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Abstract: Clifford Algebra (CA) is an effective substitute for classic algebra as the modern 

generation of mathematics. However, massive computational loads of CA-based algorithms 

have hindered its practical usage in the past decades. Nowadays, due to magnificent 

developments in computational architectures and systems, CA framework plays a vital role 

in the intuitive description of many scientific issues. Geometric Product is the most 

important CA operator, which created a novel perspective on image processing problems. 

In this work, Geometric Product and its properties are discussed precisely, and it is used for 

image partitioning as a straightforward instance. Efficient implementation of CA operators 

needs a specialized structure, therefore a hardware architecture is proposed that achieves 

25x speed-up in comparison to the software approach. 
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1 Introduction1 

LIFFORD Algebra (CA) first introduced by 

W. K. Clifford in the 19th century in order to unify 

exterior algebra and quaternions introduced by 

Grassmann and Hamilton, respectively [1]. This 

unification made CA framework a powerful tool, and its 

intuitive representations solve the problems in a novel 

way. Nowadays, researchers deploy CA framework in 

computer vision to improve their prospect, visualize the 

problem, and suggest the best solutions [2]. Recently, 

image processing has become an active topic in 

computer vision research fields e.g. color image edge 

detection [3], image segmentation, and registration [4]. 

Intuitive color representation and comprehensible 

operators in CA framework present a whole new world 

for interaction with image-related problems. Quaternion 

atomic function [5], Clifford Fourier transform [6, 7], 

filter-based approaches [8], and image analysis in the 

frequency domain [9] are amongst powerful solutions in 

this framework. 
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   Despite undeniable avails and various applications, 

Clifford Algebra has a massive computational load. 

Along with significant improvements of computational 

softwares and systems, novel architectures for efficient 

implementation of CA framework have been proposed. 

Clucalc dedicated software [10], Gaigen software 

library [11], Gaalop pre-complier [12], various co-

processors [4, 13-16], and specialized hardware 

architectures [17] are amongst these novel 

implementation approaches. Software-based approaches 

use general-purpose CPUs to execute CA operators. 

This might be applicable in case of simple simulations 

and educational purposes, however, it cannot provide 

enough computational resources for more complicated 

algorithms, such as edge detection. Therefore, hardware 

implementations that provide more computational 

capacity, are superior solutions. Almost all CA co-

processors, namely S-CliffoSor [18], CliffordALU [13], 

ConformalALU [4], and GA co-processor [16], 

exploited popular FPGA platform and dedicated 

architectures to perform expected operations [19]. 

   Geometric product (GP) is the most important 

operator of the CA framework, which performs general 

geometric operations e.g. reflection, rotation, and 

translation [20]. In this work, properties and benefits of 

GP in image processing is discussed, and a hardware 

architecture for its efficient execution is proposed. This 

paper is organized as follows: Clifford Algebra three-
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dimensional space and Geometric Product will be 

discussed in Section 2. Performing GP on color pixels, 

mathematical descriptions, and proposed hardware 

architecture will be the main topics of Section 3.  

Results of applying GP on color images and consumed 

computational resources are presented in Section 4. 

Discussion and conclusion have been made in Section 5. 

 

2 Clifford Algebra Three-Dimensional Vector 

Space 

   Clifford algebra is an immense space of 

multidimensional entities and multitude operators, 

therefore it’s very important to choose best fitting space 

and operations according to problem requirements. In 

image processing problems, the first issue is color 

image information descriptions, and usually, the 

simplest solution is the RBG or CMY color system. 

According to these best-known description systems, the 

best choice for expressing color information is CA 

three-dimensional space with {e1, e2, e3} basis 

vectors [21]. This space is denoted by ℝ3,0, which 

means three basis vectors are squared to 1 and none of 

them is squared to -1 [4]. Each CA n-dimensional space 

consists of 2n elements, which in this case ℝ3,0 has 23 

elements: 
 

{1, e1, e2, e3, e12, e23, e31, e123}  
 

In this notation, 1 stands for all scalar values of ℝ3,0 

space and usually shows the amount of black color in 

each pixel. The coefficients of e1, e2 and e3 basis vectors 

describe amounts of red, green and blue colors, 

respectively and represents the RGB color system. 

Subsequently, e12, e23 and e31 are called bivectors and 

their coefficients, respectively express the amounts of 

yellow, cyan, and magenta colors. These three bivectors 

are the representative of the CMY color system. Finally, 

the e123 element of ℝ3,0 is called trivector and expresses 

the amount of white color. Geometrical representation 

of these elements is depicted in Fig. 1 using GAviewer 

0.85 software [22]. Bivectors (oriented areas) and 

trivectors (oriented volumes) are obtained by 

performing wedge products (^) on basis vectors: 
 

ei ^ ej = eij (i≠j) (1) 

ei ^ ej ^ ek = eijk (i≠j≠k) (2) 

 

2.1 Multivectors and Color Representation 

   Linear combination of ℝ3,0 vector space elements 

results in a multivector. General formation of a 

multivector is expressed in (3). 
 

M = P + re1 + ge2 + be3 + ye12 + ce23 + me31 

      + Qe123 

 

(3) 
 

Mostly, more than half of coefficients in (3) are zeros, 

for instance in RGB color representation only r, g, and b 

coefficients are non-zero. As an example, the gray 
 

 
Fig. 1 Demonstration of ℝ3,0 elements. 

 

color consists of equal amounts of red, green, and blue, 

therefore it can be expressed by: 
 

 1 2 3

1

3
  μ e e e   (4) 

where the 1 3  coefficient is the magnitude of 

multivector μ. 

   Considering an M×N image, each pixel information in 

RGB format is expressed in (5). In a similar way, color 

information in the CMY system is defined based on 

bivectors and shown in (6). 
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2.2 Geometric Product 

   Consider two multivectors namely u and v. Addition 

(or subtraction) of these multivectors is equivalent to 

each element’s corresponding coefficient addition (or 

subtraction), however, the multiplication case is 

different. Geometric product (GP) performs 

multiplication of two multivectors, using an inner 

product and a wedge product. 
 

.  uv u v u v   (7) 
 

In (7), u.v denotes the inner product of two multivectors 

which is peer to peer multiplication of coefficients. The 

u^v term is the wedge product and is similar to the outer 

product in classic geometries [23]. If u and v denote two 

multivectors in the RGB system, then GP of these two 

will consist of a scalar term and several bivectors. 

Depending on the nature of u and v, these two parts of 

GP can be interpreted differently, which will be 

discussed completely in the next section. 

 

3 Geometric Product of Color Images and 

Different Multivectors: Properties and 

Implementation 

   It is shown that GP of every single pixel of a color 
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image and μ multivector (4), results in image intensity 

and achromatic information [3]. The scalar part of GP is 

the projection of each pixel’s multivector on the μ 

multivector, thus it represents the value or intensity map 

of the image. On the other hand, pixels with lower 

chromaticity are closer to the gray multivector, therefore 

they will have less bivector magnitude. In [3], the 

bivector part’s magnitude is exploited as a mask for full 

recognition of achromatic areas, however, we will prove 

that the avails of the bivector part are more than a mask. 

 

3.1 GP’s Bivector Component as a Map for Image 

Partitioning 

   According to properties of GP, the closer 

multivectors’ GP will result in the less bivector 

magnitude, which is depicted in Fig. 2. In Fig. 2 the 

yellow and purple arrows represent two general 

multivectors, and the cyan disk is the bivector part of 

GP between these two multivectors (an oriented area). 

As mentioned before, the swirl length shows the 

magnitude of the resultant bivector, the closer 

multivectors have the less swirl length. This exclusivity 

can be exploited for partitioning images into desired 

color regions. As if we multiply the image multivectors 

in a specific color multivector through GP, the lower 

magnitude of the bivector part will exhibit more 

closeness to the specified color. 

   In addition, pixels with low intensity have a low 

bivector magnitude and are not necessarily close to the 

specified color, therefore the scalar part of GP is used to 

discriminate them. Based on both scalar and bivector 

information, the pixel with low bivector magnitude and 

low scalar coefficient is neglected, while the pixel with 

low bivector magnitude and high scalar coefficient is 

definitely close to the specified color. 

 

3.2 The Proposed Hardware Architecture for GP 

Efficient Implementation 

   Considering I(x,y) defined in (5) as a color pixel  
 

 
Fig. 2 Magnitude of GP’s Bivector part in different 

multivectors’ positions drawn by GAviewer: a) & b) Two 

close multivectors, representative of two close colors, will 

result in low bivector magnitude; c) & d) Two completely 

different colors result in high bivector magnitude. 

 

multivector, and a specific color multivector called γ, 

the general GP of these two multivectors in RGB color 

system according to (7) will be expressed as (8); where  

γ1, γ2, and γ3 are coefficients of multivector γ, and 

2 2 2

1 2 3     is its norm. According to (8) the scalar 

part and the bivector part’s magnitude is defined as (9) 

and (10), respectively. 

   The proposed hardware architecture, based on (9) and 

(10) is depicted in Fig. 3. The architecture consists of 

two main units: Scalar Unit and Bivector Unit. For more 

generality and flexibility, each one has its individual 

control unit which is supervised by the main control 

unit, which steers data flows and checks data validations 

on different input and output buses. 

   Scalar Unit data flow is straightforward to understand: 

corresponding coefficients are multiplied in the first 

stage and results are added through ADD1 and ADD2, 

then the final result is divided by the γ’s norm which is 

calculated by the Norm Unit shown in Fig. 4. The 

16×32bit dual-port RAM is used to store the third 

multiplication results, and its output and input addresses 

are controlled by Scalar Control Unit. Bivector Unit, 

calculates the magnitude of GP’s bivector part 

according to (10), in a similar way as Scalar Unit. It 
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Fig. 3 The proposed hardware architecture for GP efficient implementation. 

 

should be noted that the proposed architecture is able to 

calculate GP for multivectors in form of (6) with no 

further changes. 

 

4 Simulations and Implementation’s Specifications 

   In this section, the results of GP between a color 

image and a specific color vector demonstrates its 

ability to categorize an image into different color 

regions. On the other side, run times of the proposed 

hardware architecture is compared to C++ software 

runtimes. Finally, last subsections exhibit resource 

usage of this architecture, and a comparison to GA co-

processor. 

 

4.1 GP Between Color Images and Specific 

Multivectors 

   As explained in Section 3, two close multivectors will 

result in low GP’s bivector magnitude. To demonstrate 

this assertion, we will operate GP between the well-

known tulip image and the yellow color multivector, 

and analyze the results. The γ multivector defines the 

mentioned yellow color as: 
 

γ = 0.83(0.9e1+0.8e2) (11) 

where γ1=0.9, γ2=0.8, and 
2 2

1 2

1
0.83

 



. The scalar 

part and bivector part’s magnitude is obtained through 

the proposed hardware, and is shown in Figs. 5(b) and 

5(c), respectively. In these images the lower feature will 

result in the darker areas, as an instance the center of 

each tulip’s color is the same as the chosen one, 

therefore these areas in Fig. 5(c) are darker than the 

others which shows their lower bivector part’s 

magnitude. There are many dark regions in Fig. 5(c) 

which their colors are not close to the γ multivector. The 

reason behind their low magnitude is their low intensity. 

The scalar part shown in Fig. 5(b) contains intensity 

information, therefore it is the best mean to discriminate 

between low intensity regions and pixels close to the 

specified color. The final map of yellow color regions in 

the tulip image is shown in Fig. 5(d). 

 

4.2 Run Times and Resource Usage 

   In order to attain GP’s software run time, a routine is 

written in C++ and executed on a general-purpose 

processor, Intel Core™ i5- 2430M. The GP operation is 

executed 5×106 times to achieve the average run times. 

The proposed architecture is implemented on FPGA 

Virtex-5 XC5VFX200T and simulated using ISE 

Design Suite 13.1. All hardware run times are calculated 

based on the final design frequency which is 368.64 

MHz and averaged using 5×106 experiments. Software 

and hardware execution speeds are listed in Fig. 6. 

   According to Fig. 6, the proposed hardware executes 

the GP operation almost 25x faster than the software 

approach. 

   It should be noted that the latency of each multiplier 

core in the first stage (Fig. 3) is considered on the 

corresponding unit. Computational cores, e.g. ADD and 

MULT cores, are implemented using LogiCore IP 

Floating-Point Operator v5.0.  Resource usage and 

latency of each core and the proposed architecture are 

listed in Tables 1 and 2, respectively. 

 

4.3 Performance Comparison With GA Co-Processor 

   One of the hardware implementations of CA 

framework in image processing field, is GA co-

processor [15, 16]. Same as the proposed hardware, the 

co-processor exploits single precision numbers in 

IEEE 754 format. The architecture consists of three six- 
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Fig. 4 The Norm Unit architecture. 

 

 
Fig. 5 GP between the tulip image and yellow multivector: a) The original image, b) Scalar part of GP, c) Bivector part of G,  and 

d) Yellow regions of the image. 
 

 
Fig. 6 Average run times for a single GP operation. 

 

Table 1 Implementation method, resource usage, and latency of each computational core. 

Computational 

Cores 

Implementation 

Method 

Resource Usage Latency for 

First Operation 

[Cycles] 

Frequency 

[MHz] 
Slice 

Registers 

Slice 

LUTs 

LUT FF 

Pairs 
DSP48E 

ADD Logic gates 549 427 643 ----- 12 373.134 

SUB Logic gates 549 427 643 ----- 12 373.134 

MULT Two slices of DSP48E 188 99 221 2 8 373.134 

DIV  Logic gates 1352 758 1429 ----- 28 380.517 

SQRT Logic gates 808 491 901 ----- 28 380.517 
 

Table 2 Resource usage and latency of the proposed hardware architecture. 

Units 
Resource Usage DualPort RAM 

16×32bit 

Latency for First 

Operation [Cycles] Slice Registers Slice LUTs LUT FF Pairs DSP48E 

Scalar Unit 1899 1295 2241 8 1 39 

Bivector Unit 5483 3667 6289 20 1 88 

Norm Unit 2470 1642 2848 6 1 59 

Total 9949 6610 11384 34 3 88 

 

stage pipelined adder, two five-stage pipelined 

multiplier and various control units to supervise its state 

machine. The co-processor has three different versions. 

In full multivector version, the co-processor operates 

GP regardless of whether the coefficients are zero or 

not. Obviously it takes more processing cycles and 

resources. As an optimization for image processing 

purposes, the single core version is presented, which is 

eliminated unnecessary operations to increase the 

design’s speed. Also, the dual core version is presented 

for faster execution. 

   The speedups of the proposed hardware in comparison  
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Table 3 Comparison of required clock cycles and run times. 

GP 

Implementation 

Image Size 

Freq. 

[MHz] 

Average 

Speedup 

(Compared 

to 125MHz 

version) 

Average 

Speedup 

(Compared to 

368.64MHz 

version) 

128×128 256×256 512×512 

Cycles 

Run 

Time 

[ms] 

Cycles 

Run 

Time 

[ms] 

Cycles 

Run 

Time 

[ms] 

Full Multivector 

[16] 
1.42×106 11.4 5.97×106 46 2.29×107 184 125 87.9 271.5 

ASIC with Single 

Core [15] 
1.24×106 9.5 4.97×106 38.3 1.99×107 153 130 73.1 226 

ASIC with Two 

Cores [15] 
6.37×105 4.9 2.55×106 19.6 1.02×107 78.6 130 37.6 116 

This Work 1.63×104 0.13 6.55×104 0.52 2.62×105 2.1 125 ---- ---- 

This Work 1.63×104 0.04 6.55×104 0.17 2.62×105 0.71 368.64 ---- ---- 

 
Table 4 Resource usages comparison between different implementations. 

Implementation Target Device No. of Cells 

GA Co-processor [15] ASIC Prototype (Single Core) 35,355 

This Work Xilinx XC5VFX200T 87,368 

 

to different versions of GA co-processor are presented 

in Table 3. The results show that the proposed hardware 

is 37.6 times faster than the dual core version at almost 

the same frequency. The Table 4 exhibits the resource 

usage of the design in term of used cells. The resource 

usage of the proposed hardware is only 2.5x more than 

single core version, which is sensible in comparison to 

the achieved speedups. 

 

5 Discussion and Conclusion 

   Clifford algebra is one of the most powerful 

mathematical tools in visualizing problems in many 

research fields such as computer vision and image 

processing. The ℝ3,0 vector space of this framework is 

the best fit for mapping color description systems into 

geometric entities, such as vectors, bivectors (oriented 

areas), and trivectors (oriented volumes). Besides, the 

geometric product is an effective CA operator, which 

performs many geometrical operations, e.g. projection 

and reflection. Therefore, the combination of images, 

specific color multivectors, and GP leads to novel 

approaches of image processing, especially in image 

partitioning. The GP between image and specific colors 

multivectors are subjected in this work, and the resultant 

images were analyzed precisely. Finally, a specialized 

architecture is suggested for its efficient 

implementation, which executes the GP operations 25x 

faster than the software approach. 
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