the first, second, third, and fourth formant. 

5-8: Maximum value of the first, second, third, and fourth 

formant. 

9-12: Minimum value of the first, second, third, and fourth 

formant. 

13-16: Variance of the first, second, third, and fourth formant. 

• Pitch features: Pitch features, indexed by 17-51, are 

statistical properties of the pitch contour. The 

plateaux of the contours are detected as follows. The 

first and second derivative of the contour are 

estimated numerically. The derivatives are smoothed 

with a moving average filter. If the first derivative is 

approximately zero and the second derivative is 

positive, the point belongs to a plateau at a local 

minimum. If the second derivative is negative, it 

belongs to a plateau at a local maximum. 
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17-21: Maximum, minimum, mean, median, inter-quartile 

range of pitch values. 

22: Pitch existence in the utterance expressed in percentage (0-

100%). 

23-26: Maximum, mean, median, interquartile range of 

durations for the plateaux at minima. 

27-29: Mean, median, interquartile range of pitch values for 

the plateaux at minima. 

30-34: Maximum, mean, median, interquartile range, upper 

limit (90%) of durations for the plateaux at maxima. 

35-37: Mean, median, interquartile range of the pitch values 

within the plateaux at maxima. 

38-41: Maximum, mean, median, interquartile range of 

durations of the rising slopes of pitch contours. 

42-44: Mean, median, interquartile range of the pitch values 

within the rising slopes of pitch contours. 

45-48: Maximum, mean, median, interquartile range of 

durations of the falling slopes of pitch contours. 

49-51: Mean, median, interquartile range of the pitch values 

within the falling slopes of pitch contours. 

• Intensity (Energy) features: Energy features, indexed 

by 52-85, are statistical properties of the energy 

contour. 

52-56: Maximum, minimum, mean, median, interquartile 

range of energy values. 

57-60: Maximum, mean, median, interquartile range of 

durations for the plateaux at minima. 

61-63: Mean, median, interquartile range of energy values for 

the plateaux at minima. 

64-68: Maximum, mean, median, interquartile range, upper 

limit (90%) of duration 

for the plateaux at maxima. 

69-71: Mean, median, interquartile range of the energy values 

within the plateaux at maxima. 

72-75: Maximum, mean, median, interquartile range of 

durations of the rising slopes of energy contours. 

76-78: Mean, median, interquartile range of the energy values 

within the rising slopes of energy contours. 

79-82: Maximum, mean, median, interquartile range of 

durations of the falling slopes of energy contours. 

83-85: Mean, median, interquartile range of the energy values 

within the falling slopes of energy contours. 

• Spectral features: Features indexed by 86-113 

quantify the energy content in certain frequency 

bands divided by the utterance duration. 

86-93: Energy below 250, 600, 1000, 1500, 2100, 2800, 3500, 

3950 Hz. 

94-100: Energy in the frequency bands 250-600, 600-1000, 

1000-1500, 1500-2100, 2100-2800, 2800-3500, 3500-3950 

Hz. 

101-106: Energy in the frequency bands 250-1000, 600-1500, 

1000-2100, 1500-2800, 2100-3500, 2800-3950 Hz. 

107-111: Energy in the frequency bands 250-1500, 600-2100, 

1000-2800, 1500-3500, 2100-3950 Hz. 

112-113: Energy ratio between the frequency bands (3950-

2100) and (2100-0) and between the frequency bands (2100-

1000) and (1000-0) Hz. 

 

Not all the features can be extracted from each 

utterance. For example, some pitch contours do not have 

plateaux below 45% of their maximum pitch value, or 

some utterances do not have pitch at all because they are 

unvoiced. When a large number of missing feature 

values is met, the corresponding feature is discarded. 

Such discarded features are indexed by {8, 23-29, 33-

34, 41, 48, 57-63, 67, 75, 82, 105}. For the 

aforementioned features, the frequency of missing 

feature values varies between 2% and 70%. When the 

missing feature values are less than 1% of the total 

number of corresponding feature values extracted, the 

missing values are replaced by their mean. As a result, 

finally, only K=90 features were retained. 

 

3 Classifiers 

The output of speech gender or age classifier is a 

prediction value (label) of the actual speaker’s gender or 

age. In order to evaluate the performance of a classifier, 

the repeated s-fold cross-validation method is used. 

According to this method if s = 20, the utterances in the 

data collection are divided into a training set containing 

80% of the available data and a disjoint test set 

containing the remaining 20% of the data. The 

procedure is repeated for s = 20 times. The training and 

the test sets are selected randomly. The classifier is 

trained using the training set and the classification error 

is estimated on the test set. The estimated classification 

error is the average classification error over all 

repetitions [47]. 

The following classifiers have been investigated: 

1. Naive Bayes classifier using the SFFS feature 

selection method [37]. The SFFS consists of a forward 

(inclusion) step and a conditional backward (exclusion) 

step that partially avoids local optima. In our approach, 

feature selection is used in order to determine a set of 20 

features that yields the lowest prediction error for a 

fixed number of cross-validation repetitions, e.g. 20.  

2. Probabilistic Neural Networks (PNNs) [38]. PNNs 

are a kind of radial basis function (RBF) networks 

suitable for classification problems. A PNN employs an 

input, a hidden, and an output layer. The input nodes 

forward the values admitted by patterns to the hidden 

layer ones. The hidden layer nodes are as many as the 

input nodes. They are simply RBFs that nonlinearly 

transform pattern values to activations. The nodes at the 

output layer are as many as the classes. Each node sums 

the activation values weighted possibly by proper 

weights. The input pattern is finally classified to the 

class associated to the output node whose value is 

maximum. PNNs with a spread parameter equal to 0.1 

are found to yield the best results. If the spread 
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parameter is near zero, the network acts as a nearest 

neighbor classifier. As the spread parameter becomes 

large, the network takes into account several nearby 

patterns. 

3. Support vector machines (SVMs) [39, 40]. The 

following definitions for SVM have been adopted from 

[48]. Let {xi, yi}, i = 1, …,N denote N training examples 

where xi comprises an K-dimensional pattern and yi is 

its class label. Without any loss of generality, we shall 

confine ourselves to the two-class pattern recognition 

problem. That is, yi∈{−1, 1}. Let Φ denote a nonlinear 

map Φ: 
KR → H  where H  is a higher-dimensional 

Hilbert space. SVMs construct the optimal separating 

hyperplane in H . Therefore, their decision boundary is 

of the form: 

∑ =
+α=

N

1i iii
)]bx,x(Ky[sign)x(f                   (1) 

where K(z1, z2) is a kernel function that defines the dot 

product between Φ (z1) and Φ (z2) in H , and αi are the 

nonnegative Lagrange multipliers associated with the 

quadratic optimization problem that aims to maximize 

the distance between the two classes measured in H  

subject to the constraints 
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Where W and b are the parameters of the optimal 

separating hyperplane in H . That is, W is the normal 

vector to the hyperplane, Wb is the perpendicular 

distance from the hyperplane to the origin, and ||W|| 

denotes the Euclidian norm of vector W. The use of 

kernel functions eliminates the need for an explicit 

definition of the nonlinear mapping Φ, because the data 

appear in the training algorithm of SVM only as dot 

products of their mappings. SVMs with five different 

kernels have been used. Training was performed by the 

least-squares method. The following kernel functions 

have been tested; (1): Gaussian RBF, denoted SVM1. 

(2): Multilayer perceptron, denoted SVM2. (3): 

Quadratic, denoted SVM3. (4): Linear, denoted SVM4. 

(5): Cubic polynomial, denoted SVM5. 

4. For K-NNs, it is hard to find systematic methods for 

selecting the optimum number of the closest neighbors 

and the most suitable distance. If K=1, then the 

classifier will classify all the utterances in the design set 

correctly, but its performance on the test set will be 

poor. As K → ∞, a less biased classifier is obtained. 

However, the optimality is not feasible for a finite 

number of utterances in the latter case [49]. Four K-NNs 

have been employed with different distance functions, 

such as the Euclidean, denoted as KNN1, cityblock (i.e., 

sum of absolute differences), denoted as KNN2, cosine-

based (i.e. one minus the cosine of the included angle 

between patterns), denoted as KNN3 and correlation-

based (i.e. one minus the sample correlation between 

patterns), denoted as KNN4, respectively. We have 

selected K=2 in all experiments. Other values of K did 

not affect the classification accuracy. 

5. Gaussian mixture model (GMM) have been employed 

in many fields, e.g., speech and speaker recognition 

([43, 44]). In GMM, during the training phase, pdf 

(probability density function) parameters for each class 

(gender or age) are estimated. Then, during the 

classification phase, a decision is taken for each test 

utterance by computing the maximum likelihood 

criterion. GMM is a combination of K Gaussian laws. 

Each law in the mixture is weighted and specified by 

two parameters: the mean and the covariance matrix ΣK. 

 

4 Datasets 

In one of the employed databases, Data stem from 

Danish Emotional Speech (DES) database, which is 

publicly available and well-annotated [12]. The 

recordings in DES include utterances expressed by two 

professional actors and two actresses in five different 

emotional states (anger, happiness, neutral, sadness, and 

surprise). One of the actors and also an actress are both 

52 years old. The other actor and actress are 38 and 34 

years old, respectively. Therefore, we have made an age 

threshold, i.e., 45 years. One actor and also one actress 

are older than 45 and the other two are younger than 45 

years. The utterances correspond to isolated words, 

sentences, and paragraphs. For example: Nej (No), Ja 

(Yes), Kom med dig (Come with me!). The complete 

database comprises approximately 30 minutes of 

speech. To test the quality of the simulated emotional 

speech, a listening test has been performed by the 

creators of the database, where 20 normal-hearing 

listeners (10 from each gender) were asked if they could 

identify the emotional content of the recorded 

utterances. The emotional states were correctly 

identified with an average rate of 67%. In this paper, we 

only concentrate on gender and age classification. 

Overall, 1160 utterances (360 utterances corresponding 

to words and sentences and another 800 utterances 

extracted from paragraphs) have been used that are 

equally split into 580 utterances uttered by male 

speakers and another 580 utterances uttered by female 

ones. Each utterance corresponds to a speech segment 

between two silence pauses. 

As second database, English Language Speech 

Database for Speaker Recognition (ELSDSR) [35] is 

employed. ELSDSR corpus of read speech has been 

designed to provide speech data for the development 

and evaluation of automatic speaker recognition system. 

ELSDSR corpus design was a joint effort of the faculty, 

Ph.D. students and Master students from department of 

Informatics and Mathematical Modeling (IMM) at 

Technical University of Denmark (DTU). The speech 

language is English, and spoken by 21 Dane, one 

Islander and one Canadian. Due to the usage of this 
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database and some realistic factors, perfect or even 

correct pronunciation is not required and necessary for 

getting the specific and uniquely identifiable 

characteristics for individual. Ten of the speakers are 

female while there are 13 male speakers. Six of the 

female and 3 of male speakers are older than 33 years. 

Part of the text, which is suggested as training 

subdivision, was made with the attempt to capture all 

the possible pronunciation of English language, which 

includes the vowels, consonants and diphthongs. With 

the suggested training and test subdivision, seven 

paragraphs of text are constructed and collected for 

training, which includes 11 sentences; and 46 sentences 

(each speaker reads two of these sentences) from 

NOVA Home were collected for test text. In a word, for 

the training set, 161 (7*23) utterances were recorded; 

and for test set, 46 (2*23) utterances were provided. We 

consider the train and test sentences as a unique 

information for gender and age classification and cut the 

sentences into small ones. This leads to 4170 utterances. 

It provides a good source for gender and age 

classification. The age threshold for ELSDSR database 

is 33 years. 

 

5 Results 

Fig. 1 illustrates the correct classification rates, for 

gender classification of two databases achieved by each 

of the aforementioned 11 classifiers, when 20% of the 

total utterances have been used for testing. For each 

classifier, 3 columns are given. The leftmost column 

(black) shows the total correct classification rate. The 

middle (gray) and the rightmost (white) columns are the 

classification rates that correspond to correct matches 

between the actual speaker gender (i.e. the ground truth) 

and the gender prediction by the classifier for male and 

female speakers, separately. In the sequel, the total 

correct gender classification rate, the correct gender 

classification rate for male speakers, and the correct 

gender classification rate for female speakers are 

abbreviated as GTCCR, GMCCR, and GFCCR, 

respectively. In Fig. 1, the maximum and minimum 

GTCCR were obtained by the SVM1 (95.73%) and the 

SVM2 (58.17%), respectively. The maximum and 

minimum GMCCR were related to SVM4 (96.67%) and 

SVM2 (62.22%), respectively. For GFCCR, the 

maximum and minimum values were obtained by the 

Bayes classifier with SFFS (95.61%) and SVM2 

(54.13%), respectively. These scores are reported for 

DES. For ELSDSR, in Fig. 1, the maximum and 

minimum GTCCR were obtained by the SVM4 (95.37%) 

and the SVM2 (46.60%), respectively. The maximum 

and minimum GMCCR were related to SVM4 (95.81%) 

and SVM2 (50.88%), respectively. For GFCCR, the 

maximum and minimum values were obtained by the 

SVM1 (95.59%) and SVM2 (42.32%), respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Correct gender classification rates for the different 

methods on DES (up) and ELSDSR (down) databases when 

the size of test utterances is 20% of the total utterances (i.e., 

232). For each classifier, columns “Total”, ”Male”, and 

”Female” correspond to the total correct gender classification 

rate, the rate of correct matches between the actual gender and 

the predicted one by the classifier for utterances uttered by 

male speakers, and the rate of correct matches between the 

actual gender and the predicted one by the classifier for 

utterances uttered by female speakers, respectively. The 

arrows indicate the best rates. 

 

The threshold for age grouping in DES and 

ELSDSR is 45 and 33 years, respectively. Fig. 2 

demonstrates the correct classification rates, for age 

classification on DES and ELSDSR databases achieved 

by each of the aforementioned 11 classifiers, when 20% 

of the total utterances have been used for testing. The 

leftmost column (black) shows the total correct 

classification rate. The middle (gray) and the rightmost 

(white) columns are the classification rates that 

correspond to correct matches between the actual 

speaker age to be greater or less than 45 (33) years old 

(i.e. the ground truth) and the age prediction by the 

classifier for speakers whose ages are above or below 45 

(33) years, separately for DES (ELSDSR). In the 
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following, the total correct age classification rate, the 

correct age classification rate for speakers older than 45 

(33) years, and the correct age classification rate for 

speakers younger than 45 (33) are abbreviated as 

ATOT, AGT45 (AGT33), and ALT45 (ALT33), 

respectively. Fig. 2 illustrates the maximum rate for 

ATOT, AGT45, and ALT45 belonging to PNN2 with 

90.13%, 87.93%, and 92.34%, respectively for DES.  

In Fig. 2, the minimum rate for ATOT, AGT45, and 

ALT45 belong to SVM2, with rates 55.5%, 55.81%, and 

55.29%, respectively. Fig. 2 illustrates the maximum 

rate for ATOT, AGT33, and ALT33 belonging to PNN2 

with 89.17%, 88.51%, and 89.83%, respectively. In Fig. 

2, the minimum rate for ATOT, AGT33, and ALT33 

belong to SVM2, with rates 52.35%, 45.81%, and 

58.88%, respectively. 

In the following, we concentrate on the top four 

methods, i.e., PNN, the Bayes classifier with SFFS, 

SVM1, and SVM4. Table 1 demonstrates the confusion 

matrix on DES database for gender classification of the 

four top methods after running each method several 

times and taking the mean value. The correct 

classification rates for each gender are shown in 

boldface. SVM1 outperforms the other methods 

achieving a correct classification rate (GTCCR) of 

95.73% with a standard deviation of 1.29%. SVM4 is 

the best classifier, when the correct matches are between 

the actual gender and the predicted one by the classifier 

are measured for actors’ utterances (GMCCR), yielding 

a rate of 96.67%. The Bayes classifier using SFFS 

achieves a rate of 95.61%, when the correct matches 

between the actual gender and the predicted one by the 

classifier are measured for actresses’ utterances 

(GFCCR). GTCCR for the Bayes classifier using SFFS 

is 95.04% with a standard deviation of 1.23%. GMCCR 

for Bayes classifier with SFFS is 94.46%. The GTCCR 

for SVM4 and PNN are 95.60% (with a standard 

deviation of 1.40%) and 90.18% (with a standard 

deviation of 1.91%), respectively. GMCCR for SVM1 

and PNN is 96.33% and 85.52%, respectively, while 

GFCCR for these two is 95.12% and 94.83%, 

respectively. The GFCCR for SVM4 is 94.52%. 

Table 2 demonstrates the confusion matrix on 

ELSDSR database for gender classification of the four 

top methods after running each method several times 

and taking the mean value. The correct classification 

rates for each gender are shown in boldface. SVM4 

outperforms the other methods achieving a correct 

classification rate (GTCCR) of 95.37% with a standard 

deviation of 0.62%. SVM4 is the best classifier, when 

the correct matches are between the actual gender and 

the predicted one by the classifier are measured for 

actors’ utterances (GMCCR), yielding a rate of 95.81%. 

SVM1 achieves a rate of 95.59%, when the correct 

matches between the actual gender and the predicted 

one by the classifier are measured for actresses’ 

utterances (GFCCR). GTCCR for SVM1 is 95.34% 

with a standard deviation of 0.36%. GFCCR for SVM4 

is 94.93%. GMCCR is 95.08% for SVM1. GTCCR for 

the Bayes classifier using SFFS and PNN is 93.92% 

with a standard deviation of 1.01% and 88.94% wit a 

standard deviation of 1.15%. GMCCR and GFCCR for 

Bayes classifier are 94.63% and 93.20%. GMCCR and 

GFCCR for PNN are 89.75% and 88.12%.. 
 

 

 
 

 
 

Fig. 2. Correct age classification rates for the different 

methods on DES (up) and ELSDSR (down) databases when 

the size of test utterances is 20% of the total utterances (i.e., 

232). For each classifier, columns “Total”, ”>45” (“> 33”), 

and ”<45” (“<33”) correspond to the total correct age 

classification rate, the rate of correct matches between the 

actual age and the predicted one by the classifier for utterances 

uttered by speakers with age older than 45 (33) years, and the 

rate of correct matches between the actual age and the 

predicted one by the classifier for utterances uttered by 

speakers younger than 45 (33) years, respectively. The arrows 

highlight the best rates. 
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Table 1 Confusion matrix for the 4 best gender classification 

methods when 20% of the utterances are used for testing on 

DES database. 
 

PNN 
Ground Truth ↓ 

Correctly classified response (%) 

 Male                  Female 

Male 85.52                      14.48 

Female   5.17                      94.83 

Total rate (%) 90.18±1.91 

Bayes-SFFS 
Ground Truth ↓ 

Correctly classified response (%) 

 Male                  Female 

Male 94.46                       5.54 

Female   4.39                      95.61 

Total rate (%) 95.04±1.23 

SVM1 
Ground Truth ↓ 

Correctly classified response (%) 

 Male                  Female 

Male 96.33                       3.67 

Female   4.88                      95.12 

Total rate (%) 95.73±1.29 

SVM4 

Ground Truth ↓ 

Correctly classified response (%) 

 Male                  Female 

Male 96.67                       3.33 

Female   5.48                      94.52 

Total rate (%) 95.60±1.40 

 

 

Table 2 Confusion matrix for the 4 best gender classification 

methods when 20% of the utterances are used for testing on 

ELSDSR database. 
 

PNN 

Ground Truth ↓ 

Correctly classified response (%) 

 Male                  Female 

Male 89.75                     10.25 

Female  11.88                     88.12 

Total rate (%) 88.94±1.15 

Bayes-SFFS 

Ground Truth ↓ 

Correctly classified response (%) 

 Male                  Female 

Male 94.63                       5.37 

Female   6.80                      93.20 

Total rate (%) 93.92±1.01 

SVM1 
Ground Truth ↓ 

Correctly classified response (%) 

 Male                  Female 

Male 95.08                       4.92 

Female   4.41                      95.59 

Total rate (%) 95.34±0.36 

SVM4 
Ground Truth ↓ 

Correctly classified response (%) 

 Male                  Female 

Male 95.81                       4.19 

Female   5.07                      94.93 

Total rate (%) 95.37±0.62 

 

Table 3 demonstrates the confusion matrix on DES 

database for age classification of the four top methods 

after running each method several times and taking the 

mean value. The correct classification rates for each age 

group are shown in boldface. PNN outperforms the 

other methods achieving a correct classification rate of 

90.43% (ATOT) with a standard deviation of 1.84%. 

PNN is also the best classifier, when the correct matches 

are between the actual age less than 45 years and the 

predicted one by the classifier are measured for 

utterances related to age greater than 45 years (AGT45) 

and also less than 45 years (ALT45), yielding a rate of 

88.34% and 92.51%. The Bayes classifier using SFFS 

achieves 83.92% for ATOT, 82.68% for AGT45 and 

84.57% for ALT45. The ATOT for SVM1 and SVM4 is 

84.90% and 79.87%, respectively. SVM1 and SVM4 

rates for AGT45 are 85.23% and 78.98%, respectively, 

while their corresponding rates for ALT45 are 84.57% 

and 80.76%, respectively. 

Table 4 demonstrates the confusion matrix on 

ELSDSR database for age classification of the four top 

methods after running each method several times and 

taking the mean value. The correct classification rates 

for each age group are shown in boldface. PNN 

outperforms the other methods achieving a correct 

classification rate of 90.43% (ATOT) with a standard 

deviation of 1.84%. PNN is also the best classifier, 

when the correct matches are between the actual age 

less than 33 years and the predicted one by the classifier 

are measured for utterances related to age greater than 

33 years (AGT33) and also less than 33 years (ALT33), 

yielding a rate of 88.34% and 92.51%. The Bayes 

classifier using SFFS achieves 83.92% for ATOT, 

82.68% for AGT33 and 84.57% for ALT33. The ATOT 

for SVM1 and SVM4 is 84.90% and 79.87%, 

respectively. SVM1 and SVM4 rates for AGT33 are 

85.23% and 78.98%, respectively, while their 

corresponding rates for ALT33 are 84.57% and 80.76%, 

respectively. 

Table 5 investigates, in detail, the behavior of best 

classifiers for gender and age classifications on DES 

dataset. It is understood that: 

 

Table 3 Confusion matrix testing on DES database for the 4 

best age classification methods when 20% of the utterances 

are used for testing. 
 

PNN 
Ground Truth ↓ 

Correctly classified response (%) 

 >45                         <45 

>45 88.34                      11.66 

<45   7.49                      92.51 

Total rate (%) 90.43±1.84 

Bayes-SFFS 
Ground Truth ↓ 

Correctly classified response (%) 

 >45                         <45 

>45 82.68                      17.32 

<45 14.84                      85.16 

Total rate (%) 83.92±1.48 

SVM1 
Ground Truth ↓ 

Correctly classified response (%) 

 >45                         <45 

>45 85.23                      14.77 

<45 15.43                      84.57 

Total rate (%) 84.90±2.05 

SVM4 

Ground Truth ↓ 

Correctly classified response (%) 

 >45                         <45 

>45 78.98                      21.02 

<45 19.24                      80.76 

Total rate (%) 79.87±2.32 
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Table 4 Confusion matrix testing on ELSDSR database for the 

4 best age classification methods when 20% of the utterances 

are used for testing. 
 

PNN 
Ground Truth ↓ 

Correctly classified response (%) 

 >33                         <33 

>33 88.51                      11.49 

<33 10.17                      89.83 

Total rate (%) 89.17±0.93 

Bayes-SFFS 
Ground Truth ↓ 

Correctly classified response (%) 

 >33                         <33 

>33 63.72                      36.28 

<33 21.36                      78.64 

Total rate (%) 71.18±10.55 

SVM1 
Ground Truth ↓ 

Correctly classified response (%) 

 >33                         <33 

>33 71.23                      28.77 

<33 21.88                      78.12 

Total rate (%) 74.68±4.87 

SVM4 

Ground Truth ↓ 

Correctly classified response (%) 

 >33                         <33 

>33 68.36                      31.64 

<33 25.44                      74.56 

Total rate (%) 71.46±4.38 

 

• SVM1 as gender classifier: 20% of the available 

utterances for testing yield the maximum value for 

GTCCR, and GFCCR, respectively, while 10% of the 

available utterances yield the maximum value for 

GMCCR. This is while 25% of the available utterances 

for testing yield the minimum value for GTCCR, 

GMCCR, and GFCCR. 

   • SVM1 as age classifier: 10% of the available 

utterances for testing yield the maximum value for 

GTCCR, GMCCR, and GFCCR. 50% of the test 

utterances yield the minimum value for ATOT and 

ALT45, while the minimum value for AGT45 is 

obtained with 35% of the utterances for testing. 

   • SVM4 as gender classifier: 20% of the available 

utterances for testing yield the maximum value for 

GTCCR, and GFCCR, respectively, while 25% of the 

available utterances yield the maximum value for 

GMCCR. 40%, 45%, and 50% of the available 

utterances for testing yield the minimum value for 

GTCCR, GMCCR, and GFCCR, respectively. 

   • SVM4 as age classifier: 15% of the available 

utterances for testing yield the maximum value for 

ATOT, AGT45, and ALT45. The minimum value for 

ATOT and ALT45 is produced by half of the utterances 

for testing, while 20% of them yield the minimum value 

for AGT45. 

   • PNN as gender classifier: 15% of the available 

utterances yield the maximum value for GTCCR and 

GMCCR, while 20% of the available utterances yield 

the maximum value for GFCCR. The minimum value 

for GTCCR and GFCCR is obtained by 50% of the 

utterances for testing, while 20% of them results in the 

minimum for GMCCR. 

• PNN as age classifier: 15% of the available 

utterances for testing yield the maximum value for 

ATOT and AGT45, while 20% of the available 

utterances yield the maximum value for ALT45. 50% of 

the available utterances yield the minimum value for 

ATOT and ALT45, while 20% of the available 

utterances yield the minimum value for AGT45.  

• Bayes classifier using SFFS when employed for 

gender and age classification behaves on DES database 

against the changes in parameters. The minimum 

GTCCR and GMCCR (93.36% and 91.21%, 

respectively) were measured when 30 and 40 

repetitions, respectively, were made using 10% of the 

utterances for testing. The minimum GFCCR (94.08%) 

was measured when 50 repetitions were made using 

25% of the utterances for testing. The maximum 

GTCCR and GFCCR were measured when 10 

repetitions were made using 50% of the utterances for 

testing. The maximum GMCCR was measured when 30 

repetitions were made using 45% of the utterances for 

testing. The minimum ATOT and AGT45 were 

measured when 30 repetitions were made using 10% of 

utterances for testing. The minimum ALT45 was 

measured when 10 repetitions were made using 15% of 

utterances for testing. The maximum ATOT, AGT45, 

and ALT45 were measured by making 30 repetitions for 

all and employing 50% of the available utterances for 

testing for ATOT and AGT45, and 40% for ALT45. 

Table 6 shows, in detail, the behavior of best 

classifiers for gender and age classifications on 

ELSDSR database. The following results are inferred: 

    • SVM1 as gender classifier: 10%, 30%, and 20% of 

the available utterances for testing yield the maximum 

values for GTCCR, GMCCR, and GFCCR, 

respectively. 45% of the available utterances for testing 

yield the minimum values for GTCCR and GMCCR. 

This is while half of the available utterances for testing 

yields the minimum value for GFCCR. 

    • SVM1 as age classifier: 20% of the available 

utterances for testing yield the maximum value for 

GTCCR, GMCCR, and GFCCR. 50% of the test 

utterances yield the minimum value for ATOT and 

AGT33, while the minimum value for ALT33 is 

obtained with 15% of the utterances for testing. 

    • SVM4 as gender classifier: 20% of the available 

utterances for testing yield the maximum value for 

GTCCR, and GMCCR, respectively, while 25% of the 

available utterances yield the maximum value for 

GFCCR. 10% of the available utterances for testing 

yield the minimum values for GTCCR, and GFCCR, 

respectively, while the minimum value for GMCCR is 

obtained by employing 45% of the available utterances 

for testing. 

    • SVM4 as age classifier: 10% of the available 

utterances for testing yield the maximum values for 
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ATOT, AGT33, and ALT33. The minimum value for 

ATOT and AGT33 is produced by 45% of the 

utterances for testing, while half of them yield the 

minimum value for ALT33. 

   • PNN as gender classifier: 15% of the available 

utterances yield the maximum value for GTCCR and 

GMCCR, while 30% of the available utterances yield 

the maximum value for GFCCR. The minimum values 

for GTCCR and GMCCR are obtained by 50% of the 

utterances for testing, while 35% of them results in the 

minimum for GMCCR. 

   • PNN as age classifier: 20% of the available 

utterances for testing yield the maximum value for 

ATOT and AGT33, while 25% of the available 

utterances yield the maximum value for ALT33. 10% of 

the available utterances yield the minimum value for 

ATOT and ALT33, while 45% of the available 

utterances yield the minimum value for AGT33. 

• Bayes classifier using SFFS when employed for 

gender classification behaves on ELSDSR database 

against the changes in parameters. The minimum 

GTCCR and GMCCR (92.20% and 93.44%, 

respectively) were measured when 40 and 10 

repetitions, respectively, were made using 15% of the 

utterances for testing. The minimum GFCCR (90.32%) 

was measured when 30 repetitions were made using 

10% of the utterances for testing. The maximum 

GMCCR and GFCCR were measured when 20 

repetitions were made using 40% and 50% of the 

utterances for testing, respectively. The maximum 

GTCCR was measured when 10 repetitions were made 

using 30% of the utterances for testing. The minimum 

ATOT, AGT33 and ALT33 were measured when 50, 10 

and 20 repetitions were made using 20%, 40% and 15% 

of utterances for testing, respectively. The maximum 

ATOT, AGT33, and ALT33 were measured by making 

20, 40 and 50 repetitions employing 50%, 45% and 50% 

of the available utterances for testing, respectively. 

Accordingly, SVM1 outperforms the other methods 

for gender classification. We will also suggest PNN for 

age classification considering all factors. In both gender 

and age classification, SVM4 had the least variance 

among other methods. It means that SVM4 is robust 

against the modification of the portion of the utterances 

for testing. 

 

6 Conclusion 

We have investigated several popular methods for 

gender and age classification by processing emotionally 

colored speech from the DES database and also 

ELSDSR dataset as an ordinary speech. The SVM with 

a suitable kernel has demonstrated to yield the most 

accurate results for gender classification. The correct 

age classification rates have been 88.38% when total 

correct age rate was considered. This is achieved by 

probabilistic neural networks. Our future work will 

concentrate on an investigation of fusing the gender and 

age classification schemes. 

 

Table 5 Behavior of best classifiers for gender and age 

classifications on DES database. 
 

Method Rates Min Max Mean Std 

SVM1  
As gender 

classifier 

GTCCR 

GMCCR 

GFCCR 

93.32 

93.63 

93.01 

95.73 

97.49 

95.12 

94.77 

95.58 

93.95 

0.76 

1.13 

0.79 

SVM1  
As age 

classifier 

ATOT 

AGT45 

ALT45 

82.59 

82.79 

82.26 

86.89 

85.66 

88.13 

84.68 

84.40 

84.97 

1.45 

1.28 

1.81 

SVM4  
As gender 

classifier 

GTCCR 

GMCCR 

GFCCR 

93.49 

94.21 

91.87 

95.60 

96.80 

94.52 

94.24 

95.46 

93.03 

0.73 

0.97 

0.96 

SVM4  
As age 

classifier 

ATOT 

AGT45 

ALT45 

78.68 

78.98 

78.13 

83.86 

83.53 

84.17 

80.88 

80.74 

81.04 

1.85 

1.80 

2.23 

PNN 
As gender 

classifier 

GTCCR 

GMCCR 

GFCCR 

88.93 

85.52 

90.76 

91.95 

91.03 

94.83 

90.10 

87.89 

92.32 

0.98 

1.88 

1.13 

PNN  

As age 

classifier 

ATOT 

AGT45 

ALT45 

88.98 

86.59 

91.36 

90.94 

89.93 

93.28 

90.13 

88.01 

92.24 

0.76 

1.23 

0.62 

Bayes 

As gender 

classifier 

GTCCR 

GMCCR 

GFCCR 

93.36 

91.21 

94.08 

97.14 

97.17 

98.23 

95.40 

94.46 

96.35 

0.90 

1.42 

0.95 

Bayes  
As age 

classifier 

ATOT 

AGT45 

ALT45 

81.62 

78.41 

82.32 

87.98 

90.70 

89.36 

84.56 

83.52 

85.59 

1.86 

3.12 

1.52 

 

 

Table 6 Behavior of best classifiers for gender and age 

classifications on ELSDSR database. 
 

Method Rates Min Max Mean Std 

SVM1  
As gender 

classifier 

GTCCR 

GMCCR 

GFCCR 

94.83 

95.04 

94.46 

95.58 

96.03 

95.59 

95.19 

95.45 

94.93 

0.26 

0.36 

0.36 

SVM1  
As age 

classifier 

ATOT 

AGT33 

ALT33 

70.29 

66.90 

73.18 

74.68 

71.23 

78.12 

71.28 

68.18 

74.37 

1.43 

1.42 

1.50 

SVM4  
As gender 

classifier 

GTCCR 

GMCCR 

GFCCR 

94.30 

94.41 

93.40 

95.37 

95.81 

95.11 

94.77 

95.12 

94.42 

0.35 

0.48 

0.60 

SVM4  

As age 

classifier 

ATOT 

AGT33 

ALT33 

70.37 

66.63 

73.47 

72.25 

69.41 

75.10 

71.05 

68.03 

74.07 

0.63 

0.90 

0.48 

PNN 

As gender 

classifier 

GTCCR 

GMCCR 

GFCCR 

88.27 

89.06 

87.12 

89.53 

90.27 

89.02 

88.91 

89.76 

88.07 

0.46 

0.42 

0.63 

PNN  
As age 

classifier 

ATOT 

AGT33 

ALT33 

88.36 

88.51 

87.24 

90.01 

90.89 

89.83 

89.03 

89.76 

88.31 

0.53 

0.81 

0.90 

Bayes 
As gender 

classifier 

GTCCR 

GMCCR 

GFCCR 

92.20 

93.44 

90.32 

94.73 

95.97 

94.39 

93.43 

94.47 

92.40 

0.62 

0.55 

1.09 

Bayes  
As age 

classifier 

ATOT 

AGT33 

ALT33 

69.91 

63.17 

75.35 

74.66 

70.98 

81.42 

71.90 

65.79 

78.00 

1.03 

1.83 

1.29 
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