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Abstract: Convolutional Neural Networks (CNNs) have been shown their performance in 

speech recognition systems for extracting features, and also acoustic modeling. In addition, 

CNNs have been used for robust speech recognition and competitive results have been 

reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a 

bottleneck layer among its fully connected layers. The bottleneck features extracted by 

CBNs contain discriminative and rich context information. In this paper, we discuss these 

bottleneck features from an information theory viewpoint and use them as robust features 

for noisy speech recognition. In the proposed method, CBN inputs are the noisy logarithm 

of Mel filter bank energies (LMFBs) in a number of neighbor frames and its outputs are 

corresponding phone labels. In such a system, we showed that the mutual information 

between the bottleneck layer and labels are higher than the mutual information between 

noisy input features and labels. Thus, the bottleneck features are a denoised compressed 

form of input features which are more representative than input features for discriminating 

phone classes. Experimental results on the Aurora2 database show that bottleneck features 

extracted by CBN outperform some conventional speech features and also robust features 

extracted by CNN. 
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1 Introduction1 

N recent years, Deep Neural Networks (DNNs) have 

occupied a very important role in extending 

Automatic Speech Recognition (ASR) systems where 

they are used for acoustic modeling, feature extraction 

and transformation, and also constructing end to end 

ASR systems. Different kinds of DNNs have been used 

for speech processing: deep Belief Network (DBN), 

deep Auto-encoder, deep Convolutional Neural 

Network (CNN), Long Short-Term Memory (LSTM), 

and Recurrent Neural Network (RNN) [1–5]. DBNs and 

auto-encoders have been utilized for speech 

enhancement and also robust speech feature 
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extraction [1–3], [6, 7]. Furthermore, DBNs have been 

applied to acoustic modeling accompanied by hidden 

Markov models (HMMs) [8]. However, LSTM and 

RNN have been directly employed for acoustic 

modeling [9]. 

   Convolutional neural networks are a class of neural 

networks consisting of alternating convolution and 

pooling layers [10,11]. CNNs have been extensively 

used as acoustic models along with HMMs, in which, 

HMM state observation likelihoods are estimated using 

CNNs. In this case, CNN inputs are speech spectrogram 

[10–14] or raw speech signal [15–17]. 

   However, CNN has been utilized as a feature extractor 

by many researchers. For instance, CNN and DBN have 

been applied to Large-Scale ASR task as feature 

extractors [18]. In [19, 20], very deep CNN (up to ten 

layers) is used for robust speech recognition using 

broader padding in order to keep the feature size 

compatible for adding more CNN layers. In our other 

research [21], CNN has been used as a robust feature 

extractor from noisy speech spectrogram in two ways: 

fixed resolution and multiresolution convolution filters. 

I 
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   In addition, CNNs have been successfully used in 

other fields. In [22], the authors applied CNN to 

Language Identification as a feature extractor and also 

classifier. Moreover, features for speech activity 

detection in noisy conditions have been extracted using 

CNN [23]. Also, CNN has been effectively used in the 

presence of additive noise for image processing [24] and 

also other image processing applications such as facial 

key point detection and face recognition [25]. The 

combination of CNN, Long Short-Term 

Memory (LSTM), and DNN has been also reported for 

speech recognition and feature extraction [26, 27]. 

   Convolutive Bottleneck Network (CBN) can be 

considered as a kind of CNNs, where its fully connected 

layers include a narrow bottleneck layer. Bottleneck 

layer outputs of a trained CBN have usually been used 

as features. An output layer with the SoftMax activation 

function with the aim of classification is usually added 

on the top of fully connected layers of CBN [28–30]. 

   CBNs have also been used for feature extraction. For 

example, in [28, 31, 32], disorder dependent features 

have been extracted using CBNs for dysarthric speech 

recognition. Additionally, in [29], CBN features are 

used for bi-directional Generalize Variable Parameter 

HMMs (GVP-HMMs). Moreover, CBNs have been 

used in Audio-Visual speech recognition as a feature 

extractor [33]. Also, Large Vocabulary Conversational 

Speech Recognition is done using CBNs in [34]. 

   Recently, researchers have discussed DNNs from an 

information-theoretic view and information bottleneck 

principle [35,36]. DNN training has been evaluated 

using mutual information between the layers and 

input/output variables. In [37], layers of an auto-encoder 

are evaluated from an information theory point of view 

where the information plane1 of the network during 

different epochs are discussed. Also, the direct effect of 

training data size on the layers in the information plane 

has been shown as well as the importance of the 

symmetric architecture of such networks. Information-

theoretic concepts have also been used in order to 

understand the inner organization of CNN using an 

extended Rényi α-entropy function for convolution 

layers. Also, the effect of increasing the number of 

layers has been discussed, and it has been shown that 

adding more convolution-pooling layers may increase 

the generalization power of CNNs, but the extra 

numbers of layers could tend to information loss [38]. 

   In this paper, we discussed the bottleneck layer in 

CNN from an information-theoretic view and show that 

this layer is a good representation for noisy speech since 

the mutual information between this layer and phone 

label is greater than the mutual information between 

noisy speech features and phone labels. Based on this 

fact, we propose to use the CBN bottleneck layer for 

                                                           
1 The plane of mutual information values that each layer preserves on 

the input and output variables” [37]. 

extracting robust speech features, where CBN inputs are 

the noisy logarithm of Mel filter bank 

energies (LMFBs) and its outputs are corresponding 

phone labels. 

   The remainder of this paper is organized as follows. 

Section 2 introduces the proposed method and mutual 

information analysis of the proposed method. Section 3 

includes our experimental results. Finally, the 

conclusion is given in Section 4. 

 

2 Proposed Method 

   In CBNs, the bottleneck layer represents a condensed 

feature vector obtained from a large input feature map. 

It is expected that the bottleneck layer can aggregate the 

propagated information and extract fundamental 

features included in an input map [39, 40]. The method 

for converting a high dimensional feature vector (X) into 

a compressed low dimensional feature vector, called 

bottleneck, is desirable when it preserves the maximum 

possible information of the original feature vector 

according to the desired label (L). So, in the next sub-

section, we describe the computation method of the 

aforementioned information. 

 

2.1 Mutual Information Analysis for CBN 

   In this paper, we try to obtain proof, based on 

information theory for the usefulness of the bottleneck 

features extracted by CBN. In any feedforward DNN 

including CNN, a data processing inequality has been 

proposed and validated based on Markov property 

as (1) [38]: 
 

1 2( ( ) ( ),  ) , ... , NI X T I X T I X T    (1) 
 

where I(X, Ti) denotes the mutual information between 

network input (X) and the i-th layer of DNN (Ti). 

   By rewriting (1) for CNN, we have: 
 

1 1( ) ( ) (, ... , , ..) . ( ),M NI X C I X C I X T I X T    
 

(2) 
 

where Ci and Ti denote i-th convolution and i-th fully 

connected layer respectively [38]. However, in CBN we 

expect that: 
 

 
2

( ),   ,  ,
2

iN

N
I X T I X T i

 
 
 

  
 
 
 

 (3) 

 

where N is the number of fully connected layers and 

therefore 
2

N
T

 
 
 

 is the bottleneck layer. 

   We computed the mentioned mutual information in 

order to show the correctness of (3) as in [41]. 

According to the Shannon definition, the mutual 

information of a pair of variables Z = {z1, z2, …, zn} and 

G = {g1, g2, …, gn} is expressed as below [41]: 
 

( ) ( ) ( ), ,( )I Z G H Z H G H Z G    (4) 
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where H(Z) and H(G) denote entropies of Z and G, 

respectively, and H(Z, G) indicates their joint entropy 

calculated as (5) [41]: 
 

 
 

,  
Z G

H Z G H
tr Z G

 
   

 
 (5) 

 

where ∘ denotes Hadamard product. Using a Gaussian 

kernel 
2

k


(a, b) = exp(
2

2

1

2
a b


  ), the entropy of 

Z can be estimated as (6) [41]: 
 

   2 2
, 1

1ˆ  log ,
n

i j

i j

H Z k z z
n 



    (6) 

 

   With the computation of the mutual information as 

noted in (4)–(6), we analyze the usefulness of the 

proposed features. 

 

2.2 Extracting Robust Bottleneck Features from 

CBN 

   As mentioned earlier, speech spectrogram or raw 

speech signal can be used as inputs of CNN for 

extracting informative features from them. We have 

used CNN for learning robust filter banks in our 

previous work where it outperformed Mel Filter bank 

and also DBN [21]. Since CBN inherits the advantages 

of both CNN and bottleneck layer, we expect that 

bottleneck features be more robust to noise. We want to 

obtain maximum information from noisy input features 

about phone labels which possibly improve the noisy 

speech recognition rate. We think that the bottleneck 

features extracted from an appropriately trained CBN 

can compress important information from a mass of 

noisy features because of convolution and pooling 

layers while they also include rich context information 

according to the classification layer. 

   Our proposed architecture for CBN has been shown in 

Fig. 1. LMFBs in 11 successive frames are fed into the 

CBN where the output is the phone label (one of 18 

phones existed in the Aurora2 [42] database) 

corresponding to the center frame. As a result, robust 

contextual features can be encoded in the bottleneck 

layer. The extracted bottleneck features are used for 

training and testing a GMM-HMM system for ASR. 

 

2.2.1 Convolution and Pooling Layers 

   We determine our CBN structure based on previous 

studies and our experiments [10, 28, 33] as in Fig. 1. 

We have used 1-4 convolution (and pooling) layers for 

our structures. 

   The convolution filter and pooling sizes have been 

selected according to previous studies. However, we 

should adjust these sizes to find the best parameters for 

our dataset and practice [18, 28, 29]. The number of 

neurons in each convolution (and pooling) layer 

depends on the application and dataset. Thus, this is 

another parameter that should be adjusted. 

 

2.2.2 Fully Connected Layers 

   As can be seen from Fig. 1, the structures of fully 

connected layers in our CBN are symmetric, where the 

number of neurons in the layers after and before the 

bottleneck layer are equal symmetrically. The number 

of fully connected layers is an odd number and more 

than two, e.g. three or five. The number of fully 

connected layers and the number of neurons in each 

layer are parameters which should be adjusted. Thus, 

the number of bottleneck features is also a parameter. 

 

3 Experiments and Results 

3.1 Experimental Setup 

   Experiments have been performed on the Aurora2  

 

 
Fig. 1 The proposed CBN architecture. 
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database. The frame size is 25-ms with 15-ms overlap. 

The number of Mel filters is equal to 26. We used 

HMMs with 16 states, each containing 3 Gaussian 

mixtures for acoustic modeling, trained on the clean 

speech. CBN systems have been built using CNTK [43]. 

   We used Aurora2 multi-condition noisy set for 

training CBN where its labels are provided using 

corresponding phone classes. Due to the positive and 

negative values in the CBN input, we have used the 

hyperbolic tangent (TanH) activation function. We have 

used stochastic gradient descent and mini-batch size of 

50-500 for CBN training where we used momentum 

term after 5th epoch. 

   The learning rates in the first three epochs for 

convolution, hidden and output layers are equal to 1, 

0.1, and 0.001, respectively. The learning rate decreases 

until 0.3% of the primitive one for 4th–40th epochs. The 

number of epochs has been selected equal to 40 which 

has been shown the best performance in our 

experiments. 

 

3.2 Number of Neurons in the Bottleneck Layer 

   The number of neurons in the bottleneck layer (the 

number of bottleneck features) is the most important 

parameter in CBN. Thus, we have tested the different 

numbers of neurons in the bottleneck layer while the 

other parameters have kept fixed. 

   According to the previous studies, around 30 

bottleneck features in CBN is a reasonable choice [28]. 

The recognition results for the different number of 

bottleneck features have been shown in Table 1. In this 

experiment, we use one convolution (and pooling) layer 

with 120 neurons in which the convolution filter size is 

equal to 11×7, and the pooling size is equal to 1×2. One 

fully connected layer with 500 neurons has been 

included before and after the bottleneck layer. As can be 

seen from Table 1, 50 neurons in the bottleneck layer 

produce the best recognition accuracy. 

 

3.3 Number of Neurons in Convolution Layer 

   The number of neurons in the convolution layer 

should be tuned manually. We have conducted 

experiments on the number of neurons in the 

convolution layer and the results are shown in Table 2. 

These results indicate that using 150 convolution 

neurons tends to the best result. 

 
 
Table 1 Average of recognition accuracy (on SNR 0-20DB 
 

and all noise types) for different bottleneck feature sizes. 

Bottleneck 

features 

Average recognition accuracy 

A B C AVG 

30 77.03 74.12 77.03 75.76 

50 78.11 75.72 76.64 76.82 

100 76 73.01 75.63 74.88 

150 77.19 74.74 76.07 76 

3.4 Fully Connected Layers Results 

   In order to evaluate the effect of the fully connected 

layers, we change the number of hidden layers and 

neurons per each layer where the bottleneck layer is 

fixed (50 neurons in the layer). The other parameters are 

the same as Sections 3.2–3.3. 

   The results of different fully connected architectures 

for CBN have been shown in Table 3. It seems that 

three hidden layers including the bottleneck in the 

middle have the best performance for extracting the 

CBN bottleneck features. 

 

3.5 Convolution and Pooling Layers Results 

   Since convolution and pooling layers perform as a 

low-level filter stage and extract the lower-level 

information to be fed to fully connected layers, its 

parameters can affect the system performance. 

Consequently, we used more convolution layers for our 

experiments. Convolution filter sizes have been selected 

based on the number of convolution-pooling layers. 

With increasing the number of convolution layers, we 

selected lower convolution filter sizes. For saving 

spatial information, we have utilized max-pooling only 

once in each structure. 

   The top-rated 1-4 convolution-pooling layers and 

configurations are listed in Table 4 and the average 

results of word recognition accuracy over different 

noise levels (-5dB–20dB) are shown in Fig. 2. The 

results of average recognition accuracy over different 

noise sets are listed in Table 5. One fully connected 

layer with 500 neurons has been included before and 

after the bottleneck layer, where the bottleneck layer has 

50 neurons. 

   As can be seen from Table 5, when we increase the 

number of convolution-pooling layers to 3, the 

recognition accuracy improves. But, when we use 4  

 
Table 2 Average of recognition accuracy (on SNR 0-20DB 

and all noise types) for the different number of neurons in the  
 

convolution layer. 

#Convolution 

layer neurons 

Average recognition accuracy 

A B C AVG 

100 73.28 69.35 71.62 71.42 

120 78.11 75.72 76.64 76.82 

150 78.83 76.98 84.87 80.23 

200 77.52 74.69 75.94 76.05 

250 72.59 68.84 71.37 70.93 

 
Table 3 Average of recognition accuracy (on SNR 0-20DB 

and all noise types) for different fully connected layers 
 

structures. 

FC architecture 
Average recognition accuracy 

A B C AVG 

500-50-500 78.83 76.98 84.87 80.23 

300-50-300 77.04 73.12 76.38 75.51 

700-50-700 78.01 75.39 76.30 76.57 

500-500-50-500-500 79.11 76.14 76.17 77.14 
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convolution layers, the recognition accuracy degrades. It 

can be due to the lack of training data for this deep 

network. The results of Fig. 2 indicate that three 

convolution-pooling layers outperform other CBN 

structures. 
 

Table 4 The structures of CBNs, where lines in each row of 

‘Structure’ column show the corresponding convolution-

pooling layers, in which # shows the number of convolution-

pooling neurons, C shows convolution filter size, and P shows 
 

pooling size. 

Name Layer Structure 

CBN1 1 #150 - C:11×7 - P:1×2 

CBN2 
1 #50 - C:7×5 - P:1×1 

2 #150 - C:5×3 - P:1×2 

CBN3 

1 #50 - C:5×3 - P:1×1 

2 #50 - C:5×3 - P:1×1 

3 #50 - C:3×3 - P:1×2 

CBN4 

1 #50 - C:5×3 - P:1×1 

2 #50 - C:3×3 - P:1×2 

3 #150 - C:3×3 - P:1×1 

4 #150 - C:3×3 - P:1×2 

 

Table 5 Average of recognition accuracy (on SNR 0-20DB 
 

and all noise types) for 1-4 convolution and pooling layers. 

Structure 
Average recognition accuracy 

A B C AVG 

CBN1 78.83 76.98 84.87 80.23 

CBN2 82.64 81.20 80.88 81.57 

CBN3 83.8 82.74 82.27 82.94 

CBN4 82.83 81.65 80.71 81.73 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 2 Averages of word recognition accuracy over different 

noise levels for CBNs with fully connected structure of 500-

50-500; a) High level of noise, b) Medium level of noise, and  
 

c) low level of noise. 

3.6 Discussion of Denoising Bottleneck Layer Based 

on Mutual Information 

   In order to show the effectiveness of bottleneck 

features extracted from CBN, we consider the mutual 

information as: 

• I(
,

2

N
n

T
 
  

, L): The mutual information between the 

bottleneck layer 
,

2

N
n

T
 
  

 (where CBN input is noisy) 

and Label L. 

• I(Xn, L): The mutual information between noisy 

Input Xn and Label L. 

• I(Xc, L): The mutual information between clean 

input Xc and Label L. 

   For the best network structure obtained from 

experiments, we compared the average of I(
,

2

N
n

T
 
  

, L) 

with the average of I(Xn, L) and I(Xc, L) over 5000 

randomly selected frames in Fig. 3. 

   As can be seen from the figure, I(Xc, L) is significantly 

higher than the I(Xn, L), which is expected. On the other 

hand, I(
,

2

N
n

T
 
  

, L) is higher than I(Xn, L) where it is 

lower than I(Xc, L). This is reasonable because we 

cannot perfectly reconstruct the clean features, but we 

can decrease noise effects on features using the 

bottleneck layer 
,

2

N
n

T
 
  

. However, maximizing the 

mutual information between compressed features and 

phone labels as well as maximizing compression at the 

same time seems feasible since: 
 

 

 

,
2

,
2

dimension , < dimension and
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nN
n

nN
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 

 
 
 
 

 
 

 
 

 

 

 

 

(7) 

 

   This property is desirable since it shows that 
,

2

N
n

T
 
  

 

has sufficient information about the phone label. It also  
 

 
Fig. 3 Average of the mutual information between noisy input 

and target, the bottleneck features obtained from noisy input  
 

and target, clean input and target for 5000 frames. 
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shows that noise effects on Xn have been decreased in 

,
2

N
n

T
 
  

 which means that 
,

2

N
n

T
 
  

 is a denoised 

compressed form of Xn. 

 

3.7 Discussion of CBN Training Based on Mutual 

Information 

   In this section, we discuss the training of the best 

CBN structure and the role of the bottleneck layer from 

the view of mutual information. 

   The mutual information of the best structure of CBN 

obtained from Sections 4.2 to 4.5 is analyzed in this 

section. 

   First of all, data processing inequality for CBN is 

validated in Fig. 4, as mentioned in Section 2.1 (where 

Ci and Ti have been defined in Section 2.1). 

   Furthermore, the mutual information between the 

bottleneck and label is more than the mutual 

information between input and label (0.2543 > 0.2315) 

which indicates a suitable representation of the 

bottleneck layer. 

   In addition to the best network structure, data 

processing inequality is validated for CBN with 4 

convolution-pooling layers shown in Fig. 5. 

   As can be seen from Fig. 5, data processing inequality 

for this CBN structure is not validated. Also, in this 

case, the mutual information between the bottleneck and 

label is less than the mutual information between input 

and the label (0.2123 < 0.2315). 

 

3.8 Final Discussions 

   In order to evaluate the overall system, we compare 

the best result of the previous sections with the results 

of the most known conventional speech features such as 

LMFB, LMFB+CMVN, MFCC, MFCC+CMVN, and 

robust features extracted using CNN and DBN, which 

are listed in Table 6. 

   For a fair comparison, the CNN and DBN inputs 

include 11 consecutive frames. The used CNN has three 

convolution-pooling layers and three hidden layers. The 

used DBN has two hidden layers with 2048 neurons per 

layer. DBN and CNN inputs are noisy speech 

spectrograms and their outputs correspond to denoised 

LMFBs. 

   As can be seen from Table 6, the proposed features 

(CBN) and also proposed futures followed by PCA 

(CBN+PCA) outperform other features except features 

obtained by ETSI AEF. This performance can be due to 

the fact that the convolution and pooling layers 

construct robust features, while the bottleneck layer uses 

the phone class labels and makes the rich context robust 

features. 

   On the other hand, ETSI AFE uses Voice Activity 

Detection (VAD), noise estimation, two-pass Wiener 

filter-based noise suppression, and blind feature 

equalization techniques. The noise estimation is updated 

using non-speech frames attained from VAD [45]. Thus, 
 

 
Fig. 4 The mutual information between input and each layer of 
 

a well-trained CBN. 

 

 
Fig. 5 The mutual information between input and each layer of 
 

a fair trained CBN. 

 
Table 6 Average of recognition accuracy (on SNR 0-20DB 

and all noise types) for different speech feature extraction 
 

methods. 

Method 
Average recognition accuracy 

A B C AVG 

LMFB 19.59 23.62 13.49 18.90 

LMFB+CMVN 32.84 36 33.13 33.99 

MFCC 63.06 66.66 60.18 63.30 

MFCC+CMVN 76.52 79.88 70.61 75.67 

CNN [21] 67.57 67.12 60.79 65.16 

ETSI AFE [44] 86.69 85.57 82.81 85.02 

CBN 83.8 82.74 82.27 82.94 

CBN+PCA 84.25 83.28 82.76 83.43 

 

it uses many preprocessing such as VAD and noise 

estimation techniques which our method does not 

consider. Therefore, it is logical that ETSI AFE 

outperforms our proposed method. 

 

4 Conclusion 

   In this paper, we discussed the information content of 

the Convolutive Bottleneck Network. We showed that 

the mutual information between noisy input features and 

the phone class label is lower than the mutual 

information between the bottleneck layer and the same 

labels. 

   Thus, we proposed to use bottleneck features 

extracted by CBN as robust features for noisy speech 

recognition. In the proposed method, noisy LMFBs in a 
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number of successive frames are CBN inputs and 

corresponding phone labels are its outputs. We 

examined various structures for CBN including different 

numbers of convolution, pooling and fully connected 

layers and also the number of neurons in each layer, 

especially fully connected and bottleneck layers, and the 

network sensitivity to such parameters is confirmed. 

The experimental results show that CBN using three 

convolution-pooling pairs and three hidden layers 

outperforms CNN and has an acceptable performance. 

In addition, we discussed this best structure based on the 

mutual information between input and each layer in the 

training phase where data processing inequality for 

input and each layer based on Markov property has been 

validated. Due to this property, the mutual information 

of noisy input and bottleneck has been higher than the 

mutual information of noisy input and output layer. 

Hence, the bottleneck layer can extract promising 

information about phone class labels from noisy input 

features. 

   From Real-Time Factor (RTF) viewpoint, our feature 

extraction method is about 3 times slower than real-

time. 
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