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Abstract: Forests play several vital roles in our lives and provide various resources. 
However, in recent years, the increasing frequency of wildfires has led to the widespread 
burning and destruction of many forests and wildlands. Therefore, detecting forest fires 
and finding suitable solutions to address this issue has become one of the critical 
challenges for researchers. Today, with the advancement of artificial intelligence, forest 
fire detection using deep learning is an important method with the aim of increasing the 
efficiency of forest fire detection and monitoring systems. In this article, a method based 
on a type of convolutional neural network called Xception is proposed for classifying 
forest fire images. In this method, transfer learning technique is used on the proposed 
neural network and a new classifier is designed for the problem. Also, various 
hyperparameters have been used to optimize the performance of the proposed model. 
The proposed method is performed on the DeepFire dataset, which contains 1900 images 
equally divided between fire and no-fire classes. The results obtained from the 
implementation of the proposed method show that this method with an accuracy of 
99.47% has achieved a favorable performance in classifying forest fire images. 

Keywords: Artificial Intelligence, Classification, Convolutional Neural Network, Deep 
Learning, Forest Fire Detection. 

 
  

1 Introduction 

ORESTS are essential to our ecosystem and daily 
lives, offering a wide range of resources and 

services, from clean air and water to biodiversity and 
climate regulation [1]. However, these vital ecosystems 
are increasingly under threat from various factors, with 
wildfires being one of the most significant [2]. In recent 
years, the frequency, intensity, and duration of wildfires 
have been escalating [3], leading to widespread 
destruction of forests and wildlands [1]. This growing 
threat underscores the urgent need for effective 
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strategies to detect and mitigate forest fires, as 
preserving our forests is crucial for environmental 
sustainability and human well-being. 

Given the immense value of forests, the early detection 
of forest fires and the development of strategies to 
minimize the damage they cause have become critical 
challenges for researchers. Fortunately, recent 
advancements in Artificial Intelligence (AI), particularly 
in Machine Learning (ML) and Deep Learning (DL), 
offer promising solutions [2]. These technologies enable 
the development of sophisticated systems capable of 
detecting forest fires quickly and accurately, providing a 
powerful and efficient approach to combating this 
escalating threat [2]. 

Machine learning encompasses a range of methods and 
algorithms that enable computers to learn from data, 
analyze it, and uncover hidden patterns, ultimately 
allowing machines to make predictions and informed 
decisions [4]. Among these methods, deep learning 
stands out as a particularly powerful subset of machine 
learning, renowned for its ability to process vast 
amounts of data with minimal human intervention. Deep 
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learning algorithms are inspired by the neural networks 
of the human brain, allowing them to automatically learn 
features and patterns directly from raw data, without the 
need for manually designed rules [5]. 

In other words, unlike traditional machine learning, 
which often relies on handcrafted features and 
predefined rules, deep learning excels by leveraging 
large datasets to map inputs to specific labels with 
remarkable accuracy. This capability makes deep 
learning especially promising for complex tasks like 
forest fire detection [5]. The ability to analyze massive 
datasets with high precision can significantly enhance 
the speed and accuracy of detecting and responding to 
wildfires [6]. 

In recent years, with the explosion of available data 
and advancements in computational power, deep 
learning has been increasingly employed for various 
wildfire-related tasks, including classification, detection, 
and segmentation. Its ability to process both ground and 
aerial imagery has demonstrated its potential to 
overcome the limitations of classical machine learning 
methods. Furthermore, integrating deep learning into 
automated fire detection systems can be a game-changer, 
enabling the rapid and accurate identification of fires 
through camera feeds. This technology holds great 
promise for the development of AI-driven fire detection 
agents, which could play a crucial role in monitoring and 
managing wildfires more effectively [7]. 

Deep learning utilizes Artificial Neural Networks 
(ANN) to process and analyze large volumes of data 
through complex computations [8]. In these networks, 
there are many layers between the input and output [9], 
so that, the initial layers focus on extracting low-level 
features, such as edges or textures, while the deeper 
layers progressively extract higher-level features, such 
as shapes or objects, enabling the model to understand 
the data at a more abstract level [5]. 

One of the most widely used and effective deep 
learning algorithms is the Convolutional Neural Network 
(CNN) [10], which typically consists of three types of 
layers: convolutional layers, pooling layers, and fully 
connected (FC) layers [11]. Convolutional layers are 
responsible for scanning the input image with filters to 
detect features like edges or textures. Pooling layers 
reduce the dimensionality of the data, making the model 
more computationally efficient while retaining important 
information. Finally, fully connected layers combine 
these extracted features to make predictions or 
classifications [8]. 

CNNs are particularly well-suited for image analysis 
[12] because they treat input images as two-dimensional 
(2D) matrices, preserving the spatial relationships 
between pixels [13]. Due to this characteristic, CNNs 
have been extensively researched and applied in the field 

of image recognition and classification. One of these 
applications, is the classification of forest fires. In this 
research, we aim to provide a mechanism with an 
optimal accuracy for early forest fire classification. In 
summary, we can list the contributions of our study as 
follows; 
(1) Comprehensive review of prior research in this 

field, 
(2) Detailed introduction and presentation of the 

proposed method, 
(3) Evaluation of the proposed method and a 

comprehensive analysis of the results obtained from 
its implementation, 

(4) Comparative performance analysis of the proposed 
neural network against machine learning algorithms, 

(5) Comparative performance analysis of the proposed 
neural network against similar architectures, 

(6) Comparison of the proposed method with other 
studies for performance validation. 

The rest of the paper is organized as follows. Section 2 
details the review of the literature on deep learning-
based forest fire classification methods; Section 3 covers 
the dataset used in this study, the proposed neural 
network, the proposed classifier, hyperparameter tuning, 
Transfer Learning (TL), and evaluation metrics; Section 
4 presents the experimental results obtained from 
implementing the proposed method. Additionally, this 
section provides a performance comparison between the 
proposed model and other models by implementing the 
proposed method on comparable architectures and 
analyzing the results. A comparison of the proposed 
method with other studies and approaches is also 
presented in this section. Finally, Section 5 presents a 
general conclusion of this study. 

2 Literature Review 

In recent years, numerous studies have been conducted 
on forest fire detection systems based on deep learning 
in order to set up a fire detection system as accurately as 
possible. The main goal of most of these studies has 
been to detect forest fires using classification methods. 
One such study, presented in [14], proposes a transfer 
learning approach using the Inception-v3 model for fire 
detection. Another study [15] presents several deep 
learning architectures trained for early fire detection 
using images captured by drones. This study uses a two-
step transfer learning approach on five different CNN-
based models. In the first step, the feature extraction 
layer weights of each model are frozen, while new 
classifiers are trained for five epochs. In the second 
training phase, all layers are unfrozen, and training 
continues for five more epochs with a lower learning 
rate. In [16], the Xception network as a binary classifier 
model is proposed. In this paper, the model is trained 
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from scratch on a new dataset called FLAME, which 
was collected and provided by the authors of the article. 
The authors in [17] propose the FFireNet method based 
on CNN for classifying forest fires. This paper uses 
transfer learning techniques on the MobileNet-v2 
network to address the problem of data scarcity and 
computational power limitations. Another study [18] 
provides a solution for challenges such as small fire 
sizes, complex backgrounds, and image degradation. 
This paper proposes a novel deep learning method 
combining EfficientNet-b5 and DenseNet201 models for 
fire detection and classification using aerial images. In 
[19], two new deep feature engineering models are 
proposed to detect the fire accurately using images. To 
create deep features, four pretrained ResNets: ResNet18, 
ResNet50, ResNet101, and InceptionResNetV2 are used. 
By using the eight feature vectors generated of these 
networks, two ensemble models have been presented. In 
the first ensemble model, all generated features are 
concatenated, and the top 1000 features are selected 
using Neighborhood Component Analysis (NCA), after 
which these features are classified using Support Vector 
Machine (SVM). In the second ensemble model, 
Iterative Hard Majority Voting (IHMV) has been applied 
to the generated results. In [20], First, an improved 
Dynamic Convolutional Neural Network (DCNN) 
network model is trained in combination with transfer 
learning, and multiple pre-trained DCNN models are 
used to extract features from forest fire images. Second, 
Principal Component Analysis (PCA) reconstruction 
technology is used to convert features into a shared 
feature subspace. Another study [21] presents a type of 
convolutional neural network that is very suitable for 
real-time applications, as it uses separable convolutional 
layers. The authors in [22] propose a novel module using 
attention mechanism for convolution kernels, which can 
dynamically select and fuse feature maps from different 
scales of convolution kernels, termed the Dual Semantic 
Attention (DSA) module and on the basis of ResNet, the 
above-mentioned DSA module is integrated into the 
model. In [23], several methods are proposed to solve 
the problem of forest fire detection. In the first method, 
the Inception-v3, DenseNet121, ResNet50-v2, VGG19, 
and NASNet-Mobile models are trained from scratch for 
forest fire classification. In the second method, transfer 
learning is applied to the mentioned networks. In the 
third method, fine-tuning of these pre-trained networks 
is explored. Finally, in the last method, SVM, Random 
Forest (RF), Bidirectional Long Short-Term Memory 
(BiLSTM), Gated Recurrent Unit (GRU) algorithms, and 
hybrid approaches are employed to enhance the 
efficiency of the Inception-v3 and NASNet-Mobile 
models. The authors in [24] explore the potential of 
RGB image data for forest fire detection using the 

MobileNet-v2 neural network. The main focus of this 
paper is to address the prevalent issue of high false alarm 
rates in DL-based fire detection systems, and in this 
regard, it proposes two distinct methods: a one-step 
classification and a two-step MTL multi-class 
classification. Another study [25] uses a  deep  learning-
based architecture that first combines three 
convolutional neural network  architectures, namely, 
XceptionNet, MobileNetV2, and  ResNet-50, as an 
ensemble. The second contribution is linked to the  
implementation of the fire and smoke detection model 
by using the YOLO architecture. The study [26] 
addresses the limitations of deep learning in handling 
limited and complex fire data by using an SVM with 
RBF kernel to classify fire and non-fire pixels. It 
employs processed data from the Corsican, FLAME, and 
Firefront_Gestosa datasets, and uses information-
theoretic feature selection to improve classification 
efficiency by reducing dimensionality. In [27], the 
SWIFT dataset, a collection of synthetic images, videos, 
annotations, and environmental data for wildfire 
detection, is introduced. This dataset is used to train and 
test three deep learning models—BoucaNet, DC-Fire, 
and CT-Fire—which are evaluated on real wildfire 
images. Another study [28] proposes 3ENB2, an end-to-
end deep learning model based on EfficientNetB2 with 
transfer learning for fire detection from images. It 
incorporates online data augmentation techniques like 
random rotation and horizontal flipping during training. 
The study [29] presents a wildfire prediction framework 
for Morocco using a newly developed localized dataset 
built from multisource environmental observations. It 
employs machine learning and deep learning algorithms 
to forecast next-day wildfire events. In [30], a dataset 
derived from JULES-INFERNO simulations, which 
provide global climate and wildfire data, including 
environmental variables and fire occurrence data, is 
used. This enables the construction of a graph-based 
representation for training the wildfire prediction model. 
Another study [31] proposes a UAV-based real-time 
forest fire detection system using deep learning. It 
evaluates YOLOv5n and YOLOv8n for object detection, 
as well as CNN-RCNN and YOLOv8 classification 
models. Another study [32] introduces FireNet-CNN, a 
deep learning model for real-time forest fire detection on 
resource-constrained devices. To address dataset size 
and class imbalance, it uses synthetic data augmentation 
with Stable Diffusion and two custom-augmented 
datasets from various video and image sources. The 
model also integrates explainable AI techniques like 
Grad-CAM and Saliency Maps to improve transparency 
in fire detection. The authors in [33] propose a novel fire 
detection framework that combines LapSRN-based 
super-resolution with an attention-enhanced Xception 
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network and Adaptive Spatial Attention for better 
feature focus. It uses a custom high-resolution, 
imbalanced fire/non-fire dataset for training and 
evaluation. The model also compares various pretrained 
DNNs with attention modules on both the custom dataset 
and a standard benchmark. 

The aforementioned methods for forest fire 
classification demonstrate effectiveness in addressing 
the classification problem. However, despite their 
success, these existing methods often face challenges, 
such as high false alarm rates and limited scalability in 
real-time monitoring systems, especially when dealing 
with complex environmental conditions. Since accurate 
and early detection is crucial in minimizing the damage 
caused by fires, enabling timely intervention, and 
reducing the strain on firefighting resources, it is 
essential to address these limitations. To reduce the 
number of false alarms while achieving higher accuracy, 
in the next section, we present a deep learning-based 
forest fire classification method that is expected to 
enhance the efficiency and reliability of forest fire 
detection and monitoring systems. 

3 Material and Methods 

In this section, we first describe the dataset used in the 
training and testing phase of the proposed model. Then, 
we introduce our proposed method for classifying forest 
fire images. 

3.1 Dataset 
Data is the main element of all deep learning-based 

classification algorithms, such that the efficiency of 
algorithms largely depends on the nature and 
characteristics of the dataset used [13]. In this research, 
we use the DeepFire dataset mentioned in [17] and [34], 
which consists of forest fire and no-fire images aimed at 
the problem of forest fire detection and classification. 
This dataset has been collected from various online 
sources and contains images from multiple viewpoints 
and a wide range of landscapes to better train the model 
in distinguishing fire images from no-fire ones. It also 
includes various environmental conditions such as 
smoke, fog, rain, sunlight glare, and shadows, which 
reflect real-world scenarios and enhance the robustness 
of the model. However, the trained model still may fail 
to generalize to new and unseen data. Therefore, to 
prevent this problem, data augmentation techniques such 
as resizing, flipping, shifting, zooming, and others were 
applied to this dataset. This dataset contains a total of 
1900 images with dimensions of 250 × 250, equally 
divided into two classes: fire and no-fire. The fire class 
contains images of forests and mountains with visible 
flames or flames accompanied by smoke clouds, while 
the no-fire class contains images of lush forests and 

mountains from different angles [17], [34]. 
Here, in line with the Deepfire dataset's two-class 

structure, we adopted a binary classification method to 
address the problem. Also, to ensure compatibility with 
the neural network (Xception), the image dimensions 
were adjusted from 250×250 to 224×224 to match the 
network's required input size. The dataset was then 
divided into three parts: training, validation, and testing 
datasets. For this division, 10% of the total data was 
initially set aside for testing, and the remaining images 
were split in a 90:10 ratio, with 90% allocated for 
training and 10% for validation. This splitting is shown 
in Table 1. 
 

Table 1. Dataset splitting. 
Dataset Training + Valida�on Test Total 

Fire 850 100 950 

No-Fire 860 90 950 

Total 1710 190 1900 
 

3.2 Proposed approach 
In this paper, we propose a CNN-based method for 

forest fire classification. A classifier is a mathematical 
model designed to extract the most critical information 
and relevant features from labeled images in the training 
dataset, and then apply this knowledge to classify 
images in the test dataset [35]. Fig. 1 shows the structure 
of our proposed method. This model comprises two 
main components: a pre-trained base model and newly 
added fully connected layers. 

In the first part of our model, the Xception neural 
network [36] is used as the base model, responsible for 
extracting features and useful information from the 
images in the training dataset. The design of Xception, 
as a more powerful version of the Inception architecture, 
assumes that channel correlations and spatial 
correlations in convolutional layers can be effectively 
separated, which enhances its feature extraction 
capabilities. This separation allows Xception to build 
upon the strengths of Inception, offering improved 
performance by simplifying and refining how 
information is processed through the network. This 
network is structured into three main parts: entry flow, 
middle flow, and exit flow. The architecture comprises 
36 convolutional layers organized into 14 modules, with 
all but the first and last modules featuring linear residual 
connections [36]. Here, we applied the transfer learning 
technique [37], [38], [39] to the Xception neural network 
by utilizing pre-trained weights from the ImageNet 
dataset, rather than initializing the network with random 
weights. Our approach also allows for the fine-tuning of 
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weights and biases across all layers, enhancing the 
model's ability to adapt to the specific task at hand. 

 

 
Fig 1. The architecture of proposed model. 

While the original Xception model is designed for 
classify the images into 1000 classes, our target task is 
binary classification (fire vs. no-fire). To address this, in 
the second part of our approach, we introduce a classifier 
specifically tailored to the binary classification problem, 
optimizing the model's performance for this task. In this 
part, the output from the final layer of the base model, 
which has dimensions of 7×7 with 2048 channels, is 
passed through a global max pooling layer. This layer 
reduces the output to a vector of 2048 neurons, each 
representing the maximum value from its corresponding 
feature map (channel). This process helps to capture the 
most significant features from the feature maps. The 
resulting vector is then fed into a dense layer with a 
softmax activation function, which handles the 

classification task. This function transforms raw scores 
into a probability distribution across the different 
classes. Equation (1) expresses this function as follows: 
𝑆𝑆(𝑧𝑧𝑖𝑖) = 𝑒𝑒𝑧𝑧𝑖𝑖

∑ 𝑒𝑒𝑧𝑧𝑗𝑗𝑁𝑁
𝑗𝑗=1

                                                             (1) 

Where 𝑧𝑧𝑖𝑖 is the raw score for the 𝑖𝑖-th class and N is the 
total number of classes. In all classification algorithms, 
there are hyperparameters that are set before training 
begins and remain unchanged throughout the training 
process. One such hyperparameter is the loss function, 
for which we used the categorical cross-entropy 
function. This choice aligns with the softmax function 
used in our model, ensuring the output probabilities are 
effectively optimized during training. This function is 
expressed as follows in Eq. (2): 
𝐿𝐿(𝑦𝑦.𝑦𝑦�) = −∑ 𝑦𝑦𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦�𝑖𝑖)𝑁𝑁

𝑖𝑖=1                                          (2) 
Where y is the true probability distribution, 𝑦𝑦� is the 

predicted probability distribution and N is the total 
number of classes. In addition to selecting the 
appropriate loss function, the choice of optimization 
algorithm is equally critical for enhancing model 
performance. We employed the Adam Optimizer, which, 
compared to other optimization algorithms, requires less 
memory and converges faster, particularly in the early 
stages of training. Adam's ability to effectively manage 
large and small gradients—a common challenge in deep 
learning problems—further supports its use in our 
method. Here, a fixed learning rate was not explicitly 
set. Instead, a minimum learning rate (min-Lr) of 1e-04 
was applied. In this case, initially, the model begins with 
a default learning rate, which is not predetermined. As 
training progresses, the learning rate is gradually 
reduced by the learning rate scheduler until it reaches the 
specified minimum value. This approach allows the 
model to adjust its learning pace dynamically, improving 
training efficiency. Additionally, in this method, we 
determined an optimal batch size of 64, and the model 
was trained over 40 epochs to strike a balance between 
training time and performance. The hyperparameters 
used to optimize the performance of the proposed 
method are summarized in Table 2. 

 
Table 2. Hyperparameters. 

Hyperparameters Value 
Loss Func�on Categorical Cross-Entropy 

Op�mizer Adam 

min-Lr 1e-04 

Batch Size 64 

Epoch 40 
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3.3 Performance metrics 
The performance of the proposed method will be 

evaluated using various metrics, including accuracy, 
precision, recall and F1-score, in the next section. These 
evaluation metrics are presented in Table 3. In these 
relationships, a true Positive (TP) means there is a fire in 
the input image, and the model correctly predicts that 
there is a fire. A true negative (TN) means there is no 
fire in the input image, and the model correctly predicts 
that there is no fire. A false negative (FN) means there is 
a fire in the input image, and the model incorrectly 
predicts that there is no fire. A false positive (FP) means 
there is no fire in the input image, and the model 
incorrectly predicts that there is a fire. 
 

Table 3 The performance metrics. 
Metrics Formula 

Accuracy 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇 

Precision 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 

Recall 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 

F1-Score 2 ∗
Precision ∗ Recall
Precision + Recall 

 

4 Results and Discussion 

4.1 Performance analysis of the proposed method 
In this section, we analyze the results generated from 

implementing the proposed method. The process began 
with the training phase, where the model was trained on 
the dataset while simultaneously undergoing validation 
to monitor performance. In another word, during the 
training process, at each epoch, the loss on the validation 
dataset is monitored. If the current epoch's loss is lower 
than that of previous epochs, the model is saved for use 
in the testing phase. In this approach, the model 
achieved the lowest validation loss at epoch 31, and this 
version of the model was saved for classifying the test 
dataset. Figs. 2 and 3 illustrate the loss and accuracy per 
epoch for both the training and validation datasets, 
respectively, providing insight into the model's 
performance during each stage of the process. Also, the 
details of the saved model are provided in Table 4. 

 
Table 4. Results of the proposed model on the training and 

validation datasets. 

Epoch Train 
Loss 

Train 
Accuracy 

Valida�on 
Loss 

Valida�on 
Accuracy 

Learning 
Rate 

31 0.0291 0.9981 0.0338 0.9942 0.0001 

 
Fig 2. Loss chart for training and validation data. 

 
Fig 3. Accuracy chart for training and validation data. 

After completing the training phase, the trained model 
was applied to the test dataset to classify the images and 
evaluate its effectiveness. Table 5 presents a 
comprehensive report and analysis of the model's 
performance on the test dataset, while Table 6 breaks 
down these metrics by class. Also, Fig. 4 presents the 
confusion matrix for the proposed method. The test 
dataset consists of 190 images, with 100 belonging to the 
fire class and 90 to the no-fire class. According to the 
matrix results, the model accurately classified all images 
in the fire class, achieving a false negative rate of zero. 
However, one image from the no-fire class was 
incorrectly classified as fire, resulting in a false positive 
rate of one. Additionally, Fig. 5 displays the Receiver 
Operating Characteristic (ROC) curve and the Area 
Under the Curve (AUC) for this method. 
 

Table 5. Results of the proposed model on the test datasets. 

Loss Accuracy Precision Recall F1-Score 

0.009105 0.9947 0.9901 1.0000 0.9950 
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Table 6. Results of the proposed model for each class in the 
test datasets. 

Class Precision Recall F1-Score 

Fire 0.99 1.00 1.00 

No-Fire 1.00 0.99 0.99 

 

 
Fig 4. The confusion matrix for the proposed method. 

 
Fig 5. The ROC curve for the proposed method. 

Furthermore, Figs. 6 and 7 showcase examples of the 
model's correct and incorrect classifications from the test 
dataset. Specifically, Figs. 6(a) and 6(b) display images 
from the fire and no-fire classes, respectively, which the 
model accurately classified, despite challenges like the 
presence of sunlight, autumn leaves, cloud and fog—
elements that could potentially be mistaken for fire. In 
contrast, Fig. 7 presents the only image from the no-fire 
class that the model mistakenly classified as fire. This 
misclassification is likely due to the presence of a dark 
cloud in the image, resembling black smoke typically 
associated with fires. 

To further evaluate the generalizability of the proposed 
model, we tested it on images not included in the 
DeepFire dataset, randomly collected from other 
sources. These samples cover varied geographical 
regions and environmental conditions such as fog, 
different lighting, and seasonal vegetation. 
Representative results are shown in Figs. 8 and 9. 
Fig. 8(a) and 8(b) display correctly classified images 
from the fire and no-fire classes, respectively. Fig. 9 
shows a no-fire image misclassified as fire, likely due to 
fog and autumn leaves creating a visual effect similar to 
smoke. This example highlights the challenge of such 
ambiguous cases, even for human observers. 

 

 
Fig 6. True classification (a) Fire (b) No-Fire. 

 
Fig 7. False classification (ground truth= No-Fire). 

 
Fig 8. True classification (a) Fire (b) No-Fire. 
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Fig 9. False classification (ground truth= No-Fire). 

4.2 Computational costs and resource requirements 
In terms of computational requirements, the model was 

trained using Google Colab Pro, which provides access 
to high-performance GPUs such as the NVIDIA Tesla 
T4 or P100. The total training time for the final model 
was approximately 1,252 seconds (about 21 minutes). 
The trained model, based on the Xception architecture 
with a custom classifier, consists of approximately 20.87 
million parameters and occupies around 79.60 MB of 
storage. 

This level of complexity suggests that the model is 
suitable for deployment on systems with moderate 
computational resources. However, further optimization 
may be necessary for real-time deployment on highly 
constrained edge devices.  

4.3 Performance comparison with machine learning 
algorithms 

In this subsection, we compare the performance of the 
proposed deep learning model with a traditional machine 
learning method, namely the Support Vector Machine 
(SVM) [40]. The comparison aims to highlight the 
advantages of the proposed approach over non-deep 
learning techniques in the task of forest fire 
classification. Table 7 presents the details of this 
comparison. 

Furthermore, the confusion matrices of the proposed 
method and the traditional SVM algorithm are shown in 
Fig. 10. The Xception model achieved near-perfect 
classification, correctly identifying 100 fire instances 
and 89 no-fire instances, with only 1 false positive and 
no false negatives. In contrast, the SVM model exhibited 
slightly lower performance, with 94 true positives and 
87 true negatives, accompanied by 6 false negatives and 
3 false positives. This clearly demonstrates that Xception 

is more precise and reliable in detecting both fire and no-
fire cases. 

Additionally, the Receiver Operating Characteristic 
(ROC) curves in Fig. 11 further support this finding, 
with the Xception model achieving an AUC of 1.0000 
compared to 0.9533 for the SVM model. As evident 
from the figures, the Xception network significantly 
outperforms the SVM model in terms of classification 
accuracy and robustness. 

4.4 Performance comparison with other CNN models 
This subsection provides a performance comparison of 

the proposed approach on the Deepfire dataset against 
other CNN models, including architectures similar to 
Xception, such as Inception-v3 [41] and MobileNet-v2 
[42]. In this evaluation, the proposed method was 
applied to these networks without altering any 
parameters, allowing for a direct comparison of their 
performance. To assess the networks' performance 
during the training and validation phases, Figs. 12 and 
13 illustrate the loss and accuracy per epoch for each 
network on both training and validation data, 
respectively. 

Moreover, the confusion matrices of the three 
networks are compared in Fig. 14. As previously 
mentioned, the Xception network achieved a perfect 
classification of all fire class images, resulting in a false 
negative rate of zero, but misclassified one of the 90 no-
fire class images as belonging to the fire class. In 
contrast, the Inception-v3 network misclassified two fire 
class images as no-fire and additionally produced a false 
positive rate of two by misclassifying two no-fire class 
images as fire. The MobileNet-v2 network misclassified 
a total of six images from the test dataset, with a false 
negative rate of one, a false positive rate of five, a true 
positive rate of 99, and a true negative rate of 85. Table 
8 details the results of the comparison. 

Additionally, the Receiver Operating Characteristic 
(ROC) curves for Xception, Inception-v3, and 
MobileNet-v2 are shown together in Fig. 15 to facilitate 
comparison. According to this figure, the Xception 
network shows the best performance, followed by 
Inception-v3 and then MobileNet-v2. 

 
Table 7. Comparative analysis of proposed approach with SVM. 

Model Accuracy Precision Recall F1-Score Time 

Xception 0.9947 0.9901 1.0000 0.9950 1252 sec. 

SVM 0.9526 0.9691 0.9400 0.9543 4020 sec. 
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Fig 10. The confusion matrix for (a) Xception (b) SVM. 

 
Fig 11. The ROC curves for (a) Xception (b) SVM. 

 
Fig 12. Loss chart for training and validation data for (a) Xception (b) Inception-v3 (c) MobileNet-v2. 
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Fig 13. Accuracy chart for training and validation data for (a) Xception (b) Inception-v3 (c) MobileNet-v2. 

 

 
Fig 14. The confusion matrix for (a) Xception (b) Inception-v3 (c) MobileNet-v2. 
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Table 8. Comparative analysis of proposed approach with other CNN models. 
Neural Network Loss Accuracy Precision Recall F1-Score Time 

Xcep�on 0.009105 0.9947 0.9901 1.0000 0.9950 1252 sec. 

Incep�on-v3 0.06887 0.9789 0.9800 0.9800 0.9800 797 sec. 

MobileNet-v2 0.2877 0.9684 0.9519 0.9900 0.9706 492 sec. 

 

 
Fig 15. The ROC curves for networks Xception, Inception-v3 

and MobileNet-v2. 

Overall, based on the results and the presented charts, 
it is evident that while the Inception-v3 neural network 
benefits from the Inception architecture and the 
MobileNet-v2 neural network utilizes deep separable 
convolutions, both of which are advanced and efficient 
structures, the Xception neural network outperforms 
them in this specific context and dataset. This superior 
performance can be attributed to Xception's architecture, 
which extends the Inception design by more effectively 
separating channel-wise and spatial correlations in 
convolutional layers. As a result, Xception can capture 
more detailed features, leading to higher accuracy and 
better overall performance in the task of forest fire 
classification. 

4.5 Performance comparison with other research 
To further evaluate the efficiency of the proposed 

method, its performance was compared against other 
studies, as detailed in Table 9. These comparative 
studies were conducted on various datasets, including 
FLAME, Corsican Fire, and others, with some studies 
using private or custom datasets and each with different 
image quantities and characteristics. According to the 
table, it is observed that some of these studies have used 
multiple different neural networks in their proposed 
methods. In this case, the accuracy provided for these 
studies corresponds to the best result obtained by them.  
 

Table 9. Comparative analysis of proposed approach with 
other classification research works. 

Reference Dataset/ Number of 
Images Neural Network Accuracy 

[14] Corsican fire/500 Incep�on-v3 98.60% 

[15] FLAME/47992 

VGG16 
VGG19 

ResNet50 
Incep�on 
Xcep�on 

88.00% 

[16] FLAME/47992 Xcep�on 76.23% 

[17] DeepFire/1900 
FFireNet 

(Based on 
MobileNet-v2) 

98.42% 

[18] FLAME/48000 
Combina�on of 

EfficientNet-b5  &  
DenseNet201 

85.12% 

[34] DeepFire/1900 VGG19 95.00% 

[19] DeepFire & Fire/1650 

Ensemble-
ResNet-v1 
Ensemble-
ResNet-v2 

99.15% 

[20] Private/3845 DCN_Fire 98.30% 

[21] DeepFire/1900 CNN 97.63% 

[43] FLAME/31501 FT-ResNet50 79.48% 

[22] FLAME/8000 DSA-ResNet 93.65% 

[44] Private/121464 
ICNN 

(EdgeFireSmoke) 
98.97% 

[23] FLAME/1452 

Incep�on-v3 
DenseNet121 
ResNet50-v2 

VGG19 
NASNet-Mobile 

 
99.32% 

[24] Private/2700 MobileNet-v3 90.73% 

[25] FLAME/39375 
Xcep�onNet 

MobileNet-v2 
ResNet50 

 
99.30% 
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[26] 
Corsican & FLAME & 

Firefront_Gestosa/7912 
SVM 96.21% 

[27] SWIFT/69000 BoucaNet 93.67% 

[28] private/7977 3ENB2 99.04% 

[31] private/Not men�oned 
CNN-RCNN 

YOLOv8 
96.00% 

[32] private/Not men�oned FireNet-CNN 99.05% 

[33] private/Not men�oned EfficientNet 95.80% 

Proposed 
method 

DeepFire/1900 Xcep�on 99.47% 

 
Despite the diversity in datasets and the approaches 

used, the results clearly indicate that our proposed 
method stands out. Specifically, our approach achieved 
an impressive accuracy of 99.47%, surpassing the 
performance of other studies in this domain. This high 
accuracy underscores the effectiveness of our model in 
accurately classifying forest fire images, making it a 
more reliable solution compared to the methods used in 
previous research. 

5 Conclusion 

As mentioned at the outset, detecting and classifying 
forest fires is both critical and challenging, as the system 
must balance high accuracy with fast processing speed to 
be effective in real-time scenarios. Achieving this 
balance is essential for early detection, which can 
significantly reduce the damage caused by forest fires. In 
response, this research introduced a new method that not 
only meets but surpasses current standards, 
demonstrating exceptional performance compared to 
existing approaches in the field. The study leveraged 
advanced deep learning techniques, specifically utilizing 
transfer learning on the Xception neural network, which 
is known for its efficiency in feature extraction and 
classification tasks. By using a pre-trained model, the 
research was able to significantly reduce the training 
time while maintaining high accuracy. Additionally, a 
customized classifier was developed to better address the 
specific nuances of forest fire images, and 
hyperparameters were meticulously fine-tuned to further 
enhance the model's effectiveness. This research 
employed the DeepFire dataset, a specialized collection 
of images that includes both forest fires and non-fire 
scenarios, providing a robust foundation for training and 
evaluating the model. The evaluation metrics for the 
proposed method were highly impressive: accuracy of 
99.47%, precision of 99.01%, recall of 100%, and an F1 
score of 99.50%. These metrics highlight the model's 
ability to correctly identify fire images while minimizing 

false positives and false negatives. Moreover, the total 
processing time, including both training and testing 
phases, was recorded at 1,252 seconds, demonstrating its 
efficiency in handling the dataset within a reasonable 
timeframe. When comparing these results with those 
from other methods, it becomes evident that this 
approach not only meets but exceeds the performance of 
alternative solutions, showcasing superior accuracy and 
efficiency in forest fire classification. 

Limitations 
This study does not assess real-time deployment or 

integration with live surveillance systems, which may 
involve processing delays and computational constraints. 
The study does not include a detailed report of all 
hyperparameter tuning experiments, such as variations in 
network depth and activation functions. 

Future Work 
To enhance robustness and generalization, future work 

will involve expanding the dataset with diverse and 
challenging environmental conditions, using both 
synthetic and real-world samples. Future efforts will 
focus on evaluating the model’s real-time performance, 
including latency and resource demands, on hardware 
used in surveillance systems.  
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