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Abstract: In this paper we present a general formalism for the establishment of the family 
of selective partial update affine projection algorithms (SPU-APA). The SPU-APA, the 
SPU regularized APA (SPU-R-APA), the SPU partial rank algorithm (SPU-PRA), the SPU 
binormalized data reusing least mean squares (SPU-BNDR-LMS), and the SPU normalized 
LMS with orthogonal correction factors (SPU-NLMS-OCF) algorithms are established by 
this general formalism. In these algorithms, the filter coefficients are partially updated 
rather than the entire filter coefficients at every iteration which is computationally efficient. 
Following this, the transient and steady-state performance analysis of this family of 
adaptive filter algorithms are studied. This analysis is based on energy conservation 
arguments and does not need to assume a Gaussian or white distribution for the regressors. 
We demonstrate the performance of the presented algorithms through simulations in system 
identification and acoustic echo cancellation scenarios. The good agreement between 
theoretically predicted and actually observed performances is also demonstrated. 

 
Keywords: Adaptive filter, affine projection, selective partial update, mean-square 
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1 Introduction1 
Adaptive filtering is an important subfield of digital 
signal processing having been actively researched for 
more than four decades and having important 
applications such as noise cancellation, system 
identification, telecommunications channel equalization, 
and telephony acoustic and network echo cancellation 
[1], [2], [3]. In some of these applications, a large 
number of filter coefficients are needed to achieve an 
acceptable performance. Therefore the computational 
complexity is the main problem in these applications. 
Several adaptive filter algorithms such as the adaptive 
filter algorithms with selective partial updates have been 
proposed to solve these problems. These algorithms 
update only a subset of the filter coefficients in each 
time iteration. The Max-NLMS [4], the MMax-NLMS 
[5], [6], the variants of the selective partial update 
normalized least mean square algorithms (SPU-NLMS) 
[7], [8], [9], the selective partial update transform 
domain LMS (SPU-TD-LMS) [10], and SPU affine 
projection (SPUAP) algorithm [8], are important 
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examples of this family of adaptive filter algorithms. In 
contrast to full update adaptive algorithms, the 
convergence analysis of adaptive filters with selective 
partial updates has not been widely studied. Many 
contributions focus on a particular algorithm, making 
more or less restrictive assumptions on the input signal. 
For example in [6], the convergence analysis of the 
MMax-NLMS for zero mean independent Gaussian 
input signal is presented. Also, the results focus on the 
steady-state behavior and do not present the theoretical 
learning curves. In [8], many variants of the SPUNLMS 
are presented based on the constrained optimization 
problem. The same assumption as in [6] is used for the 
input signal and there are no experimental results to 
justify the theoretical mean square performance of the 
SPU-NLMS algorithms. Also, the performance analysis 
of the SPU-AP algorithm was not studied in [8]. The 
results in [9] present mean square convergence analysis 
of the SPU-NLMS for the case of white input signals. 

In [11], a general formalism for mean-square 
performance analysis of adaptive filter algorithms with 
selective partial updates was presented. The analysis 
was based on energy conservation arguments and did 
not require a Gaussian or white distribution for the 
regressors [3], [12], [13], [14]. In this paper we present 
the general formalism for the family of affine projection 
algorithm. The regularized APA (R-APA) [15], the 
binormalized data-reusing LMS (BNDR-LMS) [16], the 
partial rank algorithm (PRA) [17], the NLMS with 
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orthogonal correction factors (NLMS-OCF) [18] are 
established with this general formalism.  

By generalizing the approach in [8], we present 
SPU-R-APA, SPU-PRA, SPU-BNDR-LMS, and SPU-
NLMS-OCF algorithms which are called the family of 
affine projection algorithms with selective partial 
updates. In this paper we also present the mean-square 
performance analysis of the family of SPU-AP 
algorithms which was not studied in [8]. This analysis is 
based on energy conservation arguments and does not 
need to assume the Gaussian or white distribution for 
the regressors. What we propose in this paper can be 
summarized as follows: 

• Presenting the general formalism to establish 
of the family of AP algorithms. 

• The establishment of the family of SPU-AP 
algorithms. In these algorithms the filter 
coefficients are partially updated rather than 
the entire filter at every adaptation. 

• Mean-square performance analysis of the 
family of SPU-AP algorithms. 

• Mean and mean-square stability analysis of the 
family of SPU-AP algorithms. 

• Demonstrating of the presented algorithms in 
system identification and acoustic echo 
cancellation scenarios. 

This paper is organized as follows. In Section 2, we 
briefly review the NLMS, and the SPU-NLMS 
algorithms. Section 3 presents the general update 
equation for the family of AP algorithms. In the 
following, the family of SPU-AP algorithms is 
presented. In the next section the general mean-square 
performance analysis is developed and the expression 
for the theoretical learning curves, the mean square 
coefficient deviation (MSD), and the steady-state mean 
square error (MSE) are derived. In Section 5, the 
general expressions for mean and mean-square stability 
are established. The computational complexity of SPU-
APA was presented in Section 7. We conclude the paper 
by showing a comprehensive set of simulation results. 

Throughout the paper, the following notations are 
used: 
.              Euclidean norm of a vector. 

2t ∑
    ∑ Weighted Euclidean norm of a column          

.                 vector t  defined as Tt t∑ . 

vect(T)       Creates an 2M ×1 column vector t  through 
             stacking the columns of the M × M  column          

.                  matrix T  
vect( t )       Creates an M × M  matrix T from the  

             2M ×1 column vector t . 
A B⊗        Kronecker product of matrices A  and B . 
Tr(.)           Trace of a matrix. 

T(.)            Transpose of a vector or a matrix. 

λmax          The largest eigenvalue of a matrix. 
+R              The set of positive real numbers. 

E{.}            Expectation operator. 
 

2 Background on NLMAS and SPU-NLMS 
Algorithms 
Figure 1 shows a typical adaptive filter setup, where 

(n)x , d(n)  and e(n)  are the input, the desired and 
output error signals, respectively. Here, (n)h  is the 
M ×1  column vector of filter coefficients at iteration n . 
The desired signal assumed to conform to the following 
linear data model 

d(n) = (n) + v(n)t
Tx h  (1) 

where T(n) = [x(n), x(n -1),..., x(n - M +1)]x  is the 
input signal regressors, v(n)  is the measurement noise, 
assumed to be zero mean, white, Gaussian, and 
independent of (n )x , and th  is the unknown filter 
vector. 

It is well known that the NLMS algorithm can be 
derived from the solution of the following optimization 
problem: 

2
min (n +1) - (n)
(n+1)

h h
h

 (2) 

subject to 
Td(n) = (n) (n +1)x h  (3) 

Using the method of Lagrange multipliers to solve 
this optimization problem leads to the following 
recursion 

μ
(n +1) = (n) + (n)e(n)2

(n)
h h x

x
 (4) 

where Te(n) = d(n) - (n) (n)x h  and μ  is the step-size 
that determines the convergence speed and excess MSE 
(EMSE). Now partition the input signal vector and the 
vector of filter coefficients into B  blocks each of length 
L  ( B = M / L  is an integer), which are defined as 

 
 

 
Fig. 1. A typical adaptive filter setup. 
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T T T T(n) = [ (n), (n),..., (n)]B1 2x x x x  (5) 

T T T T(n) = [ (n), (n),..., (n)]B1 2h h h h  (6) 

The SPU-NLMS algorithm for a single block update 
at every iteration minimizes following optimization 
problem 

2
min (n +1) - (n)j j(n+1)j

h h
h

 (7) 

subject to Eq. (3), where j  denotes the index of the 
block that should be updated [8]. Again by using the 
method of Lagrange multipliers, the update equation for 
SPU-NLMS is given by  

μ
(n) = (n) + (n)e(n)j j j2

(n)j

h h x
x

 
(8) 

where 
2

j = argmax (n) for 1 i Bi ≤ ≤x . 

 
3   Family of Affine Projection Algorithms (APA) 

Now define the M × K  matrix of the input signal as 

(n) = [ (n), (n - D),..., (n - (K -1)D)]x x xX  (9) 

and the K ×1 vector of desired signal as 

T(n) = [d(n), d(n - D),...,d(n - (K -1)D)]d  (10) 

where K is positive integer (usually, but not necessarily 
K M≤ ), and D  is the positive integer parameter 
( D 1≥ ). that can increase the separation and 
consequently reduce the correlation among the 
regressors in (n)X . 

The family of APA can be established by 

minimizing (2) but subject to T(n) = (n) (n)d X h . Again 
by using the method of Lagrange multipliers, the filter 
vector update equation for the family of APA is given 
by 

(n +1) = (n) + μ (n) (n)e(n)h h X W  (11) 

where e(n)  is the output error vector which is defined 
as 

Te(n) = (n) - (n) (n)d X h  (12) 

and the matrix W(n)  is obtained from Table 1. In Table 
1, ε  is the regularization parameter, and I is the 
identity matrix. The NLMS, ε - NLMS , standard 
version of the APA, the binormalized datareusing LMS 
(BNDR-LMS) [16], the regularized APA (RAPA) [15], 

the NLMS with orthogonal correction factors (NLMS-
OCF) [18] are established form Eq. (11). From Eq. (11), 
the partial rank algorithm (PRA) [17] can also be 
established when the adaptation of the filter coefficients 
is performed only once every K  iteration. 

 
4 The Family of Selective Partial Update APA   
(SPU-APA) 

The SPU-APA solves the following optimization 
problem 

2
min (n +1) - (n)F F(n+1)F

h h
h

 (13) 

subject to T(n) = (n) (n)d X h , where F = {j , j , ..., j }1 2 S  
denote the indices of the S  blocks out of B  blocks that 
should be updated at every adaptation. Again by using 
the Lagrange multipliers approach, the filter vector 
update equation is given by 

T -1(n +1) = (n) + μ (n)( (n) (n)) (n)F F F F Fh h X X X e (14)  

where 

T T T T(n) = [ (n), (n),..., (n)]F j j j1 2 S
X X X X  (15) 

is the SL × K  matrix and 

T(n) = [ (n), (n - D),..., (n - (K -1)D)]i i i iX x x x (16) 

is the L × K  matrix. The indices of F  are obtained by 
the following procedure: 
1) Compute the following values for 1 i B≤ ≤ . 

TTr( (n) (n))i iX X  (17) 

2) The indices of F are correspond to S largest values of 
Eq. (17). 

By setting D = 1 , the SPU-APA in [8] can be 
derived from Eq. (14). Furthermore, from Eq. (14), the 
new SPU adaptive algorithms such as SPU-BNDR-
LMS, SPU-NLMS-OCF will be established. Also, the 
SPU-PRA can be established when the adaptation of the 
filter coefficients is performed only once every 
K iterations Equation (14) can be represented in the 
form of full update equation as 

T -1(n +1) = (n) + μ (n) (n)( (n) (n) (n)) (n)h h A X X A X e  (18) 
where the (n)A  matrix is the M × M  diagonal matrix 
with the 1 and 0 blocks each of length L  on the 
diagonal and the positions of 1’s on the diagonal 
determine which coefficients should be updated in each 
iteration. The positions of 1 blocks ( S  blocks and 
S B≤ ) on the diagonal of (n)A  matrix for each 
iteration in the family of SPU-APA are determined by 
the indices of F . 
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5   Mean-Square Performance Analysis of the Family 
of SPU-APA 

Now we introduce the general filter vector update 
equation to analysis the performance of the family of 
SPU affine projection algorithms. The general filter 
vector update equation is introduced as 

(n +1) = (n) + μ (n) (n) (n) (n)h h C X Z e  (19) 

where (n)C  and (n)Z  matrices are obtained from 
Table 2. In the mean square performance analysis, we 
need to study the time evolution of the }||)(~{|| 2

∑nE h , 

where ∑  is any Hermitian and positive-definite 

matrix, and 
~

(n)h  is the weight-error vector which is 
defined as 

~
(n) = - (n)th h h  (20) 

For = I∑ , the Mean Square Deviation (MSD) and 

when =∑ R  where T= E{ (n) (n)}R x x  is the 
autocorrelation matrix of the input signal, the Excess 
Mean Square (EMSE) expressions are established 
respectively. 

By Generalizing the approaches of [12], [13] or [14] 
for the above update equation, we obtain after some 
tedious, but straight forward calculations, the following 
recursion [19]: 

2
2 2~ ~ 2 TE{ (n +1) } = E{ (n) } + μ σ γ σ
σ Gσ

vh h  (21) 

where 2σv  is the variance of measurement noise, 

( )vecσ = Σ  and γ  and 2 2M × M  matrix G are obtained 
from the following relations 

= I -μE{ (n) (n)} I - μI E{ (n) (n)} +
2μ E{( (n) (n)) ( (n) (n))}

⊗ ⊗

⊗

G X D X D

X D X D
 (22) 

where T T T(n) = (n) (n) (n)D Z X C  and 

Tγ = vect(E{ (n) (n)})D D  (23) 

Derivation of this recursion is based on energy 
conservation arguments and does not need to assume a 
Gaussian or white distribution for the regressors [12]. 
Focusing on the learning curve, we substitute R for ,∑  
define r = vect(R), and find 

2 2~ ~ n-12 2 T iE{ (n) } = E{ (0) } + μ σ γv i=0n
∑h h G r

r G r
     (24) 

This expression is easy to compute recursively once 
we have estimates for G and R. Such estimates are 
easily obtained from a single realization of the signals 
involved in the adaptive filter. From Eq. (1) and Eq. 

(20), we obtain 
~Te(n) = (n) (n) + v(n)x h . Therefore the 

time evolution of the mean square error and accordingly 
the theoretical learning curve is given by [19] 

2~2 2MSE = E{e (n)} = E{ (n) } + σvh
R

 (25) 

From Eq. (24), we will be able to evaluate the 
steady-state meansquare error (MSE), when n goes to 
infinity, 

2 2 T -1 2MSE = μ σ γ (I - ) + σv vG r  (26) 

where 2 2 T -1μ σ γ (I - )v rG  is the steady-state EMSE, 
and the mean-square deviation (MSD) in the steady-
state is given by 

2 2 T -1MSD = μ σ γ (I - ) vect(I)v G  (27) 

It is important to note that the results in [11], [12], 
[13], [14], and [19] are special cases of the general 
expressions (equations (25), (26) and (27)). 

 
6   Mean and Mean-Square Stability of the Family of 
SPU-APA 

From Eq. (19) and Eq. (20), the general weight-error 
vector update equation is given by 

~ ~T TE{ (n +1)} = [I - μE{ (n) (n)}]E{ (n)}h D X h      (28) 

From Eq. (28), the convergence to the mean of the 
adaptive algorithm in Eq. (19) is guaranteed for any μ  
that satisfies 

2
μ T Tλ (E{ (n) (n)})max
≤

D X
 (29) 

The general recursion (Eq. (21)), is stable if the 
matrix G is stable [13]. From Eq. (35), we know that 

2= I - μ + μG M N , where 
M = E{ (n) (n)} I + I⊗ ⊗X D E{ (n) (n)}X D  and 

N = E{( (n) (n)) ( (n) (n))}⊗X D X D . The condition on μ  
to guarantee the convergence in the mean-square sense 
of the adaptive algorithms is 

+

1 1
0 μ min{ , }-1λ ( ) max(λ( ) )max
≤ ≤

∈M N H R
   (30) 
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Table 1. Family of Affine Projection Adaptive filter algorithm 

Algorithm K  D  
(n)W  

NLMS K = 1  D = 1  
 

ε - NLMS  K = 1  D = 1  
 

APA K M≤  D = 1  
T -1

( (n) (n))X X  

BNDR-LMS K = 2  D = 1  T -1
( (n) (n))X X  

R-APA K M≤  D = 1  T -1
(εI + ( (n) (n))X X  

NLMS-OCF K M≤  D 1≥  
T -1

( (n) (n))X X  

 

Table 2. Family of SPU Affine Projection Adaptive filter algorithm 

Algorithm K  D  (n) / (n)C Z  

SPU-APA 
K M≤  D = 1  

T -1(n) = (n)I, (n) = ( (n) (n) (n))C A Z X A X  

SPU-BND-NLMS 
K = 2  D = 1  

T -1(n) = (n)I, (n) = ( (n) (n) (n))C A Z X A X  

SPU-R-APA 
K M≤  D = 1  

T -1(n) = (n)I, (n) = (εI + (n) (n) (n))C A Z X A X  

SPU-NLMS-OCF 
K M≤  D 1≥  

T -1(n) = (n)I, (n) = ( (n) (n) (n))C A Z X A X  

 
 

where 
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −=
0
2
1

2
1

I

NMH . 

 
7    Computational Complexity 

The computational complexity of the APA and SPU-
APA has been presented in Table 3. The computational 
complexity of the APA is from [20]. As we can see, the 
number of reduction in multiplications for SPU-APA is 

2(M - SL)(K + 2K)  which is large in some applications 
such as network and acoustic echo cancellation. If we 
save the computations from previous iteration, the 
number of additional multiplications in SPU-APA will 
be 1 multiplication. This algorithm needs 
Blog S + O(B)2  comparisons when using the heapsort 
algorithm [21]. Also, the computational complexity of 
SPU-PRA is reduced by the factor of K, because the 
adaptation of the filter coefficients is performed only 
once every K iterations. 

 
 

8    Simulation Result 
We demonstrate the performance of the proposed 

algorithms by several computer simulations in a system 
identification and an acoustic echo cancellation 
scenarios. 

 
8.1  System Identification 

The theoretical results presented in this paper are 
confirmed by several computer simulations in a system 
identification setup. The unknown system has 16 
randomly selected taps. The input signal x(n) is a first 
order autoregressive (AR) signal generated by 

x(n) = ρx(n -1) + w(n)  (31) 

where w(n) is either a zero mean white Gaussian signal 
or a zero mean uniformly distributed random sequence 
between -1 and 1. For the Gaussian case, the value of 
ρ is set to 0.9, generating a highly colored Gaussian 
signal. For the uniform distribution case, the value of ½ 
is set to 0:5. The measurement noise v(n) with 

2 -3σ = 10v is added to the noise-free desired signal 

1
2

( n )x

1
2

( n )x
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Td(n) = (n)th x . The adaptive filter and the unknown 
channel are assumed to have the same number of taps. 
The stability bounds of adaptive filter algorithms were 
calculated from Eq. (29), and Eq. (30). Tables 4 and 5 
show the stability bounds of the SPU-AP algorithms for 
colored Gaussian and uniform input signals and for 
different values of the parameters. In all simulations, the 
simulated learning curves are obtained by ensemble 
averaging over 200 independent trials. Also, the steady-
state MSE is obtained by averaging over 500 steadystate 
samples from 500 independent realizations for each 
value of μ  for a given algorithm. 
 

8.1.1 Simulation Results for Transient 
Performance 

Figs. 2-7 show the theoretical and simulated learning 
curves of the family of SPU-AP algorithms for different 
parameter values. The theoretical learning curves have 
been obtained from Eq. (25). The number of block (B) 
was set to 4. Figs. 2 and 3 show the results for different 
values of K (2 and 3) and for colored Gaussian input 
signal. In these figures different values for S (1, 2 and 4) 
were chosen. The step-size of SPU-APA for B = 4, and 
S = 4 was set to 0:4. For S = 1, and 2, the step-sizes 
were chosen to get approximately the same steady-state 
MSE as S = 4. As we can see, there is a good agreement 
between simulated and theoretical learning curves. In 
Fig. 4, we set K, and S to 4, and 3 respectively and 
different values for the step-size were selected. Again, 
there is good agreement between simulated and 
theoretical learning curves. 

 
 

 
Fig. 2. Simulated and theoretical learning Curves of SPU-
APA with K = 2, B = 4 and S = 1, 2, 4 (input: Gaussian 
AR(1), ρ = 0.9) 
 

 
Fig. 3. Simulated and theoretical learning curves of SPU- 
APA with K = 3, B = 4 and S = 1, 2, 4 (input: Gaussian 
AR(1), ρ  = 0.9) 
 
 

 
Fig. 4. Simulated and theoretical learning curves of SPU- 
APA with K = 4, B = 4, S = 3, and different values for μ  
(input: Gaussian AR(1), ρ = 0.9) 
 
 

Figs. 5 and 6 show the results of SPU-NLMS-OCF 
algorithm for colored Gaussian input. Different values 
for K (2 and 4), and D (2 and 4) were used in 
simulations. Fig. 5 shows the results for K = 2, D = 2, 
and different values for S. Again for B = 4, and S = 4, 
the step-size was set to 0.4. For S = 1, and 2, the step-
sizes were chosen to get approximately the same steady-
state MSE as S = 4. Fig. 6 shows the simulated and 
theoretical learning curves of SPU-NLMS-OCF for K = 
4, D = 4, and different values for S (2, 3 and 4). The 
simulation results show good agreement between 
simulated and theoretical learning curves. Fig. 7 shows 
the results for colored uniform input signal. The 
parameter K was set to 2 and different values for S (2, 3 
and 4) were chosen. Again, good agreement between 
simulated and theoretical learning curves can be seen. 
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Fig. 5. Simulated and theoretical learning curves of SPU-
NLMS-OCF with K = 2, D = 2, B = 4, and S = 1, 2, 4 (input: 
Gaussian AR(1), ρ = 0.9) 
 

 
Fig. 6. Simulated and theoretical learning curves of SPU-
NLMS-OCF with K = 4, D = 4, B = 4, and S = 2, 3, 4 (input: 
Gaussian AR(1), ρ = 0.9) 
 
 

 
Fig. 7. Simulated and theoretical learning curves of SPU-APA 
with K = 2, B = 4 and S = 2, 3, 4 (input: uniform AR(1), ρ = 
0.5) 

8.1.2 Simulation Results for Steady-State 
Performance 

Figs. 8-10 show the steady-state MSE of the family 
of SPU-AP algorithms for colored Gaussian input signal 
as a function of the step-size. In Fig. 8 and 9, the step-
size (μ ) changes from 0.04 to 0.2 for K = 2, B = 4, S = 
2 and 0.04 to 0.5 for K = 2, B = 4, S = 3. These ranges 
guarantee the stability of the filter in this algorithm. 
Theoretical results are calculated from Eq. (26). The 
degree to which the independence assumption can be 
assumed valid is dependent on the value of the stepsize. 
This degree will decrease for the large value of the 
stepsize. As we can see, for the small values of the step-
size, the agreement between the theoretical and 
simulated steady state MSE is good. In the larger step-
sizes, this agreement is not as good. Also, for the large 
values of  K = 4, the agreement decreases compared 
with K = 2. Fig. 10 shows the results of SPU-NLMS-
OCF algorithm for different values for D (2 and 4). The 
step-size (μ ) changes from 0.04 to 0.5. In this 
simulation, the parameters K, and S were set to 4, and 3 
respectively. Again good agreement can be seen 
between simulated and theoretical steady-state MSE. 

 
8.1.3 Simulation Results for Mean-Square 

Stability 
Tables 3 and 4 show the stability bounds of SPU-AP 

algorithms for different input signals. These values have 
been obtained from Eq. (29), and Eq. (30). We justified 
these values by presenting some simulation results. Fig. 
11 shows the simulated steady-state MSE curves of 
SPU-AP algorithm as a function of the stepsize for 
colored Gaussian input. The parameter B was set to 4 
and different values for S (2, 3, and 4) were selected. 
The step-size changes from 0.04 to μmax for each 
parameter adjustment. As we can see, the theoretical 
values for μmax  show the good estimation of the 
stability bound of SPU-AP algorithms. 

 
Fig. 8. Steady-state MSE of SPU-APA with K = 2, B = 4, and 
S = 2, 3 as a function of the step-size for colored Gaussian 
input signal. 
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Table 3. The computational complexity of the APA and SPU-APA 

Algorithm Multiplications Divisions Additional 
Multiplications Comparisons 

APA 2 3 2(K + 2K)M + K + K  - - - 

SPU-APA 2 3 2(K + 2K)SL + K + K  - 1 Blog S + O(B)2  

 

 

Table 4. Stability bounds of the SPU-APA algorithms with different parameters for colored Gaussiant input 

Algorithm 
   

μmax  

SPU-APA (K = 4, B = 4, S = 1) 4.3020 0.0315 0.5623 0.0315 

SPU-APA (K = 4, B = 4, S = 2) 3.6542 0.6431 2.7474 0.6431 

SPU-APA (K = 4,B = 4,S = 3) 3.4910 1.4723 3.2691 1.4723 

SPU-APA (K = 4,B = 4, S = 4) 3.2658 2.0002 3.4391 2.0002 

 
 
Table 5. Stability bounds of the SPU-APA algorithms with different parameters for colored uniform input. 

Algorithm  
  

μmax  

SPU-APA (K = 4, B = 4, S = 1) 5.9367 0.0479 0.7278 0.0479 

SPU-APA (K = 4, B = 4, S = 2) 6.0346 0.7693 3.4874 0.7693 

SPU-APA (K = 4,B = 4,S = 3) 6.0572 1.4842 3.6545 1.4842 

SPU-APA (K = 4,B = 4, S = 4) 6.0048 2.0006 3.6773 2.0006 

 
 
 

 
Fig. 9. Steady-state MSE of SPU-APA with K = 4, B = 4, and 
S = 2, 3 as a function of the step-size for colored Gaussian 
input signal. 

 

 
 
 

 
Fig. 10. Steady-state MSE of SPU-NLMS-OCF algorithm 
with K = 4 and B = 4, S = 3, and different values for (D = 2, 4) 
as a function of the step-size for colored Gaussian input signal. 
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Fig. 11. Simulated steady-state MSE of SPU-APA with K= 4, 
B = 4 and S = 2, 3, 4 as a function of the step-size for colored 
Gaussian input signal. 

 
8.2  Acoustic Echo Cancellation 

Fig. 12 shows the exact impulse response of the car 
echo path that should be identified. The number of taps 
in Fig. 12 is 256. The input signal is the colored 
Gaussian signal and the order of the filter was 256. Figs. 
13-15 show the simulated learning curves of SPU-APA. 
In Fig. 13, the parameter K and B were set to 4 and 
different values for S (S = 2, 3, 4) were used. By 
increasing the value of S, the convergence speed of 
SPU-APA will increase. For S = 3, the convergence 
speed will be close to the SPU-APA with S = 4. But the 
computational complexity of SPU-APA will be less 
than APA. Fig. 14 shows the results for K = 8. Again, 
the same performance as Fig.14 can be seen. Comparing 
Fig. 13 and Fig. 14 shows that by increasing the 
parameter K, the convergence speed increases. In Fig. 
15, the performance of the SPU-APA with different 
values for K, and S has been compared. As we can see, 
the convergence speed of SPU-APA with K = 8 will be 
slightly faster that SPU-APA with K = 4 for different 
values of S. 

Figure 16 shows the results for SPU-PRA. The 
parameter K, and B were set to 4. For S = 3, the 
convergence speed of SPU-PRA will be close to PRA. 
Also, the computational complexity of SPU-PRA is 
reduced by the factor of K, because, the adaptation of 
the filter coefficients is performed only once every K 
iterations. Fig. 17 shows the learning curved of SPU-
NLMS-OCF algorithm for different values of  D = 2, 3, 
4. As we can see, by increasing the parameter D, the 
convergence speed of SPU-NLMS-OCF will increase 
due to increasing the separation and consequently 
reducing the correlation among the regressors in X(n). 
But for D = 3, and 4, the convergence speed will be 
close together. In Fig. 18, the learning curves of SPU-
APA and SPU-PRA were compared. For S = 2, the 
performance of SPU-APA and SPU-PRA will be close. 
For S = 3, the convergence speed of SPU-APA is faster 
then SPU-PRA. But the computational complexity of 

SPU-PRA is less than SPU-APA. Because in SPU-PRA, 
the filter coefficients are partially updated only once 
every K iterations. 

 
 

 
Fig. 12. Impulse response of the car echo path 
 

 

 
Fig. 13. Simulated learning Curves of SPU-APA with K = 4, 
B = 4 and S = 2, 3, 4 (input: Gaussian AR(1), ρ = 0.9) 
 
 

 
Fig. 14. Simulated learning Curves of SPU-APA with K = 8, 
B = 4 and S = 2, 3, 4 (input: Gaussian AR(1), ρ = 0.9) 
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Fig. 15. Simulated learning Curves of SPU-APA with K = 4, 
8, B = 4 and S = 2, 3, 4 (input: Gaussian AR(1), ρ = 0.9) 

 
 

 
Fig. 16. Simulated Learning Curves of SPU-PRA with K = 4, 
B = 4, and S = 2, 3, 4 (input: Gaussian AR(1), ρ = 0.9) 

 

 
Fig. 17. Simulated learning Curves of SPU-NLMS-OCF with 
K = 4, B = 4, S = 3 and D = 2, 3, 4 (input: Gaussian AR(1), 
ρ = 0.9) 

 
Fig. 18. Simulated learning Curves of SPU-APA and SPU-
PRA with K = 4, B = 4 and S = 2, 3 (input: Gaussian AR(1), 
ρ = 0.9) 
 
9 Summary and Conclusions 

In this paper we presented the family of SPU affine 
projection algorithms. Accordingly, the mean-square 
performance analysis of the family of SPU-AP 
algorithms was presented and the general expressions 
for the learning curves, steady-state MSE, MSD, and 
mean-square stability of these algorithms were 
established. This analysis was based on energy 
conservation arguments and did not need to assume a 
Gaussian or white distribution for the regressors. We 
demonstrated the simulated and theoretical performance 
of the presented algorithms through several simulations 
in system identification and acoustic echo cancellation 
applications. 
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