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Abstract: Robots have become integral to modern society, taking over both complex and 

routine human tasks. Recent advancements in depth camera technology have propelled 

computer vision-based robotics into a prominent field of research. Many robotic tasks—

such as picking up, carrying, and utilizing tools or objects—begin with an initial grasping 

step. Vision-based grasping requires the precise identification of grasp locations on 

objects, making the segmentation of objects into meaningful components a crucial stage 

in robotic grasping. In this paper, we present a system designed to detect the graspable 

parts of objects for a specific task.  Recognizing that everyday household items are 

typically grasped at certain sections for carrying, we created a database of these objects 

and their corresponding graspable parts.  Building on the success of the Dynamic Graph 

CNN (DGCNN) network in segmenting object components, we enhanced this network to 

detect the graspable areas of objects. The enhanced network was trained on the compiled 

database, and the visual results, along with the obtained Intersection over Union (IoU) 

metrics, demonstrate its success in detecting graspable regions. It achieved a grand mean 

IoU (gmIoU) of 92.57% across all classes, outperforming established networks such as 

PointNet++ in part segmentation for this dataset. Furthermore, statistical analysis using 

analysis of variance (ANOVA) and T-test validates the superiority of our method. 

Keywords: Robotic Grasp, Grasp Area, Point Cloud, Part Segmentation, Dynamic 

Graph CNN 

 

  

1 Introduction 

OBOTIC manipulation has emerged as a significant 

area of study, especially as robots increasingly 

replace humans in industries, services, and agriculture 

[1]–[6]. Grasping is central to many robotic tasks; 

however, robots are still markedly less adept than 

humans at grasping items [7], [8]. The advent of 

sophisticated depth and stereo vision cameras has fueled 

interest in vision-based grasping systems. Sahbani et al. 

[9] divided vision-based grasping methods into two 

categories: analytical and empirical (or data-driven) 

methods. Analytical methods, which were initially the 
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dominant approach, rely on the analysis of geometry, 

kinematics, and dynamics to determine suitable grasps, 

such as force-closure, which ensures stability [9]–[12]. 

The primary advantage of these approaches is their 

ability to calculate and guarantee theoretical 

requirements for grasp quality. However, they have 

significant drawbacks, including the necessity for 

precise object information and high computational costs 

[13]. In contrast, data-driven strategies focus on 

categorizing various types of grasps and utilize learning 

techniques to enhance their effectiveness. Learning-

based methods automatically configure grasp detection 

without human intervention, thereby reducing both 

programming efforts and computational costs [14]. 

Although data-driven approaches do not guarantee 

successful grasping and require large volumes of data, 

the collection of comprehensive databases and recent 

advances in deep learning have increased interest in 

these methods [10], [13], [15]. 

In task-oriented grasping, the configuration of the 
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grasp is determined by the intended action or purpose of 

the grasp. The task constraints associated with a specific 

grasp can be encapsulated in the concept of 

affordance.[16]. Indeed, a grasp affordance describes 

how an object should be grasped to accomplish a 

specific task  [17]. Different grasp affordances imply that 

the selection of graspable locations on an object will 

vary. For instance, to open a bottle, you typically grasp 

the cap.  Thus, various affordances can be linked to 

different parts of an object. Segmenting objects based on 

these affordances is a vital process in the field of robotic 

grasping. In this work, we focus on segmenting 

household objects to facilitate grasping for everyday use. 

Point clouds are dispersed collections of points in two 

or three dimensions that provide a versatile geometric 

representation, essential for numerous computer graphics 

and vision applications. They come from 3D data 

gathering tools like LiDAR scanners and RGB-D 

cameras [8], [18]. With advancements in 3D scanning 

technologies, the rapid acquisition of 3D point clouds 

has become increasingly feasible, making these 

representations more accessible for various applications 

[1], [19]. Despite their simplicity, point clouds lack 

inherent topological information, presenting challenges 

for effective processing and analysis. Traditional 

methods have relied on handcrafted features for point 

cloud analysis; however, the success of deep neural 

networks in image processing has sparked interest in 

adapting these techniques for point clouds [19]. 

Nonetheless, applying deep neural networks, such as 

convolutional neural networks (CNNs), to point clouds 

presents difficulties due to the naturally irregular 

structure of point clouds, in contrast to images [20].  

Part-based grasping has gained significant attention in 

recent years due to its two key advantages: reducing the 

search space for grasp parameters and facilitating task-

oriented grasping [17]. Consequently, segmenting 

objects to identify graspable areas is essential for the 

success of this research. This study introduces a novel 

system for detecting grasp regions in household objects 

using a network based on part segmentation. We have 

compiled a comprehensive database of household items, 

meticulously segmenting them into graspable and non-

graspable components. Our criteria for graspability are 

informed by the typical usage of these tools; for 

example, the handle of a knife is considered graspable, 

as it is the part typically grasped when moving the knife. 

We utilize an enhanced DGCNN [20] architecture for 

part segmentation, applying it to our dataset by 

modifying the spatial transform block and addressing 

label imbalance within the loss function. The main 

contribution of our work can be summarized as follows  : 

• Development of a DGCNN-based Grasp Detection 

System: This paper presents a novel system for 

detecting graspable regions in household objects, 

leveraging the DGCNN network for part 

segmentation to identify meaningful object 

components essential for robotic manipulation. 

• Compilation of a Comprehensive Database. A 

dedicated database of household objects has been 

compiled, systematically segmented into graspable 

and non-graspable parts based on their functional 

usage (e.g., categorizing handles as graspable). 

• Enhancement of the DGCNN Architecture. The 

standard DGCNN has been improved by modifying 

the spatial transform block and selecting a suitable 

loss function to address class imbalance, making it 

better suited for the grasp detection task.  

In the following sections, we first review the literature 

in Section 2, focusing on two key areas: computer 

vision-based robotic grasping and point cloud 

segmentation. In Section 3, we present our proposed 

method and introduce our database. Section 4 evaluates 

the results, and in Section 5, we discuss the findings in 

more detail, including suggestions for potential 

alternative grasp scenarios. Finally, Section 6 provides 

the conclusion of our work. 

2 Literature Review  

2.1 Vision-based robotic grasping 

In 2020, Monica and Aleotti [17] introduced a 

projective analysis method for part-based grasp 

planning. They employed the Bi-class Symmetric 

Hausdorff distance (BiSH) for point cloud 

categorization, transferring labels from pre-labeled 

images to 2D point cloud projections, which were 

subsequently fused back onto the 3D point cloud for part 

segmentation. Pose estimation for fruit grasp planning 

[21] involves point cloud registration in two stages: first, 

coarse registration is performed using the Sample 

Consensus Initial Alignment (SAC-IA) technique to 

align the laser scanner template with the Kinect point 

cloud, followed by fine registration with the Iterative 

Closest Point (ICP) algorithm to refine and finalize the 

6D pose. Grasp planning using superimposed 

segmentation [3] involves the use of computer-aided 

design (CAD) models of target objects to develop grasp 

configurations. The core technique of this approach, 

superimposed segmentation, preprocesses the mesh 

model by dividing it into overlapping facets.  In 2022, 

Etxezarreta and Sagardia [22] developed a real-time 

application for predicting hand-object contact in 

complex geometries. Their method simplifies the 

Voxelmap-Pointshell collision detection system, 

handling resolution constraints and supporting 

interactions between multiple objects using point clouds 

and voxelized signed distance fields.  Graspability map 

generation [23] combines data-driven grasp planning 
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with analytical quality guarantees by creating high-

resolution maps stored in a database. During runtime, 

customized maps are generated based on the properties 

of the gripper and the object to be grasped. 

Working with multi-fingered robotic hands presents 

significant challenges due to the high-dimensional 

search space; however, they offer a more stable grasp 

across a diverse range of objects  [24], [25]. Fan and 

Tomizuka [24]  proposed a framework that incorporates 

the multi-dimensional iterative surface fitting (MDISF) 

algorithm for grasp planning, which aligns the hand 

surface with the object while minimizing collisions and 

surface fitting errors. Furthermore, the framework 

includes the grasp trajectory optimization (GTO) 

algorithm, which plans finger trajectories for grasp 

execution based on the object's point cloud 

representation.  Marios Kiatos et al. [25]  introduced a 

shape complementarity metric for multi-fingered hands, 

which features a fast algorithm for generating potential 

collision-free grasps in cluttered environments. Their 

approach employs an objective function to assess the 

shape complementarity between the hand and the object, 

effectively enhancing grasp stability and efficiency in 

complex scenarios. In 2021, Lundell et al. [26] 

introduced Deep Dexterous Grasping in Clutter (DDGC) 

to accelerate the generation of high-quality, collision-

free multi-finger grasps. DDGC accomplishes this by 

integrating scene completion, scene encoding, and a 

differentiable forward kinematics layer, enabling 

efficient handling of unknown objects in cluttered 

environments. 

In 2020, Zhang et al. [19] proposed a grasp saliency 

map method to predict critical grasp points. They 

introduced a technique for transferring saliency maps 

across different shapes within the same class by 

leveraging feature extraction and correspondence. 

Building on this, they developed a deep neural network 

inspired by PCPNet, which combines global feature 

guidance with local patch inputs to estimate grasp 

saliency. In 2020, Qian et al. [16] introduced a task-

constrained grasp pose detection method for single-view 

point clouds, utilizing a convolutional neural network for 

pixel-level affordance detection. They enhanced grasp 

accuracy and stability by refining the local frame 

calculation in the Grasp Pose Detection (GPD) method 

and implementing a position-sensitive fully 

convolutional neural network for grasp stability 

classification.  Wang et al. [27] developed a hierarchical 

policy algorithm in 2022 that utilizes latent trajectory 

embeddings for effective planning. The high-level policy 

generates these embeddings from a partially observed 

point cloud, while a Q-learning-trained critic network 

scores them. The low-level policy subsequently selects 

the highest-scored embedding to produce a sequence of 

end-effector poses for the robot.  Liu et al. [7]  proposed a 

grasp detection method utilizing point clouds to train a 

PointNet++-based network, improving feature capture of 

grasped samples. They employed an antipodal-based 

sampling scheme from Dex-Net and evaluated grasp 

quality using metrics that incorporate both force closure 

and epsilon quality. 

Yan et al. [12]  proposed a lightweight RGB-D fusion 

module named self-attention-based multi-scale 

confidence map fusion )SMCF(, which effectively 

merges the multi-scale confidence map with a self-

attention mechanism. They also developed the Attention 

Feature Fusion (AFF) module to adaptively combine the 

segmentation output with features from the grasp 

detection network, along with the Feature Fusion Atrous 

Spatial Pyramid (FFASP) to address challenges in 

generating grasp candidates for small objects.  Wan et al. 

[28] introduced an instance segmentation method in 

2023 using the Instance-Augmented Net (IAN) pipeline, 

which integrates instance information into feature 

extractors. This method effectively addresses excessive 

noisy features resulting from misidentifying points 

belonging to the same object, while also enhancing the 

utilization of multi-resolution information in instance 

segmentation backbones.  The Cross-Window Point 

Transformer (CP-Former) [18]  enhances 3D object 

segmentation from incomplete single-view data by 

employing a bidirectional cross-attention mechanism 

that captures long-range dependencies and refines point-

wise features. It improves segmentation performance by 

emphasizing latent boundary regions through contrastive 

learning and an adaptive dual aggregation strategy. 

2.2 Point cloud segmentation 

One of the key advancements in point cloud processing 

is the introduction of PointNet [29], the first neural 

network architecture specifically designed for the direct 

processing of raw point cloud data. The network 

comprises three main components: max pooling layers, a 

multi-layer perceptron (MLP) module, and feature 

representation. The max pooling structure addresses the 

unordered nature of point cloud data, enabling PointNet 

to achieve permutation invariance. As a global feature 

representation, the max pooling layer functions as a 

symmetric operator, aggregating information by 

selecting the maximum feature value from each set of 

points. The MLP module serves as a classifier for the 

global features of the shape and facilitates the extraction 

of point cloud features through weight sharing. 

Additionally, the feature fusion structure integrates both 

local and global information by concatenating the global 

point cloud feature vector with each point feature, 

thereby updating per-point features to include both types 

of information. To simplify the learning of an effective 
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rotation matrix, PointNet also incorporates the T-Net 

structure. Overall, PointNet remains a pivotal network 

design in this field, demonstrating success in tasks such 

as object categorization and semantic segmentation [20], 

[29]. 

Despite its significant strengths, PointNet's pointwise 

approach, which ignores spatial relationships between 

points, limits its ability to capture local geometric 

features. To address this limitation, PointNet++ was 

introduced in 2017 by Qi et al. [30]. Similar to CNNs, 

PointNet++ analyzes a set of points sampled 

hierarchically within a metric space. It achieves this by 

extracting local features from small regions, effectively 

capturing subtle geometric patterns. Within PointNet++'s 

architecture, PointNet has been selected as the local 

feature learner. These local features are progressively 

combined into larger groupings until the characteristics 

of the entire point set are captured. This approach 

enables the extraction of multi-scale features from point 

clouds [29], [30]. 

In 2019, Wang et al. [20] proposed the DGCNN, a 

novel method for point cloud processing that 

incorporates the EdgeConv module as a core component. 

EdgeConv generates edge features that describe the 

relationships between a point and its neighbors by 

constructing a graph through k-nearest neighbors. Unlike 

traditional Graph CNNs, where the graph remains fixed, 

DGCNN features a dynamically updated graph that 

evolves after each layer of the network, allowing for 

more flexible and adaptive feature learning. By stacking 

multiple layers, the network can progressively learn the 

global shape properties of an object, integrating local 

information at each layer to capture the overall structure. 

In multi-layer systems, points that are closer in feature 

space are recognized as having similar semantic 

characteristics, even if they are distant in the original 

space, enabling the network to uncover hidden features 

across larger distances. These capabilities make 

DGCNN particularly useful for tasks such as 

classification, semantic segmentation, and part 

segmentation [20]. 

3 Methodology 

Our grasp region detection algorithm is built upon the 

DGCNN network, which, as previously mentioned, is a 

powerful tool for part segmentation. First, we will 

provide a detailed description of the method and network 

architecture, followed by an explanation of the data 

creation process. Finally, we will discuss the selected 

loss function for this task. 

3.1 Graph formation and edge convolution 

Consider a 3D point cloud consisting of n points, 

denoted as P = {X1, X2 , … , Xn} ⊆ R3, where each point 

Xi has coordinates Xi = (xi, yi, zi). A directed graph can 

be defined as 𝒢 = (𝒱, ε), where 𝒱 = {1,2, … , n} 

represents the set of vertices, and ε ⊆ 𝒱 × 𝒱 denotes the 

set of directed edges between these vertices. To convert 

a point cloud into a directed graph, in addition to treating 

the point set P as the vertices of the graph, we also need 

to define the edges. One of the simplest ways to define 

edges in a point cloud is by using the Euclidean distance 

between points in combination with a k-nearest 

neighbors (k-NN) approach. 

A key component in the DGCNN architecture is the 

edge feature, which plays a critical role in capturing 

relationships between points in the point cloud. The edge 

feature eij = hΘ(Xi, Xj), connecting two points Xi and Xj, 

is parameterized by Θ, which is learned during training. 

The formula for the edge feature, which combines the 

general information of Xi and the local information from 

the relative difference Xj − Xi, is expressed as follows: 

   hΘ(Xi, Xj) = h̅Θ(Xi , Xj − Xi )                    (1) 

In practice, the edge feature hΘ is implemented using 

MLP layers, which facilitate effective learning of 

complex relationships between the vertex features and 

their local differences. Based on this explanation, the 

final notation of the edge features can be expressed as 

follows: 

   𝑒𝑖𝑗𝑚
′ = 𝑅𝐸𝐿𝑈(𝜃𝑚. (Xj − Xi) + 𝜙𝑚. Xi),          (2) 

Where Θ = (𝜃1, … , 𝜃𝑀, 𝜙1, … , 𝜙𝑀), with M 

representing the number of different filters. Finally, the 

EdgeConv module defines the features of the graph 

points by applying a max aggregation function, as 

illustrated below: 

   𝑥𝑖𝑚
′ = max

𝑗:(𝑖,𝑗)∈𝜀
𝑒𝑖𝑗𝑚

′                                        (3) 

A schematic of the EdgeConv module is shown in 

Figure 1. In this module, a tensor of size 𝑛 × 𝑓 (where f 

represents the number of point-wise features, which 

varies across layers) is processed by forming a graph and 

calculating k edge features using an MLP network with 

{𝑎1, 𝑎2, … , 𝑎𝑛} neurons. This results in a tensor of size 

𝑛 × 𝑘 × 𝑎𝑛. After applying pooling, the output tensor 

will have a size of 𝑛 × 𝑎𝑛, representing 𝑎𝑛 features for 

each point.  One of the unique attributes of the DGCNN 

method is the dynamic generation of the graph at each 

layer. In the first layer, the EdgeConv module is used to 

construct the graph based on the nearest neighbors in 

Euclidean space. In subsequent layers, the graph is 

formed based on the proximity of vertices in the feature 

space derived from the previous layer, allowing for a 

more meaningful representation of relationships between 

points. 
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Fig. 1 Schematic of EdgeConv module. 

3.2 Network architecture 

The network architecture is illustrated in Figure 2. Our 

architecture closely resembles the DGCNN framework, 

with a minor modification pertaining to the spatial 

transform section of the network. A 3×3 matrix is 

commonly estimated by spatial transform blocks to align 

an input point set with a canonical space.  In the DGCNN 

method, the k-nearest neighbors’ algorithm is used to 

identify neighboring vertices.  Subsequently, a tensor of 

size 𝑛 × 𝑘 × 6 is constructed using these vertices along 

with their differences from their neighbors.  Through 

neural network learning, a transformation matrix is 

generated, enabling the effective transformation of the 

point cloud.  Notably, using k-NN in Euclidean space to 

find neighborhoods presents challenges, such as non-

uniform density.  In regions of the point cloud where 

point density varies, k-NN may inadvertently connect 

distant points in sparse areas or fail to capture nearby 

connections in denser regions, leading to inaccurate 

neighborhood representations.  To address these 

challenges, we replaced k-NN with a meshing-based 

method for extracting point neighbors, differing from 

DGCNN. Specifically, we utilized the Point2Mesh [31] 

technique to reconstruct a surface mesh from the input 

point cloud, leveraging a self-prior automatically derived 

from the point cloud itself. This approach yields more 

reliable and accurate neighborhood connections. 

As illustrated in Figure 2, the segmentation model 

processes an input consisting of n points representing an 

object. Initially, the points undergo a modified spatial 

transformation. Following this transformation, the 

transformed points are sequentially fed into three 

EdgeConv modules, each performing feature extraction. 

An MLP network, combined with max pooling, is 

employed to generate a 1D global descriptor with 1024 

hidden dimensions. This process aggregates the features 

extracted from the point cloud, allowing for a 

comprehensive representation that captures the most 

significant information across all points. Additionally, a 

categorical vector is employed during both the training 

and testing phases to manage the various classes of 

objects, ensuring that the network can distinguish 

between different object categories. This vector serves as 

an additional input feature, providing explicit 

information about the object class (e.g., bottle, mug, or 

scissors). By doing so, the network focuses on the 

relevant segmentation labels (graspable and non-

graspable parts) specific to the given class. Incorporating 

this categorical vector prevents confusion between 

segmentation labels of different classes and improves the 

accuracy of predictions for each object type.  Finally, the 

model generates per-point classification scores for p 

semantic labels by concatenating the 1D global 

descriptor with the outputs of all EdgeConv module, 

which serve as local descriptors for each point. In this 

study, we utilize this network architecture to transform 

the problem of detecting graspable regions into a part 

segmentation task by dividing each object class into two 

components: a graspable part and a non-graspable part. 

3.3 Database creation 

With the understanding that everyday objects are 

typically grasped from specific parts for task-oriented 

purposes, we have developed a 3D point cloud database 

for these objects. This database aims to enhance robotic 

grasping by providing representations of grasping 

locations suitable for a moving task. It includes six 

classes: bottles, eyeglasses, headphones, knives, mugs, 

and scissors. We collected approximately 1,120 3D point 

clouds from these six classes and manually segmented 

them into graspable and non-graspable parts using 

MeshLab software [33]. The graspable parts were 

carefully selected to ensure they are suitable for carrying 

the objects. 

3.4 Loss function 

In part segmentation tasks, some classes may 

experience imbalance. For example, when a bottle is 

divided into two parts (the cap and the body), the cap 

contains significantly fewer points than the body. To 

address this issue, we apply weighted softmax cross-

entropy to ensure that both parts are learned effectively, 

compensating for the uneven distribution of points. This 

can improve the model's performance for 

underrepresented classes and help balance the 

contribution of each class to the overall loss.  A weight 

score vector, derived from the distribution of labeled 

points in the training set, is incorporated into the loss 

function. As each object is divided into two parts, the 

vector consists of two weights. These weights are 

computed using the following equations, as described in 

[32]. 

   𝐷𝑖 =
𝑛1+𝑛2

𝑛𝑖
                                       (4) 
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Fig. 2 Overview of the network architecture . 

Let 𝐷𝑖  represent the distribution of points labeled as i, 

where 𝑛𝑖 is the number of samples labeled as i. The 

weight score for segment i is then obtained as follows: 

   weight score𝑖 =
𝐷𝑖

𝐷1+𝐷2
                                       (5) 

4 Evaluation 

In this section, we start by preparing the data and 

configuring the network architecture. Subsequently, we 

report numerical results using the IoU metric and 

compare the proposed method with benchmark 

approaches. Following this, we perform an ANOVA test 

and conduct a T-test to further assess the superiority of 

our method. Finally, we present visual results to 

demonstrate the effectiveness of our approach. 

4.1 Data 

 We test our DGCNN-based model on a prepared 

database consisting of 3D point clouds from six classes, 

each divided into two parts, resulting in a total of 12 

segments. To enhance the quality of training, we 

augmented the data by adding noise and applying 

rotation and translation. For each shape in the dataset, 

2,048 points are sampled. The data is divided into three 

parts: training, validation, and testing, with a split ratio 

of 70%, 15%, and 15%, respectively. 

4.2 Architecture 

The network architecture is detailed in Section 3.2, 

where we applied a dropout rate of 0.5 to two MLP 

layers, each containing 256 units.  Additionally, the 

number of neighbors used in the EdgeConv modules is 

set to 20. The input to our network consists of the 3D 

coordinates of the point cloud, represented as an 𝑛 × 3 

matrix, where 𝑛 denotes the number of points. For our 

experiments, we sampled 2048 points from each shape 

in the dataset, resulting in a 2048 × 3 input to the 

network. The output of the network is an 2048 × 12 

matrix, where each point is assigned one of 12 

segmentation labels. 

4.3 Numerical results 

Intersection-over-Union (IoU) on points is a metric 

used to evaluate our model and compare its performance 

with other benchmarks. Both the network's output and 

the ground truth data have identical dimensions, 

allowing for a direct comparison during the IoU 

calculation. The IoU for each segment is computed 

individually using the formulas (6) and (7):  

   IOU1 =
|A1∩B1|

|A1∪B1|
 (6) 

   IOU2 =
|A2∩B2|

|A2∪B2|
  (7) 

Where 𝐴1 and 𝐴2 represent the ground truth points for 

segment 1 (graspable part) and segment 2 (non-

graspable part), respectively, and 𝐵1 and 𝐵2 represent 

the predicted points for segment 1 and segment 2, 

respectively. The final IoU for the entire object is 

computed as follows: 

𝐼𝑜𝑈𝑂𝑏𝑗𝑒𝑐𝑡 =
𝐼𝑂𝑈1 + 𝐼𝑂𝑈2

2
 

                                      (8) 

The IoU for a class is calculated by averaging the IoUs 

of all objects within that class and named mean IoU 

(mIoU) and then the IoUs of all classes are averaged to 

determine the grand mean IoU (gmIoU). The table 1 

shows the mIoU and gmIoU results for the proposed 

method, as well as the PointNet and PointNet++ 

methods. 
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Table 1 Part segmentation results on the household dataset. The metrics used are mIoU and gmIoU in percentage, 

calculated on points. 

Method gmIoU mIoU 

Bottle Eyeglasses Headphones Knife Mug Scissors 

Pointnet 87.22 87.1 90.8 89.21 88.1 93.01 75.1 

Poinnet++ 87.77 88.5 91.2 88.01 88.2 94.2 76.5 

Ours 

(Without Weighted Loss) 
91.73 91.3 95.6 92.42 92.5 95.01 83.58 

Ours 

(Weighted Loss) 
92.57 93.54 95.6 92.73 92.6 97.09 83.7 

As can be seen, our method achieves higher mIoU and 

gmIoU compared to the other methods. We also present 

the mIoUs of the method before and after applying the 

weighted loss function. As seen, the results for the bottle 

and mug classes increased by 2.24% and 2.08%, 

respectively, after applying the weighted loss function. 

The results for the other classes did not change 

significantly due to the better balance between the 

segments. Additionally, the gmIoU increased by 0.84% 

after applying the weighted loss function. 

Figure 3 (a–c) presents box plots of the mIoU for 

PointNet, PointNet++, and the proposed method across 

six distinct object classes: bottle, eyeglasses, 

headphones, knife, cup, and scissors. Each box plot 

visualizes the distribution of mIoU values for the 

corresponding class, displaying key statistical measures 

such as the maximum, minimum, median, and the upper 

and lower quartiles of the data. A comparison of these 

box plots shows that the distribution range is narrower 

for our method across all classes. In Figure 3 (d), box 

plots of the gmIoU for the enhanced DGCNN network, 

PointNet, and PointNet++ are presented. The results for 

PointNet and PointNet++ show a wider distribution 

range in gmIoU, indicating that their performance is 

more sensitive to variations in test samples. In contrast, 

the results of our proposed method exhibit a more 

concentrated distribution, highlighting superior 

consistency compared to the other methods. 

4.4 Statistical analysis 

In this section, we evaluate the performance of the 

proposed method using statistical tools, including T-tests 

and ANOVA. The T-test compares the means of two 

groups to determine if the observed differences are 

statistically significant, while ANOVA extends this 

analysis to multiple groups by evaluating variations 

within and between them. Table 2 presents the unpaired 

T-test results comparing the Enhanced DGCNN method 

with PointNet, while Table 3 presents the results 

comparing the Enhanced DGCNN with PointNet++.  The 

Enhanced DGCNN outperforms both PointNet and 

PointNet++ significantly, as shown in the T-test results 

in Table 2 and Table 3. Compared to PointNet (Table 2), 

the Enhanced DGCNN achieves a mean difference of 

0.05349 (p < 0.0001), with a 95% confidence interval 

ranging from 0.04103 to 0.06595. Similarly, when 

compared to PointNet++ (Table 3), the Enhanced 

DGCNN demonstrates a mean difference of 0.04799 (p 

< 0.0001), with a 95% confidence interval of 0.03588 to 

0.06011. 

The F-test for variance comparison further supports the 

consistency of the Enhanced DGCNN’s results, with 

significant variance differences observed for both 

PointNet (F = 2.560, p < 0.0001) and PointNet++ (F = 

2.364, p < 0.0001). These findings indicate that the 

Enhanced DGCNN not only provides better performance 

in terms of mean accuracy but also exhibits greater 

stability across datasets.  

The ANOVA test shows a significant F-value of 33.67 

(p < 0.0001), indicating that there are statistically 

significant differences between the methods, suggesting 

that the mean performance of the three methods differs 

significantly. Since the ANOVA test showed significant 

differences among the three methods, pairwise 

comparisons were conducted using Dunnett's test, as 

presented in Table 4. 

The results demonstrate that the proposed method 

significantly outperforms both PointNet and PointNet++: 

the mean difference compared to PointNet is 0.05349 (P 

< 0.0001), and the mean difference compared to 

PointNet++ is 0.04799 (P < 0.0001). These findings 

further confirm the superior performance of the 

proposed method. 

Table 5 summarizes the results of the T-test and 

ANOVA comparing the proposed method with PointNet 

and PointNet++, demonstrating that, statistically, the 

proposed method outperforms both PointNet and 

PointNet++. 

4.5 Visual results 

 We also present the visual results of our method 

alongside the ground truth for better clarity in Figure 3, 

which includes six categories of shapes. In Figure 4, we 

observe examples of noisy shapes from these six 

categories that have been segmented using the proposed 

method, demonstrating the effectiveness of the approach 

in the presence of low noise. 
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(a) (b) (c) 
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(d) 

Fig. 3 Box plots of the mIoU and gmIoU for three different methods. (a–c) Box plots depicting the mIoUs for PointNet, PointNet++, 

and the proposed method across six distinct object classes. (d) Box plots compare the gmIoU of PointNet, PointNet++, and the 

proposed method. 

5 Discussion 

The appropriate grasping location of objects varies 

across different tasks and scenarios, and in some cases, 

multiple grasping regions can be identified for a single 

object. In our work, we focused on regions suitable for 

carrying objects, leveraging the human tendency to grasp 

narrow and small areas, such as the handle or cap of a 

mug or bottle, when selecting the graspable regions. A 

potential solution for other tasks could involve defining 

task-specific graspable regions and training the network 

with these new regions. Additionally, different graspable 

parts could be incorporated for various tasks using a 

multi-task segmentation approach instead of binary 

segmentation. 

6 Conclusion 

In this work, we proposed an algorithm for identifying 

the grasp locations of objects, utilizing the DGCNN 

network to segment and detect the graspable parts. The 

DGCNN architecture was modified and used for a 

custom database specifically collected for this research.  

Our results have outperformed the discussed methods, 

demonstrating superior mIoU and gmIoU scores, along 

with achieving better performance confirmed by 

statistical methods. Furthermore, our approach has 

shown strong performance against noisy data, thanks to 

training on datasets augmented with noise, rotation, and 

translation.  Future work will focus on expanding the 

database to further enhance the model's performance, 

including more object categories, and utilizing other 

networks to improve grasp area detection.  
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Table 2 T-Test Results Comparing the Enhanced 

DGCNN Method with PointNet. 

 Table 3 T-Test Results Comparing the Enhanced DGCNN 

Method with PointNet++. 

Table Analyzed Unpaired t test data  Table Analyzed Unpaired t test data 

     

Column B Proposed Method  Column B Proposed Method 

vs. vs.  vs. vs. 

Column A PointNet  Column A PointNet++ 

Unpaired t test   Unpaired t test  

P value <0.0001  P value <0.0001 

P value summary ****  P value summary **** 

Significantly different (P < 0.05)? Yes  Significantly different (P < 0.05)? Yes 

One- or two-tailed P value? Two-tailed  One- or two-tailed P value? Two-tailed 

t, df t=8.421, df=1300  t, df t=7.773, df=1300 

How big is the difference?   How big is the difference?  

Mean of column A 0.8722  Mean of column A 0.8777 

Mean of column B 0.9257  Mean of column B 0.9257 

Difference between means (B - A) 

± SEM 0.05349 ± 0.006352 

 Difference between means (B - A) 

± SEM 0.04799 ± 0.006174 

95% confidence interval 0.04103 to 0.06595  95% confidence interval 0.03588 to 0.06011 

R squared (eta squared) 0.05173  R squared (eta squared) 0.04441 

F test to compare variances   F test to compare variances  

F, DFn, Dfd 2.560, 650, 650  F, DFn, Dfd 2.364, 650, 650 

P value <0.0001  P value <0.0001 

P value summary ****  P value summary **** 

Significantly different (P < 0.05)? Yes  Significantly different (P < 0.05)? Yes 

     

Data analyzed   Data analyzed  

Sample size, column A 651  Sample size, column A 651 

Sample size, column B 651  Sample size, column B 651 

  
Table 4 Results of ANOVA and Dunnett's Multiple Comparisons Test for Pairwise Comparisons Between the Proposed Method, 

PointNet, and PointNet++. 

Number of families 1        

Number of comparisons per family 2        
Alpha 0.05        

Dunnett's multiple comparisons 

test Mean Diff. 

95.00% CI of 

diff. Significant? Summary 

Adjusted P 

Value A-?   

Proposed Method vs. PointNet 0.05349 

0.03868 to 

0.06830 Yes **** <0.0001 B PointNet  

Proposed Method vs. PointNet++ 0.04799 

0.03318 to 

0.06280 Yes **** <0.0001 C PointNet++  

Test details Mean 1 Mean 2 Mean Diff. SE of diff. n1 n2 q DF 

Proposed Method vs. PointNet 0.9257 0.8722 0.05349 0.006690 651 651 7.995 1950 

Proposed Method vs. PointNet++ 0.9257 0.8777 0.04799 0.006690 651 651 7.174 1950 

 

Table 5 ANOVA test and T-test on metrics (gmIoU) for different segmentation methods 

 Proposed Method vs Point Net Proposed Method vs Point Net++ 

p Value ANOVA T-Test ANOVA T-Test 

MIoU P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Fig. 4  Visual results of graspable part detection. The figure illustrates the segmentation of household objects into graspable (red) and 

non-graspable (yellow) parts. (a) corresponds to a bottle, (b) to eyeglasses, (c) to headphones, (d) to a knife, (e) to a mug, and (f) to 

scissors. 

 

Fig. 5 Graphical outcomes for noisy data 
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