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Abstract: Hepatitis C virus (HCV) detection is a critical aspect of early intervention and 
effective management of the disease. This paper presents a comprehensive study focused 
on enhancing the detection accuracy of HCV through the integration of advanced 
techniques - SMOTE, Optuna, and SHAP - alongside extensive exploratory data analysis 
(EDA). The study addresses class imbalance using Synthetic Minority Over-sampling 
Technique (SMOTE), optimizes model performance with Optuna for hyperparameter 
tuning, and provides model interpretability using SHAP (SHapley Additive 
exPlanations). EDA is leveraged to gain valuable insights into the dataset's 
characteristics, ensuring robust data preprocessing and feature engineering. The results 
show 97% improved HCV detection performance, highlighting the efficacy of the 
proposed methodology in medical diagnostics and aiding healthcare professionals in 
making informed clinical decisions. 
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1  Introduction 

HE hepatitis C virus causes hepatitis C, an RNA 
virus that mostly harms the liver (HCV). It is one of 

the main viral hepatitis strains and is regarded as a 
global public health issue. The main way that the virus 
is transmitted is through contact with an infected 
person's blood, most frequently when sharing needles 
when using drugs, getting contaminated medical care, or 
from infected mothers to their newborns while giving 
birth. According to estimates, this condition has a 
persistent impact on more than 150 million people 
globally. In data preprocessing data normalization has 
been done to replace the missing values of the dataset 
with mode values based on age attribute. Python and R 
are the two machine learning tools used to rescale the 
variables. A 1385-instance dataset with 29 attributes was 
used to test the classification model [1-2].  
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Ruzicka et.al [3] investigated a thorough 
understanding of systemic symptoms in Japanese 
chronic HCV patients, and extended their research into 
various extrahepatic manifestations. Data analysis using 
R-based CARET and Python-based Scikit learn, and 
seven machine learning techniques and feature selection 
algorithms were discussed Kashif et.al  in [4]. 
Yang and Shami have been discussed about the merits of 
the ensemble model, adaboost and Bagging which serves 
as the more suitable classifiers among the five models 
[5]. The majority of HCV infections develop into 
chronic conditions, in which the virus stays in the body 
for a longer period of time and frequently causes 
permanent liver damage. Hepatitis C chronic infection 
can advance covertly for years without showing any 
signs. To detect Hepatitis C, several authors et al. 
[11],[13],[22] have suggested the first screening test as 
‘HCV antibody test’ which is a blood test which tests the 
levels of antibodies present in the blood. In recent years, 
the use of artificial intelligence and machine learning in 
the medical field has shown tremendous potential, 
notably in the areas of disease diagnosis and prognostic 
modeling. These cutting-edge methods have the 
potential to have a big impact on healthcare by offering 
precise, quick, and affordable diagnostic options. In 
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order to improve the identification of hepatitis C disease, 
several authors et. al. [6-10] have suggested harnessing 
the potential of cutting-edge approaches such as 
Synthetic Minority Over-sampling Technique (SMOTE), 
Optuna [12], and SHAP (SHapley Additive 
exPlanations). Increasing the number of instances of a 
specific attribute in the dataset can be done 
mathematically using SMOTE. This imbalance can 
affect the machine learning model, leading to a lower 
accuracy and hindering the performance of the model. 
With using SMOTE we can ensure that there is a 
balanced dataset that is being used and hence improving 
the performance of the model. Building powerful 
machine learning models requires careful consideration 
of the hyperparameter tuning process. The choice of the 
best hyperparameters has a significant impact on the 
model's performance, yet manually investigating every 
combination is time- and resource-intensive. Enter 
Optuna, an automated framework for hyperparameter 
optimization that uses cutting-edge algorithms to find 
the optimal hyperparameter configuration. The hepatitis 
C detection model's accuracy and resilience by using 
Optuna has been optimized in our research. It's 
important to interpret machine learning models, 
especially in the medical industry where trust-building 
and clinical decision-making depend on openness. By 
assigning feature priority, the advanced model 
interpretability technique SHAP offers illuminating 
justifications for certain predictions. By examining the 
contribution of each feature to the model's output, 
healthcare professionals can gain a better understanding 
of the factors affecting the identification of hepatitis C 
disease. This allows them to obtain useful insights into 
the diagnostic process. 

This study aims to enhance hepatitis C disease 
detection by employing SMOTE, Optuna, and SHAP 
techniques in the machine learning process. Section 2 
reviews relevant literature on hepatitis C virus detection 
using machine learning models. Section 3 presents 
exploratory data analysis of the dataset, while Section 4 
discusses the machine learning flow with the proposed 
methods. In Section 5, Results of performance of the 
classical model. Section 6 represents the conclusion of 
findings and potential implications for medical 
diagnostics. 

2 LITERATURE SURVEY 

Ahmed M. Elshewey et al. [14] have proposed the 
hyOPTGB Model for hepatitis C prediction. The 
hyOPTGB is an hyperparameter optimized Gradient 
Boosting Model in which 8 specific hyperparameters of 
Gradient Boosting are optimized. The dataset is 
preprocessed using Min- Max normalization followed by 
feature selection using Forward selection wrapped 
method. For the same dataset different machine learning 

models such as SVM, DT, DC, BC and RC were 
evaluated based on their accuracy, F-1 score, recall and 
precision and their performance is compared with 
hyOPTGB model, where the proposed hyOPTGB model 
outperforms with 95.3% accuracy. 

Ali Mohd Ali et al. [15] implemented various machine 
learning models for comprehensive evaluation of their 
effect in predicting hepatitis C.Sequential Forward 
Selection (SFS) is used in the suggested framework to 
separate the most important attributes from the rest. 
Investigation into the effect of the synthetic minority 
oversampling technique (SMOTE) on accuracy led to 
the conclusion that the SMOTE had little to no impact 
on the models' accuracy. When machine learning models 
like LR, KNN, DT, NN, and RF were employed on the 
dataset, an average of 83% accuracy was attained. The 
predictions of the machine learning models are 
interpreted using the Shapley Additive Explanations 
(SHAP) approach.  

Hashem et al. [16] have compared the performance 
between multiclass and binary class labels using an 
Egyptian patient’s dataset and highlights the impact of 
label categorization on model accuracy and predictive 
capability. Edeh et al. [17] have proposed an AI based 
ensemble model after examining various machine 
learning models for predicting hepatitis. The suggested 
approach could predict increasing fibrosis using clinical 
information and blood biomarkers. It has been 
discovered that individual models are capable of 
delivering accuracy of up to 94.67%. The next step was 
to develop the ensemble model, which consists of a 
Bayesian network, MLP, and QUEST decision trees. 
The Ensemble node combines three model nuggets 
(MLP, Bayesian Network, and QUEST) to produce 
predictions that are more accurate than any of the 
individual models. By merging predictions from various 
models, limitations in the MLP, Bayesian Network, and 
QUEST models were eliminated, leading to a higher 
overall accuracy. This combination of MLP, Bayesian 
Network, and QUEST models typically outperforms the 
top MLP, Bayesian Network, and QUEST models, if not 
better. The obtained accuracy was 94.10%. 

Several authors et al. [18], [19] have suggested an 
artificial intelligence (AI) algorithm was presented to 
identify the stage of liver fibrosis in patients. The 
researchers looked at the medical records of 1240 people 
with chronic viral hepatitis C, and they used data from 
689 patients who were divided into stages of liver 
fibrosis to build machine learning models. The 
established method for diagnosing the 3-4 stages of liver 
fibrosis in patients with chronic viral hepatitis C has an 
accuracy of 80.56% (95% CI: 69.53-88.94%), sensitivity 
of 66.67%, and specificity of 94.44% when compared to 
the "gold standard" of diagnosis (liver biopsy). 
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3 EXPLORATORY DATA ANALYSIS 

The dataset used in this study includes demographic 
information, including age, as well as test results from 
Hepatitis C patients and blood donors. The data was 
sourced from the esteemed University of California, 
Irvine Machine Learning Repository [21].  

Figure 1 depicts the percentage of blood donors who 
have had their health checked is displayed in a pie chart. 
Blood donors who have not been screened for any of the 
conditions make up the largest group, at 86.7%. Blood 
donors who have had cirrhosis testing make up the next-
highest percentage, 4.9%. For blood donors who have 
undergone tests for fibrosis, hepatitis, and questionable 
blood donors, the remaining percentages apply. There 
are a total of 31 missing values in this dataset. Under 
analysis it is found that ALP and CHOL contribute the 
most to the missing values in the dataset. 

 
Fig 1. Proportion of Blood Donors and Hepatitis C-Related 

Conditions in the Dataset 

3.1 Univariate Data Analysis 
Univariate data analysis is a fundamental statistical 

approach used to examine and summarize individual 
variables in a dataset. It provides essential insights into 
the distribution, central tendency, and variability of each 
factor, facilitating a deeper understanding of their 
individual effects before proceeding with multivariate 
modeling. In the context of medical diagnostics, 
univariate analysis plays a crucial role in identifying 
patterns, outliers, and potential correlations within 
patient data. In this chapter the study focuses on the 
univariate analysis of critical biochemical and 
demographic factors associated with Hepatitis C 
diagnosis, including Age, Albumin Level, Alkaline 
Phosphatase Level, Alanine Transaminase Level, and 
Bilirubin Level. Each of these parameters provides 
significant clinical insights: Age influences disease 
progression and treatment outcomes. Albumin Level 
reflects liver function and protein synthesis capability. 
Alkaline Phosphatase (ALP) Level serves as a marker 

for liver or bile duct abnormalities. Alanine 
Transaminase (ALT) Level indicates liver cell damage 
and inflammation. Bilirubin Level assesses liver’s ability 
to process waste, often signaling hepatic dysfunction. 

A.Age 

 
Fig 2. Prevalence of Hepatitis in Young Populations 

Figure 2 illustrates the distribution of hepatitis rates 
among the young population by age and liver status. The 
overall age distribution demonstrates that the highest 
prevalence of hepatitis is in the population aged 20-30 
years old. The liver is inflamed by hepatitis. When 
bodily tissues are harmed or    diseased, inflammation 
with swelling occurs. The age distribution by liver status 
indicates that the bulk of people with hepatitis are 
healthy, but there is a larger population with fibrosis and 
cirrhosis. This is because hepatitis can damage the liver, 
and if the damage is severe enough, it can lead to 
fibrosis and cirrhosis. Fibrosis is a criterion where scar 
tissue builds up in the liver, and cirrhosis is a more 
sophisticated phase of liver damage where the liver 
becomes scarred and incapable to function properly. 

B.Albumin Level 

 
Fig 3. Albumin Level Variations in Liver Disease and Healthy 

Individuals 
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Figure 3 illustrates the distribution of albumin levels in 
populations with different liver status. The albumin level 
is a quantifier of the number of albumins in the blood. 
Albumin is a protein produced by the liver. The chart 
indicates that people with a healthy liver have higher 
rates of albumin than the population with liver damage. 
This is because the liver is responsible for generating 
albumin. When the liver is damaged, it can no longer 
generate as much albumin, which can lead to low 
albumin levels. The graph also indicates that the 
intensity of liver damage is correlated to the level of 
albumin deficiency. People with fibrosis have lower 
levels of albumin than people with healthy liver. People 
with cirrhosis have the lowest albumin levels of all. The 
above figure indicates that the average albumin level for 
population with healthy livers is 40 g/dL. The graph also 
illustrates that the average albumin level for people with 
fibrosis is 30 g/dL. The chart indicates that the average 
albumin level for the population with cirrhosis is 20 
g/dL. 

C.Alkaline Phosphatase Level 
Figure 4 illustrates the distribution of alkaline 

phosphatase (ALP) levels in populations with different 
liver status. ALP is an enzyme fabricated by the liver. It 
helps break down fats and proteins. When the liver is 
damaged, it can no longer generate as much ALP, which 
can lead to low ALP levels. The graph also indicates that 
the severity of liver damage is correlated to the level of 
ALP deficiency. People with fibrosis have lower ALP 
levels than people with healthy livers. Under survey, 
people with liver cirrhosis has the lowest ALP values. 

 
Fig 4. Density Distribution of Alkaline Phosphatase in Liver 

Disorders 

D.Alanine Transaminase Level 
Figure 5 illustrates the distribution of alkaline 

transaminase (ALT) levels by liver status. ALT is an 
enzyme generated in the liver. This enzyme aids the 
liver's process of converting food into energy. The 
quantity of ALT in the blood may increase in cases of 
liver injury. The above figure illustrates three different 

liver conditions: healthy, hepatitis, and cirrhosis. The 
healthy range for ALT levels is between 0 and 50 IU/L. 
ALT levels above 50 IU/L can signify a liver problem. 
The overall ALT distribution is higher in people with 
healthy livers, while the distribution by liver status is 
lower in people with hepatitis, fibrosis, and cirrhosis. 

 
Fig 5. ALT Level Distribution in Healthy vs. Liver Disease 

Patient 

E.Aspartate Aminotransferase Level 
Figure 6 illustrates the distribution of aspartate 

aminotransferase (AST) levels by liver status. As soon 
as the liver is harmed, the enzyme AST is created there 
and secreted into the bloodstream. The graph illustrates 
three different liver conditions: healthy, hepatitis and 
cirrhosis. The healthy range for AST values is between 0 
and 40 IU/L. AST levels above 40 IU/L can signify a 
liver problem. In people with hepatitis, most AST values 
are between 40 and 300 IU/L. In people with liver 
cirrhosis, most AST values are above 300 IU/L. 

 
Fig 6. Impact of Liver Disorders on AST Levels 

F.Bilirubin Level 
Figure 7 illustrates the distribution of bilirubin levels 

by liver status. A consequence of the destruction of red 
blood cells is bilirubin. The level of bilirubin in the 
blood rises when the liver is not functioning properly 
because it cannot remove bilirubin from the blood. The 
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chart indicates that people with healthy liver have a 
bilirubin range of 0-1.5 mg/dL. As the liver disease 
progresses, the bilirubin level increases. People with 
hepatitis have a bilirubin range of 1.6-3 mg/dL, people 
with fibrosis have a bilirubin range of 3.1-5 mg/dL, and 
people with cirrhosis have a bilirubin range of >5 
mg/dL. 

 
Fig 7. Bilirubin Trends in Cirrhosis, Hepatitis, Fibrosis, and 

Healthy Cases 

G.Creatinine Level 

 
Fig 8. Creatine Level Variations in Healthy and Liver Disease 

Patients 

Figure 8 shows the distribution of creatine levels in 
people with different liver statuses. The graph adopts a 
bar chart to show the distribution of creatine levels by 
liver status. The bars are colored to signify the different 
liver statuses: healthy (green), fibrosis (yellow), cirrhosis 
(red), and hepatitis (blue). The graph indicates that the 
average creatine level for people with healthy livers is 
100 mg/dL. The graph also demonstrates that the 
creatine levels are distributed in a bimodal manner, with 
two separate peaks. This is probably because nutrition 
and genetic factors, which are two separate sources of 
creatine elevation, are involved. Dietary variables 
contribute to the peak at the lower creatinine levels, 
whereas genetic factors contribute to the peak at the 
higher creatinine levels. 

H.Protein Level 
Figure 9 shows a diagram of protein distribution by liver 
status. The data shows that there is no clear correlation 
between protein levels and liver status. The overall 
protein distribution is relatively uniform, with a slight 
increase in protein levels in people with hepatitis and 
cirrhosis. However, there is a wide range of protein 
levels in people with all liver statuses, and there are 
many people with healthy livers who have low protein 
levels. 

 
Fig 9. Protein Level Indicator 

3.2 Bivariate Data Analysis 
Bivariate analysis has been considered and compared 
with 2 attributes against each other [20]. In this analysis 
“ALT vs. AST” and “ALP vs. CHE” together have an 
impact on the dataset.  

Alanine Transaminase (ALT) and Aspartate 
Transaminase (AST) are key liver enzymes used as 
biomarkers for liver function and damage. Bivariate 
analysis of ALT vs. AST helps in assessing liver disease 
severity, differentiating between various hepatic 
conditions, and predicting disease progression. While 
there was a comparison between each attribute in the 
dataset directly with the disease [20] and the relation it 
presented, in this bivariate analysis we are going to 
compare 2 attributes against each other. Bivariate 
analysis has been considered as useful way to identify 
relationships between variables that might not be 
immediately obvious. In this analysis “ALT vs. AST” 
and “ALP vs. CHE” together have an impact on the 
dataset. 

ALT vs. AST 
Figure 10 shows that people with healthy livers have 

relatively low levels of ALT and AST. However, people 
with hepatitis C have much higher levels of ALT and 
AST. This is because the hepatitis C virus damages liver 
cells, which releases ALT and AST into the 
bloodstream. But, predominantly a very high AST is 
seen to be common among people who have been 
affected by hepatitis C virus. 
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Fig 10. Comparative Analysis of ALT and AST Enzymes in 

Liver Health 

ALP vs CHE 

 
Fig 11. Exploring the Link Between ALP and CHE Levels 

Figure 11 depicts the comparison between alkaline 
phosphatase (ALP) levels and cholinesterase (CHE) 
levels. It has been observed that low ALP levels and 
high CHE levels in a patient's test results may indicate a 
hepatitis C virus infection. In contrast, healthy 
individuals typically exhibit medium levels of both 
substances. 

4 METHODOLOGY 

In this study, we employ various machine learning 
techniques to analyze and classify Hepatitis C-related 
data. These methods range from traditional statistical 
models to advanced machine learning algorithms, each 
offering unique strengths in handling different data 
characteristics. The following classification techniques 
are explored: 

Each of these models is evaluated based on 
classification performance metrics, ensuring a 

comprehensive comparison of their effectiveness in 
Hepatitis C diagnosis. 

4.1 SMOTE 
Synthetic Minority Over-sampling Technique is 

abbreviated as SMOTE. It is a machine learning data 
augmentation strategy for imbalanced datasets. When 
dealing with imbalanced datasets in which one class is 
severely under represented compared to others, SMOTE 
aids in class distribution balance by generating synthetic 
samples for the minority class. Due to a lack of 
sufficient samples, the machine learning model may not 
be able to fully learn from the minority class when 
SMOTE is not used on an imbalanced dataset. As the 
model may be skewed towards the dominant class, this 
could result in biased and erroneous predictions. An 
example from the minority group is chosen and its k 
nearest neighbors are determined (usually using 
Euclidean distance), and then creates new synthetic 
samples by randomly selecting a neighbor and adding a 
fraction of the difference between the two samples to the 
original sample shown in equation(1). This process helps 
expand the minority class, making it more balanced with 
the majority class. 

𝑁𝑁𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑖𝑖 + 𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆_𝐹𝐹𝐹𝐹𝑆𝑆𝐹𝐹𝐹𝐹𝑖𝑖𝐹𝐹𝑅𝑅 ∗
(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑖𝑖 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑗𝑗)    (1) 

Where: 

● Sample_i is the original sample from the  
minority class. 

● Sample j is one of its k nearest neighbors. 
● Random_fraction ranges from 0 to 1 and it 

is random. 
For our dataset we use SMOTE to balance the various 
classes namely Healthy, Hepatitis, Fibrosis, Cirrhosis 

 
Fig 12. Data distribution with and without SMOTE 

Figure 12 depict the distribution of patients with liver 
diseases before and after SMOTE. The original dataset 
was imbalanced, with 56.5% of the patients being 
healthy, 25% having hepatitis, 5.3% having cirrhosis, 
and 5.3% having fibrosis. SMOTE was used to balance 
the classes in the dataset by creating synthetic data 
points that were similar to the existing data points. This 



Iranian Journal of Electrical & Electronic Engineering, Vol. 21, No. 04, December 2025     7 

resulted in a more evenly distributed dataset, with 25% 
of the patients in each class. 
Table 1. Model Performance Analysis: Accuracy, F1-Score, 

and Precision Without SMOTE 

Model Accuracy F1-Score Precision 

LR 0.903 0.628 0.615 

SVM 0.946 0.609 0.736 

KNN 0.849 0.605 0.611 

Naive- Bayes 0.946 0.695 0.726 

RF 0.946 0.653 0.702 

MLP 0.956 0.613 0.619 

Table 1 shows the accuracy and precision of various 
machine learning models in the absence of SMOTE. The 
MLP model is the most accurate, with a score of 0.956, 
followed by RF, LR, SVM, KNN, and Naive Bayes. At 
0.619, the MLP model has the highest precision. While 
RF and LR are both good performers, they fall short of 
the MLP model. 
Table 2. Model Performance Analysis: Accuracy, F1-Score, 

and Precision With SMOTE 

Model Accuracy F1-Score Precision 

LR 0.881 0.614 0.607 

SVM 0.946 0.609 0.736 

KNN 0.924 0.614 0.669 

Naive- 
Bayes 0.946 0.695 0.726 

RF 0.946 0.630 0.684 

MLP 0.956 0.713 0.747 

Table 2 shows the accuracy, precision and F1-score, 
and of various machine learning models employing 
SMOTE (Synthetic Minority Over-sampling Technique). 
The MLP model has the highest accuracy (0.956), 
followed by RF, LR, SVM, K-Nearest Neighbors, Naive 
Bayes, Random Forest, and Multi-layer Perceptron. 
SMOTE improves the accuracy, f1-score, and precision 
of these models. 

From our results, it is evident that all of the models' 
accuracy is slightly higher with SMOTE than without 
SMOTE. With and without SMOTE, the MLP model has 
the maximum accuracy. With SMOTE, RF and LR 
accuracy is slightly higher than without SMOTE. SVM, 
KNN, and Naive Bayes accuracy are not significantly 
different with and without SMOTE. 

In general, total accuracy between with SMOTE and 
without SMOTE does not differ significantly. However, 
all models with SMOTE have a minor gain in accuracy. 

This demonstrates how SMOTE can be used to enhance 
machine learning models' accuracy on unbalanced 
datasets. 

4.2 Hyperparameter Optimization: A Deep Dive with 
Optuna 

4.2.1 OPTUNA 
Optuna is a sophisticated hyperparameter optimization 

framework that employs state-of-the-art algorithms to 
effectively explore the hyperparameter space of machine 
learning and deep learning models. Hyperparameters are 
configuration parameters that can significantly influence 
and impact the performance of a model. By automating 
the process of tuning hyperparameters, Optuna can assist 
in identifying the optimal collection of hyperparameters 
to maximize the model's performance metric. 

Optuna requires the definition of a search space for 
hyperparameters. Practitioners specify         
hyperparameters and their respective distributions, such 
as continuous parameters with uniform or log-uniform 
distributions, categorical parameters with predefined 
choices, and discrete parameters with integer values. 
This search space serves as the basis for Optuna's 
exploration of different hyperparameter configurations. 
Optuna utilizes a Bayesian optimization algorithm to 
select the hyperparameters for each trial. The Bayesian 
optimization algorithm uses a probabilistic model to 
represent the uncertainty about the hyperparameter 
space. This model is updated as new trials are run, and 
the algorithm uses this information to select the next set 
of hyperparameters. Until a stopping requirement, such 
as a maximum number of trials or period of time, is 
satisfied, the optimization process is carried out. At the 
end of the optimization process, Optuna returns the 
optimal set of hyperparameters. 

The Optuna has been used to optimize the 
hyperparameter. It aids in finding the best 
hyperparameter which results in optimal performance of 
the machine learning model. For the prediction of 
hepatitis C disease, OPTUNA objective function has 
been created that uses a voting classifier to ensemble six 
different machine learning models: logistic regression, 
KNN, SVM, Random Forest, Naive Bayes, and MLP. 

The objective function first defines the hyper 
parameters for each of the seven models. 

4.2.1.1 Logistic Regression:  
A statistical model is used to determine the likelihood 

of a binary result, like whether or not a client will click 
on an advertisement. A sigmoid function is used in the 
output layer of a linear regression model. The sigmoid 
function is a nonlinear function that maps real numbers 
to the interval [0, 1]. 
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This allows the logistic regression model to predict 
probabilities. 

The mathematical equation (2) for the logistic 
regression   model is as follows [23] as, 

𝑆𝑆(𝑦𝑦 = 1 ∣ 𝑥𝑥) = 1
(1+𝑒𝑒(−𝑤𝑤𝑤𝑤))

                (2)       

Where: 

 p(y = 1 | x) is the probability that the outcome 
is 1 given the input x 

 w is the vector of weights 
 x is the vector of features 
 exp () is the exponential function 

 

The below are the hyperparameters used in  logistic 
regression: 

 lr_penalty: Type of regularization penalty ('l1', 'l2', 
or 'elasticnet') applied to logistic regression. 

 lr_solver1 and lr_solver2: Solvers used for 
optimization in logistic regression, depending on 
'lr_penalty' ('liblinear', 'saga', 'newton-cg', 'lbfgs', 
or 'sag'). 

 lr_l1_ratio: Mixing parameter for elasticnet 
penalty (0 for L2, 1 for L1), used when 'lr_penalty' 
is 'elasticnet'. 

 lr_tol: Tolerance for stopping criteria during 
optimization (values between 1e-5 and 1e-2). 

 lr_C: Inverse of regularization strength (C) for 
logistic regression (values between 0.0 and 1.0). 

 

The Logistic Regression achieved an accuracy of 88.17 
% with F-1 score and precision being 0.61 and 0.60 
respectively. 

4.2.1.2 K-Nearest Neighbors (KNN):  
Both classification and regression tasks can be 

performed using this non- parametric machine learning 
model. The algorithm finds the k training examples that 
are most like a new data point, and then predicts the 
class or value of the new data point using the classes or 
values of the k nearest neighbors. The similarity of two 
data points can be evaluated using a distance measure. 
Common distance units include the Minkowski distance, 
the Manhattan distance, and the Euclidean distance. 

The distance metric employed in KNN most frequently 
is the Euclidean distance. The equation (3) is followed 
and defined as follows : 

𝑅𝑅(𝑥𝑥,𝑦𝑦) = �∑(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2                (3) 

Where: 

 d(x, y) is the distance between the two data 
points x and y 

 xi and yi are the i-th features of the two data 
points x and y 

The Manhattan distance is defined as follows: 

𝑅𝑅(𝑥𝑥,𝑦𝑦) = ∑(∣ 𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 ∣)                (4) 

 

The Minkowski distance is defined as follows: 

𝑅𝑅(𝑥𝑥,𝑦𝑦) = (∑(∣ 𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 ∣p)�
1
p�)               (5) 

Where: 

 p is a parameter that controls the weight of   
the distance between two data points 

 

The hyperparameters we utilized in K-nearest neighbors 
are as follows: 

 knn_neighbors: An integer hyperparameter 
ranging from 2 to 100 that represents the number 
of neighbors utilized in K-Nearest Neighbors. 

 knn_weights: A categorical hyperparameter with 
the options 'uniform' and 'distance' that determines 
how neighboring points are weighted for 
predictions ('uniform' for equal weight,' 'distance' 
for closer neighbors having more effect). 

 knn_p: Categorical hyperparameter having values 
1 and 2, corresponding to the power parameter for 
the Minkowski distance metric used in KNN ('1' for 
Manhattan distance, '2' for Euclidean distance). 

 

The K-Nearest neighbors (KNN) achieved an accuracy 
of 92.47 % with F-1 score and precision being 0.61 and 
0.66 respectively. 

4.2.1.3 Support Vector Machines (SVMs): 
 These models are an instance of supervised machine 

learning that may be utilized for both regression and 
classification. A line or plane known as a hyperplane 
divides data into two regions, with all the data points in 
one region belonging to one class and all the data points 
in the other region belonging to the other. The best 
hyperplane between two classes of data is chosen by 
SVMs to function. The SVM approach identifies the 
hyperplane with the largest margin between the two 
classes. The margin measures the separation between 
each class's closest data points and the hyperplane. 

The mathematical equation (6) of SVM is defined as 
follows [28] as, 

𝑚𝑚𝑖𝑖𝑚𝑚
𝑤𝑤,𝑏𝑏

1
2
∥ 𝑁𝑁 ∥2+ 𝐶𝐶 ∑ 𝜀𝜀𝑖𝑖𝑚𝑚

𝑖𝑖=1                 (6) 

1
2
∥ 𝑁𝑁 ∥2 represents the squared norm of the weight 

vector w. Minimizing this term helps maximize the 
margin (i.e., the separation between the two classes). 
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∑ 𝜀𝜀𝑖𝑖𝑚𝑚
𝑖𝑖=1  Slack variable penalty represents the sum of 

the slack variables, which measure the amount by 
which each data point violates the margin. 

′𝐶𝐶’ the hyperparameter C controls the trade off 
between maximizing the margin and minimizing 
classification errors. 

The hyperparameters utilized in support vector 
machines are as follows: 

 svm_C: A uniform hyperparameter with values 
ranging from 0.0 to 1.0 that represents the 
regularization parameter (C) for SVM. Smaller C 
values indicate more regularization. 

 svm_kernel: Categorical hyperparameter having 
values 'poly' and 'rbf' that determine the type of 
kernel used by SVM (polynomial kernel is known as 
‘poly’ and radial basis function kernel is known as 
‘rbf’). If 'svm_kernel' is 'poly,' an integer 
hyperparameter with values ranging from 1 to 10, 
denoting the degree of the polynomial kernel. The 
number 3 is chosen as the default for 'rbf'. 

 svm_tol: A uniform hyperparameter with values 
ranging from 1e-5 to 1e-2 that represents the 
tolerance for halting criteria during optimization. 

The Support vector machines (SVMs) achieved an 
accuracy of 94.62 % with F-1 score and precision being 
0.60 and 0.73 respectively. 

4.2.1.4 Random Forest:  
This model combines various decision trees to produce 

predictions. The predictions from the several decision 
trees are then combined to provide a final forecast. Each 
decision tree is trained on a different random subset of 
the training data. The training data is first generated into 
a bootstrap sample by the random forest approach. A 
random sample taken from the training data and replaced 
is known as a bootstrap sample. A data point can thus 
appear multiple times in the bootstrap sample. Once 
created, the bootstrap sample is used to train a decision 
tree. The decision tree is constructed using a greedy 
strategy, which repeatedly divides the training data into 
ever-tinier chunks. 

The splitting criterion used by the decision tree 
algorithm is the Gini impurity criterion. The Gini 
impurity criteria quantify the impurity of a node in a 
decision tree. The impurity of a node is a measure of 
how well the data points in the node are categorized. A 
node with low impurity has well-classified data points. 
When the decision tree approach reaches a stopping 
point, such as a minimum number of samples or a 
maximum tree depth, it will stop splitting the training 
data. After each decision tree has been trained, its 
projections are added together to get the final prediction. 
The projections of the different trees are often merged 
using a voting mechanism. The ultimate prediction in a 

voting scheme is the class anticipated by the majority of 
the decision trees. 

The mathematical equation (7) for random forest is as 
follows [23] as 

𝑃𝑃(𝑦𝑦
𝑥𝑥

) = ∑ 𝑁𝑁𝑖𝑖 𝑆𝑆𝑖𝑖𝑚𝑚
𝑖𝑖=1 (𝑦𝑦

𝑥𝑥
)                (7) 

Where: 

 𝑃𝑃(𝑦𝑦
𝑥𝑥

) is the predicted probability of class y for the 
input x 

 𝑁𝑁𝑖𝑖 is the weight of the ith decision tree 
  𝑆𝑆𝑖𝑖(

𝑦𝑦
𝑥𝑥

) is the predicted probability of class          y 
for the input x from the ith decision tree 

 

The mathematical equation (8) for the Gini impurity 
Criterion is as follows [24] as, 

𝐺𝐺𝑖𝑖𝑅𝑅𝑖𝑖 = ∑ 𝑆𝑆(𝑦𝑦)𝑦𝑦  (1 − 𝑆𝑆(𝑦𝑦))                             (8) 

Where: 

 P(y) is the probability of class y. 
 

The following are the hyperparameters we utilized in 
Random Forest: 

 rf_estimators: The number of decision trees in the 
Random Forest (numbers between 1 and 500). 

 rf_criterion: A criterion for measuring split quality 
(also known as 'entropy' or 'gini'). 

 rf_max_depth: The maximum depth of decision 
trees (values between 1 and 100). 

 rf_min_samples_split: The quantity of samples 
required to divide an internal node. (values between 
2 and 50). 

 rf_min_samples_leaf: The minimum amount of 
samples that must be present at a leaf node (1 to 
25). 

 

The Random Forest   achieved an accuracy of 94.62 % 
with F-1 score and precision being 0.63 and 0.68 

respectively. 

4.2.1.5 Naive Bayes:  
The Bayes theorem is used to produce predictions with 

Naive Bayes. The Bayes theorem is a mathematical 
formula that estimates the probability of one event 
happening given the probability of another. The chance 
of a data point belonging to a class is calculated in Naive 
Bayes as the product of the probabilities of the data 
point's features. The classifier is named Naive Bayes 
because the probabilities of the features are considered 
to be independent of one another. 

The following are the hyperparameters we utilized in  
Naive Bayes: 
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nb_smoothing: Uniform hyperparameter with values 
between 1e-10 and 1e-6. It represents the smoothing 
parameter (variance smoothing) used to avoid zero 
probabilities and improve the robustness of the Gaussian 
Naive Bayes model. 

Then the Gaussian Naive Bayes model (nb) is created 
using the Gaussian NB class with the selected 
nb_smoothing hyperparameter, which enables the model 
to handle continuous data and make predictions based on 
the assumption of normal distribution for each feature.  
The Naive Bayes achieved an accuracy of 94.62 % with 
F-1 score and precision being 0.69 and 0.72 respectively. 

4.2.1.6 Multilayer Perceptron:  
A type of artificial neural network (ANN) is the MLP. 

It is made up of multiple layers of perceptrons. 
Perceptrons are basic units that can compute linear 
functions. An MLP's various layers of perceptrons 
enable the network to learn more complex functions. 
MLPs are frequently employed in classification and 
regression tasks. They are also utilized for image 
classification [25],[26], natural language processing, and 
speech recognition, among other things. 

An MLP's input layer is the top layer. Data enters the 
network at the input layer. The following layer is the 
concealed layer. The network learns to represent data in 
the hidden layer. The number of hidden layers in an 
MLP might vary. Predictions are made in the output 
layer. 

Each layer's perceptrons are linked together. The 
connections between the perceptrons are weighted. 
Weights are taught during the training procedure. The 
training phase involves modifying the weights in the 
network so that it can generate correct predictions. 

A backpropagation algorithm is commonly used in the 
training of an MLP. The backpropagation algorithm is 
an iterative technique that modifies the weights in the 
network to reduce the error between anticipated and 
actual values. 

The following are the hyperparameters utilized in 
Multilayer perceptron: 

 

 mlp_hidden_layers: Categorical hyperparameter 
with choices [1, 2, 3],      representing the total 
number of hidden layers present in the MLP model. 

 mlp_hidden_units: Integer hyperparameter with 
values between 16 and 128, representing each 
hidden layer’s total number of neurons. 

 Mlp_activation: Categorical hyperparameter with 
choices ['relu', 'tanh', 'logistic'], determines the 
hidden layer’s activation function. 

 mlp_alpha:Uniform hyperparameter with values 
between 1e-6 and 1e-3, representing the L2 
regularization parameter for weight decay to prevent 
overfitting. 

The Multilayer perceptron (MLP) achieved an accuracy 
of 95.69 % with F-1 score and precision being 0.71 and 
0.74 respectively. 

4.2.1.7 Ensemble Model and Voting Classifier: 
An ensemble model is a grouping of numerous 

machine learning models (classifiers or regressors) that 
collaborate to deliver a more accurate and reliable 
prediction. A Voting Classifier is a machine learning 
ensemble model that combines the predictions of 
numerous base classifiers (or models) to provide a final 
prediction. It works on the majority voting concept, 
where each base classifier's prediction is treated as a 
"vote" for a specific class, and the class with the most 
votes becomes the final predicted class. 

In our proposed framework a Voting Classifier class is 
used to build an ensemble model called ‘vc’, which 
combines predictions from six base models: Logistic 
Regression, K-Nearest Neighbors, Support Vector 
Machine, Random Forest, Naive Bayes, and Multi-Layer 
Perceptron. Each base model is given a  weight between 
0.0 and 1.0 (lr_w, knn_w, svm_w, rf_w, nb_w, and 
mlp_w) to determine its influence on the final 
prediction. The ensemble model is then fitted on the 
balanced training data (X_bal, y_bal), and the accuracy 
(acc) is calculated using predictions made on the 
validation set (X_val). The goal of this ensemble 
strategy shown in Figure 13 is used to enhance the 
prediction. 

 
Fig 13. Ensemble Problem Model 

Model accuracy on the validation set from the best trial 
is found to be 97%, as well as the best hyperparameters 
discovered during the investigation.  
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Table 3 gives a detailed list of hyperparameter names 
and its corresponding optimal values. 

Finally, ensemble model using the best 
hyperparameters has been obtained from a 
hyperparameter optimization study. The best optimized 
hyperparameters are stored in the “study. best_params” 
attribute, which are used to initialize the ensemble 
model. The resulting model is stored in the variable 
model for further use and evaluation of the test data 

4.3 SHAP 
Model interpretability is critical for understanding and 

trusting prediction models in the field of machine   
learning research. SHAP (SHapley Additive 
exPlanations) is a powerful and extensively used 
framework for evaluating the predictions of complex 
machine learning models. In this research, we explore 
the use of SHAP, concentrating on its permutation-based 
approach to computing SHAP values. The use of SHAP 
in our study entails developing a SHAP explanation to 
help comprehend the model's predictions. First, we 
created a SHAP explanation using the shap. Explainer 
functionality. The explanation is put up to interpret our 
model’s predictions on a certain dataset. To provide 
explicit feature attribution, we label the features 
appropriately by supplying the relevant feature names. 
We compute SHAP values using a permutation-based 
technique. 

The SHAP explanation gives information about the 
computation's progress and timing throughout the 
procedure [27]. 

By using SHAP the importance of the attributes in the 
dataset were considered. 

we were able to visually depict the importance of the 
attributes in the dataset. 

Figure 14 depicts the importance of each attribute. The 
average SHAP value for each characteristic is shown in 
the bar graph. The SHAP value of a feature indicates 
how much it contributes to the model's prediction. 

Figure 14 is separated into two sections: positive and 
negative SHAP values. A feature is said to favorably 
contribute to the model's prediction if the SHAP value is 
positive. Negative SHAP values suggest that the feature 
has a detrimental effect on the prediction made by the 
model. The magnitude of the SHAP values is also used 
to sort the bar graph. The properties with the highest 
SHAP values are the most crucial to the model's 
predictions. 

The aspartate aminotransferase "AST" is the most 
essential feature for the model's predictions. This feature 
is an enzyme that is mostly located in the liver but is also 
present in muscles and other organs. When AST-

containing cells are destroyed, the AST is released into 
the bloodstream. 

Table 3. Best Hyperparameter Configurations for Enhanced 
Prediction 

SI.NO HYPERPARAMETER VALUES 
1 lr_penalty 'l2' 
2 lr_solver2 'lbfgs' 
3 lr_tol 0.003814159012031626 
4 lr_C 0.42350470965469134 
5 knn_neighbors 83 
6 knn_weights 'distance' knn_p 
7 svm_C 0.9731171875077148 
8 svm_kernel 'poly' 
9 svm_degree 5 

10 svm_tol 0.002292510698981856 
11 Rf_estimators 70 
12 rf_criterion 'gini' 
13 rf_max_depth 38 
14 rf_min_samples_split 29 
15 rf_min_samples_leaf 14 

16 nb_smoothing 2.596301857486734e-07 
mlp_hidden_layers 

17 mlp_hidden_units 113 
18 mlp_activation 'tanh' 
19 mlp_alpha 0.004011044419757664 
20 et_n_estimators 38 
21 et_criterion 'gini' 
22 et_max_depth 29 
23 et_min_samples_split 30 
24 et_min_samples_leaf 21 
25 lr_w 0.029872771851786117 
26 knn_w 0.2574479288604744 
27 svm_w 0.5286677776732325 
28 rf_w 0.6069934816118663 
29 nb_w 0.3189569725246839 
30 mlp_w 0.8092536312976131 
31 et_w 0.40729870664578616 

 

 
Fig 14. SHAP Value Analysis: Key Predictors in the Model 
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Gamma-glutamyl Transferase (GGT) test is the 
component with the second-highest SHAP score. This 
test in the feature establishes the blood level of GGT. 
GGT is an enzyme that is present throughout the body, 
but it is most common in the liver. GGT may seep into 
the bloodstream if the liver is injured.This is also 
visualized using Force Plot 

 
Fig 15. SHAP Summary Plot: Feature Impact on Model Output 

Figure 15 depicts the SHAP force plot for a model that 
predicts whether the patient will be diagnosed with liver 
illness or not. The dataset contains the following 
features: age, AST, ALT, GGT, ALB, BIL, and PROT. 
The arrows in the graphic represent each feature's 
contribution to the model's prediction. The size of the 
arrows represents the magnitude of the contribution. The 
contribution is indicated by the direction of the arrows. 
For example, the arrow for the feature "AST" points to 
the right, indicating that a high AST score is connected 
with an increased likelihood of being diagnosed with 
liver illness. It also gives us the information that AST, 
ALT, and GGT are the most relevant features for the 
model's predictions. These characteristics are all 
connected to liver function and are all associated with an 
increased risk of being diagnosed with liver disease. 

The other properties in the image are also significant 
for the model's predictions, but not as much as the AST, 
ALT, and GGT. 

Figure 16 indicates that AST levels rise before any 
other indications of liver disease arise. This suggests that 
AST levels could be used to to fine-tune the ensemble 
model, consisting of SVM, KNN, RF, Naive Bayes, LR, 
and MLP classifiers. When models were observed 
individually, the accuracy of MLP tops the other models 
with an accuracy of 95.69%. And the optimized 
ensemble model achieved an impressive 97% accuracy 
on the validation data and maintained its robustness, 
yielding 96% accuracy on the test data. Moreover, the 
implementation of SHAP features provided valuable 
insights into the model's predictions and increased its 

interpretability. The framework provides importance of 
each feature using Bar Graph and Force Plot; it also 
demonstrates the effectiveness of combining data 
preprocessing techniques, hyperparameter tuning, and 
interpretability tools to build powerful and reliable 
classification models. 

 
Fig 16. SHAP Dependence Plot for AST 

Figure 16 indicates that AST levels rise before any 
other indications of liver disease arise evaluate people 
for liver illness before they show any symptoms. When 
AST levels are confirmed to be elevated, additional tests 
may be performed to confirm the diagnosis of liver 
disease. 

The graph also indicates that AST levels can change 
over time in persons with liver disease. This means that 
a single AST test may not be enough to diagnose liver 
disease. However, if AST values are consistently  
excessive, this is a clear indication of liver disease.   

Figure 15 indicates that AST levels rise before any 
other indications of liver disease arise. This suggests that 
AST levels could be used to fine-tune the ensemble 
model, consisting of SVM, KNN, RF, Naive Bayes, LR, 
and MLP classifiers. When models were observed 
individually, the accuracy of MLP tops the other models 
with an accuracy of 95.69%. And the optimized 
ensemble model achieved an impressive 97% accuracy 
on the validation data and maintained its robustness, 
yielding 96% accuracy on the test data. Moreover, the 
implementation of SHAP features provided valuable 
insights into the model's predictions and increased its  

interpretability. The framework provides importance of 
each feature using Bar Graph and Force Plot; it also 
demonstrates the effectiveness of combining data 
preprocessing techniques, hyperparameter tuning, and 
interpretability tools to build powerful and reliable 
classification models. 
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Table 4. Benchmarking Machine Learning Models for 
Hepatitis C Prediction with Accuracy (%) 

Name of Model Accuracy (%) 

Logistic Regression 88.17 

Random Forest 94.62 

K- nearest neighbors 92.47 

Naive Bayes 94.63 

Support Vector Machines 94.62 

Multilayer perceptron 95.69 

The Aspartate Aminotransferase (AST) levels tend 
to rise before other clinical indicators of liver disease 
become apparent. This suggests that AST can serve as an 
early biomarker for liver dysfunction, enabling the 
evaluation of individuals before they exhibit noticeable 
symptoms.  When elevated AST levels are detected, 
further diagnostic tests are conducted to confirm the 
presence and severity of liver diseases. This early 
detection mechanism is crucial for timely intervention, 
potentially preventing disease progression and 
improving patient outcomes. 

5 Results and Discussion 

The proposed framework presents a comprehensive 
approach to enhance the performance of a classification 
model. It begins by employing SMOTE to address data 
imbalance, creating a balanced   dataset. 

According to the study, SMOTE boosts model 
accuracy marginally, with the MLP model having the 
highest accuracy. SMOTE improves RF and LR 
accuracy slightly, but SVM, KNN, and Naive Bayes 
accuracy remains insignificant. Subsequently, 
hyperparameter optimization using Optuna is applied to 
fine-tune the ensemble model, consisting of SVM, KNN, 
RF, Naive Bayes, LR, and MLP classifiers. When 
models were observed individually, the accuracy of 
MLP tops the other models with an accuracy of 95.69%. 
And the optimized ensemble model achieved an 
impressive 97% accuracy on the validation data and 
maintained its robustness, yielding 96% accuracy on the 
test data. Moreover, the implementation of SHAP 
features provided valuable insights into the model's 
predictions and increased its interpretability. The 
framework provides importance of each feature using 
Bar Graph and Force Plot; it also demonstrates the 
effectiveness of combining data preprocessing 
techniques, hyperparameter tuning, and interpretability 
tools to build powerful and reliable classification 
models. Table 4 presents the Model name with their 

corresponding individual accuracy score. Table 5 
summarizes the techniques and its outcome. 
Table 5. Impact of SMOTE, OPTUNA, and SHAP on Model 

Performance 

Techniques Uses And Results 

SMOTE 
Balanced the dataset, so 
that the output produced 

is   unbiased. 

OPTUNA 
Tuned and optimized the 
hyperparameters of the 

machine learning model. 

SHAP Increased 

The libraries and parameters have been used to address 
feature selection methodologies. The effectiveness of the 
classifier was assessed using 10-fold cross-validation, 
accuracy, precision, recall, and overall average scores 
for datasets with multiple and binary labels. This 
investigation compared the effectiveness of tools and 
classifiers on the HCV dataset's multi- and binary-class 
labels. A random forest analysis of the multiclass dataset 
revealed that KNN (26.44%) and the multiclass dataset 
(28.36%) had the highest accuracy. The accuracy of 
NN's binary class labels was the greatest (53.12%), 
although KNN's performance in recall and precision was 
better. SVM, RF, KNN, and NB (51.31%) were the next 
most accurate models after the R multiclass dataset. 
KNN (53.66%) and boosting (54.23%) both 
demonstrated great accuracy. Precision and recall 
displayed varied results, despite the accuracy of 
multiclass and binary class labels performing similarly 
in both cases. 

Experimental results demonstrate an HCV detection 
accuracy of 97%, highlighting the potential of this 
approach in medical diagnostics. By addressing real-
world challenges such as class imbalance, computational 
feasibility, and clinical interpretability, our proposed 
methodology empowers healthcare professionals with 
reliable decision-support  and ultimately improves 
patient outcomes and facilitates early disease 
intervention. 

The findings of this study demonstrate the 
effectiveness of integrating SMOTE, Optuna, and SHAP 
in improving HCV detection accuracy. However, real-
world implementation in healthcare presents several 
challenges that must be addressed to ensure practical 
applicability. 

6 Conclusion 

Our proposed method offered a complete framework 
that successfully improved the performance of a 
classification model. Hence, the outstanding results 
obtained by using SMOTE to handle data imbalance and 
Optuna for hyperparameter optimization in an ensemble 
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model consist of several classifiers. The MLP classifier 
achieved the greatest individual accuracy of 95.69%. 
The optimized ensemble model, on the other hand, beat 
all individual models, achieving an outstanding 97% 
accuracy on the validation data and displaying 
robustness with 96% accuracy on the test data. 
Furthermore, the inclusion of SHAP features improved 
the model's interpretability, providing significant 
insights into its predictions. Visualizations such as the 
Bar Graph and Force Plot, which highlighted feature 
relevance, added to the framework's efficacy. To 
potentially attain even greater accuracy, advanced data 
preprocessing approaches, a more diverse range of 
classifiers, and additional hyperparameter optimization 
strategies must be incorporated in future research. 
Additionally, expanding the application of our model to 
different domains or larger datasets can offer valuable 
insights on its scalability and generalizability. Lastly, 
our work creates new avenues for advancements in the 
field of machine learning and offers critical insights into 
the creation of reliable and strong categorization models. 

Conflict of Interest 

The authors declare no conflict of interest. 

Acknowledgment 

The authors wish to thank SVCE college 
Sriperumbudur for great support to do this project in the 
ECE department research center. 

References 

[1] C. M. Rice, J. T. Stapleton, and P. Simmonds, 
"Expanded classification of hepatitis C virus into 7 
genotypes and 67 subtypes: updated criteria and 
genotype assignment web resource," Hepatology, 
vol. 59, no. 1, pp. 318-327, Jan. 2014. 

[2] S. M. Borgia, C. Hedskog, B. Parhy, R. H. Hyland, 
L. M. Stamm, D. M. Brainard, M. G. Subramanian, 
J. G. McHutchison, H. Mo, E. Svarovskaia, and S. 
D. Shafran, "Identification of a novel hepatitis C 
virus genotype from Punjab, India: expanding 
classification of hepatitis C virus into 8 genotypes," 
The Journal of Infectious Diseases, vol. 218, no. 11, 
pp. 1722-1729, Nov. 2018. 

[3] D. J. Ruzicka, J. Tetsuka, G. Fujimoto, and T. 
Kanto, "Comorbidities and co-medications in 
populations with and without chronic hepatitis C 
virus infection in Japan between 2015 and 
2016,"BMC Infectious Diseases, vol. 18, no. 237, 
pp. 1-10, May 2018. 

[4] A. A. Kashif, B. Bakhtawar, A. Akhtar, S. Akhtar, 
N. Aziz, and M. S. Javeid, "Treatment response 
prediction in hepatitis C patients using machine 
learning techniques," International Journal of 

Technology, Innovation and Management (IJTIM), 
vol. 1, no. 2, pp. 79-89, 2021. 

[5] L. Yang and A. Shami, "On hyperparameter 
optimization of machine learning algorithms: 
Theory and practice," Neurocomputing, vol. 415, 
pp. 295-316, Dec. 2020 

[6] J. Cai, J. Luo, S. Wang, and S. Yang, "Feature 
selection in machine learning: A new perspective," 
Neurocomputing, vol. 300, pp. 70-79, May 2018. 

[7] N. Tran, J. G. Schneider, I. Weber, and A. K. Qin, 
"Hyper-parameter optimization in classification: To-
do or not-to-do," Pattern Recognition, vol. 103, p. 
107245, Jan. 2020. 

[8] A. Nugroho and H. Suhartanto, "Hyper-parameter 
tuning based on random search for dense net 
optimization," in 7th IEEE International Conference 
on Information Technology, Computer, and 
Electrical Engineering (ICITACEE), Semarang, 
Indonesia, 2020, pp. 96-99. 

[9] Z. Cai, Y. Long, and L. Shao, "Classification 
complexity assessment for hyperparameter 
optimization," Pattern Recognition Letters, vol. 125, 
pp. 396-403, Nov. 2019. 

[10] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. 
Koyama, "Optuna: A next generation 
hyperparameter optimization framework," in 
Proceedings of the 25th ACM SIGKDD 
International Conference on Knowledge Discovery 
& Data Mining, Anchorage, AK, USA, 2019, pp. 
2623-2631. 

[11] M. Yağanoğlu, "Hepatitis C virus data analysis and 
prediction using machine learning”, Data & 
Knowledge Engineering, vol. 142, p. 102087, Feb. 
2022. 

[12] S. T. I. Tonmoy and S. M. Zaman, "OOG-Optuna 
optimized GAN sampling technique for tabular 
imbalanced malware data," IEEE International 
Conference on Big Data (Big Data), pp. 6534-6539, 
November 2022. 

[13] M. Y. Shams, E. M. El-kenawy, A. Ibrahim, and A. 
M. Elshewey, "A hybrid dipper throated 
optimization algorithm and particle swarm 
optimization (DTPSO) model for hepatocellular 
carcinoma (HCC) prediction," Biomedical Signal 
Processing and Control, vol. 85, p. 104908, 2023. 

[14] M. Yağanoğlu, "Hepatitis C virus data analysis and 
prediction using machine learning," Data & 
Knowledge Engineering, vol. 142, p. 102087, Feb. 
2022. 

[15] A. M. Ali, M. R. Hassan, F. Aburub, M. Alauthman, 
A. Aldweesh, A. Al-Qerem, I. Jebreen, and A. 



Iranian Journal of Electrical & Electronic Engineering, Vol. 21, No. 04, December 2025     15 

Nabot, "Explainable machine learning approach for 
hepatitis C diagnosis using SFS feature selection," 
Applied Computing and Informatics, 2023, in press. 

[16] Hashem, G. Esmat, W. Elakel and H. Shahira, 
Comparison of machine learning approaches for 
prediction of advanced liver fibrosis in chronic 
hepatitis C patients, IEEE/ACM Trans 
Computational Biology and Bioinformatics, vol.15, 
no.3, pp.861-868,2018. 

[17] M. O. Edeh, S. Dalal, I. Ben Dhaou, C. C. 
Agubosim, C. C. Umoke, N. E. Richard-Nnabu, and 
N. Dahiya, "Artificial intelligence-based ensemble 
learning model for prediction of hepatitis C 
disease," Frontiers in Public Health, vol. 10, p. 
892371, 2022.  

[18] V. Tsvetkov, I. Tokin, and D. Lioznov, "Machine 
learning model for diagnosing the stage of liver 
fibrosis in patients with chronic viral hepatitis C," 
IEEE Transactions on Biomedical Engineering, 
February 2021(online). 

[19] E. Dritsas and M. Trigka, "Supervised machine 
learning models for liver disease risk prediction," 
Computers, vol. 12, no. 1, p. 19, Jan. 2023 

[20] M. Alauthman, A. Aldweesh, A. Al-Qerem, F. 
Aburub, Y. Al-Smadi, A. M. Abaker, O. R. Alzubi, 
and B. Alzubi, "Tabular data generation to improve 
classification of liver disease diagnosis," Applied 
Sciences, vol. 13, no. 2678, 2023. 

[21] UCI Machine Learning Repository, "HCV data," 
UCI Machine Learning Repository, 
https://archive.ics.uci.edu/ml/datasets/HCV (online). 

[22] M. M. Asha, G. N. Balaji, S. Mythili, A. 
Karthikeyan, and N. Thillaiarasu, "An efficient 
brain tumor detection algorithm based on 
segmentation for MRI system," International 
Conference on Recent Advancements in  
Information Technology, Science and Engineering 
(ICRAITSE - 17), Thoothukudi, India, Dec. 2017, 
pp. 1-8. 

[23] Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. , 
“Applied Logistic Regression” (3rd ed.). John Wiley 
& Sons, 2013. 

[24] James, G., Witten, D., Hastie, T., & Tibshirani, R. 
(2013). An Introduction to Statistical Learning with 
Applications in R, Springer, 2017. 

[25] Mercy Theresa M., A. Jesudoss., P. Pattunnarajam., 
Sudha Rajesh., Jaanaa Rubavathy., A. Raja, “CAD 
Based Automatic Detection of Tuberculosis in Chest 
Radiograph using Hybrid Method,” Inderscience 
International Journal of Engineering Systems 

Modelling and Simulation, Vol.14, No.4, pp.179-
185, 2022. doi: 10.1504/IJESMS.2022.10044924. 

[26] S.M. Mehzabeen, R Gayathri, “Heuristically 
Improvised rice disease classification framework 
based on adaptive segmentation with the fusion of 
LSTM layer into Multi-Scale Residual Attention 
Network”, Biomedical Signal Processing and 
Control, Elseveir, England SCI LTD, vol.99, pp. 
106875,2024. 

[27] G. Naveen Balaji, and D. Rajesh, Python Based 
Reverse Timing Algorithm for Human Brain 
Activity Using Color Psychology. International 
Journal of Indian Psychology, vol. 4, no. 3, pp. 79-
86, 2017. 

[28] Cristianini, N., & Shawe-Taylor, J., “An 
Introduction to Support Vector Machines and Other 
Kernel-Based Learning Methods,” Cambridge 
University Press,2000. 

 

Biographies 

S.M. Mehzabeen graduated with 
a Bachelor of Engineering (B.E.) 
degree from Alagappa Chettiar 
College of Engineering and 
Technology, affiliated with 
Madurai Kamaraj University. 
2013 she obtained her Master of 
Engineering (M.E.) degree from 
Velammal Engineering College, 

under Anna University. She achieved a University rank 
during her Master’s degree. In 2019, she completed an 
ISRO-funded project titled “Design and Implementation 
of High-Performance Hyperspectral Target Detection 
System Using FPGA” as a co-principal investigator. She 
is currently pursuing a doctoral degree in Information 
and Communication Engineering on a part-time basis. 
Her research interests encompass Image Processing, 
Computer Vision, Embedded Systems, and IoT Design. 

 

R.Gayathri completed her B.E. 
degree in Electronics and 
Communication Engineering 
from the University of Madras in 
1999, her M.Tech. degree, and 
her PhD degree in Information 
and Communication Engineering 
from Anna University in 2001 
and 2014, respectively. She is 

working as a professor at Sri Venkateswara College of 
Engineering. She is a recognized supervisor at Anna 
University. Her research includes computer vision, 
pattern recognition, VLSI signal processing, remote 

https://archive.ics.uci.edu/ml/datasets/HCV


   16                                                                     Iranian Journal of Electrical & Electronic Engineering, Vol. 21, No. 04, December 2025 

sensing, and machine learning for video analytics, with a 
focus on human tracking, multi-resolution video 
processing, biologically inspired spatial-temporal 
filtering, hyperspectral image processing, natural 
language processing, etc. She has received and 
successfully completed the ISRO-funded project titled 
“Design and Implementation of a High-Performance 
Hyperspectral Target Detection System Using FPGA” 
during 2019. She has published in a number of SCI- and 
Scopus-indexed international publications. She is the 
recipient of the Global Teacher Award 2021 from the 
AKS Education Awards. She is the recipient of the 
International Best Researcher Award in the field of 
“Artificial Intelligence and Machine Learning” (IIRA 
2022), awarded by ISSN, the World Research Council, 
and the Times of Research. She has been serving as an 
active reviewer in the Measurement journal, Elsevier, 
the Imaging Science Journal, Taylor & Francis Ltd., 
England, the Journal of Intelligent and Fuzzy Systems, 
IOS Press, Netherlands, the British Journal of 
Mathematics and Computer Science, the Journal of 
Computer Sciences, the American Journal of Applied 
Science, the Inder science Journal, the Journal of 
Sensors and IEEE conferences, Springer, the British 
Journal of Mathematics and Computer Science, the 
Journal of Computer Sciences, etc. She has been 
honored as an academic editor of “The Asian Journal of 
Research in Computer Science” and as an academic 
editor of “The DECENT Journals of Brisbane, 
Queensland, Australia. She has mentored many 
undergraduate and postgraduate research students in 
computer vision and data science projects. 

 

PATTUNNARAJAM 
PARAMASIVAM received 
the B.E. degree in Electronics 
and Communication 
Engineering from Madras 
University, Chennai, Tamil 
Nadu, India, in 1997, her 
M.Tech. degree in VLSI design 
from Bharath University, 

Chennai, in 2006, and her Ph.D. degree in VLSI design 
from Anna University, Chennai, in 2020. She is working 
as an Associate Professor with the Sri Venkateswara 
College of Engineering, Sriperumbudur, India. 

She has more than 24 years of teaching and research 
experience in VLSI design. She has supervised various 
bachelor's and master's projects. She has authored and 
coauthored many technical offerings, including articles 
in international refereed journals and 
international/national conferences. She has published in 
a number of SCI- and Scopus-indexed international 
publications Her research interests include low power 
VLSI circuits, Testing of VLSI circuits, and Digital 

Electronics, Nano Electronics. Dr. Pattunnarajam has 
become an Active Member of ISTE, India (LM'13), 
IETE, India (LM'13), IAENG (M'21), and SDIWC 
(M'19). She is a reviewer in reputed peer-review 
journals, include Interscience and Springer (JAIHSC). 

 

Ramya Anandanatarajan 
received the Bachelor’s degree 
in Electronics and 
Communication Engineering 
from Pondicherry University, 
Puducherry, India, in 2013, the 
Master’s Degree in Applied 
Electronics from Anna 
University, Chennai, India, in 
2016, and the Ph.D. degree 
from the National Institute of 

Technology, Tiruchirappalli, India, in 2022. She is 
currently an Assistant Professor at Sri Venkateswara 
College of Engineering, Sriperumbudur, India. Her 
current research interests include signal conditioning, 
artificial intelligence, and data acquisition. 

 

 
 


	1 0F(Introduction
	2 LITERATURE SURVEY
	3 EXPLORATORY DATA ANALYSIS
	3.1 Univariate Data Analysis
	A.Age
	B.Albumin Level
	C.Alkaline Phosphatase Level
	D.Alanine Transaminase Level
	E.Aspartate Aminotransferase Level
	F.Bilirubin Level
	G.Creatinine Level
	H.Protein Level

	3.2 Bivariate Data Analysis
	ALT vs. AST
	ALP vs CHE


	4 METHODOLOGY
	4.1 SMOTE
	4.2 Hyperparameter Optimization: A Deep Dive with Optuna
	4.2.1 OPTUNA
	4.2.1.1 Logistic Regression:
	4.2.1.2 K-Nearest Neighbors (KNN):
	4.2.1.3 Support Vector Machines (SVMs):
	4.2.1.4 Random Forest:
	4.2.1.5 Naive Bayes:
	4.2.1.6 Multilayer Perceptron:
	4.2.1.7 Ensemble Model and Voting Classifier:


	4.3 SHAP

	5 Results and Discussion
	6 Conclusion
	Conflict of Interest
	Acknowledgment
	Biographies

