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Abstract:  The purpose of this paper is to design a supplementary controller for traditional 

PID controller in order to damp the frequency oscillations in a micro-grid. Q-learning, 

which is used for supervise a classical PID controller in this paper, is a model free and a 

simple solution method of reinforcement learning (RL). RL is one of the branches of the 

machine learning, which is the main solution method of Markov decision process (MDPs). 

The proposed control mechanism is consisting of two main parts. The first part is a classical 

PID controller which is fixed tuned using Salp swarm algorithm. The second part is a 

Q-learning based control strategy which is consistent and updates its characteristics 

according to the changes in the system continuously. Eventually, a hybrid micro-grid is 

considered to evaluate the performance of the suggested control method compared to 

classical PID and fractional order fuzzy PID (FOFPID) controllers. The considered hybrid 

system is consisting of renewable energy resources such as solar-thermal power station 

(STPS) and wind turbine generation (WTG), along with several energy storage devices 

such as batteries, flywheel and ultra-capacitor with physical constraints and time delays. 

Simulations are carried out in various realistic scenarios considering system parameter 

variations along with changing in operating conditions. Results indicate that the proposed 

control strategy has an excellent dynamic response compared to the traditional PID and 

FOFPID controllers for damping the frequency oscillations in different operating 

conditions. 

 

 

Keywords: Mini/Micro-Grid, Q-Learning, Adaptive Controller, Frequency Oscillation 

Enhancement. 

 

 

1 Introduction1 

OWADAYS the demand for electric energy is 

increasing continuously. However, due to 

environmental considerations and internationally 

restrictive laws, the electrical power generation 

expansion planning has become a more complex 

problem [1]. On the other hand, the deteriorated 

infrastructure of traditional transmission and 

distribution systems do not have the potential for 

transmitting an unrestricted amount of power across the 

brittle network [2]. Consequently, renewable energy 
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resources such as wind turbine and the solar power are 

more considered, and in the near future will provide a 

large percentage of the power needed by human 

societies. As well as, these resources are consistent with 

the environment and can be located near the load, which 

means that there is no need to transmit power across the 

network [3, 4]. As a result, the past traditional power 

systems become a set of mini/micro-grids that can feed 

all the system loads together or independent. However, 

the stochastic variable output of the wind turbine and 

solar power, make the safe and reliable operation of this 

mini/micro-grids a challenge, especially when they are 

operating in an island mode (off-grid) [5]. This 

challenge which depends on the weather conditions at 

any time may disturb the balance of generation and 

demand power of the system. In the meantime, energy 

storage devices such as batteries, flywheel and super-

capacitor, with a proper and timely charging and 

discharging, can improve these imbalances [6, 7]. 

N 
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Generally speaking, hybrid mini/micro-grids include 

energy generation sources such as wind turbines, solar 

power and diesel generators, along with energy storage 

devices like batteries, flywheel and ultra-capacitor, 

which can supply their demands in on-grid and off-grid 

modes [3, 8].  When generation is more than the 

demand, storage devices store the extra energy and vice 

versa, when demand exceeds generation, they provide 

the deficit of the power. Thereupon, the hybrid 

mini/micro-grid power balance, which guarantees the 

stability of frequency, is achieved when there is a robust 

and adaptive control mechanism that can coordinate 

storage equipment and energy resources [1].  

   Up to the present time, numerous studies have been 

done on the controller design to enhance the frequency 

fluctuations of hybrid mini/micro-grids. The traditional 

proportional-integral (PI) controller was widely been 

under consideration of many researchers to control the 

frequency of hybrid micro-grids [9-11]. In Refs. [9, 10], 

particle swarm optimization (PSO) algorithm is used to 

the optimal design of PI controller for the frequency of a 

hybrid micro-grid include energy storage systems. 

Authors in Ref. [10] represent the application of 

dispersed generation (DG) resources to achieve the 

power balance conditions. The results of numerous 

investigations on the frequency control of microgrids 

over the past three decades have been reviewed in [12]. 

This literature includes sixteen optimization methods 

and programming tools such as HOMER (hybrid 

optimization model for electric renewables), HOGA 

(hybrid optimization using genetic algorithm), etc. 

Additionally, design, optimization and evaluation of 

photovoltaic, solar-wind, combined systems have been 

evaluated in a comprehensive review. Given that, the 

increase in the number of renewable energy resources 

and their uncertainties in mini/micro-grids is 

unavoidable, the use of traditional control methods does 

not have the ability to damp the frequency 

oscillations [13]. Therefore, the need for adaptive, 

robust and efficient control mechanisms are more 

feeling day by day [1], [14-16]. Here in [1, 14, 15] new 

frequency control methods based on the optimization 

algorithms and fuzzy logic for a micro-grid integrated 

with renewable and storage systems along with electric 

vehicles, are considered. Khalghani et al. in [16] have 

represented a controller to control the frequency of a 

micro-grid based on the emotional learning procedure of 

the human brain. According to the results, it's evident 

that although these controllers have a better dynamic 

response than traditional controllers, they also have a 

relatively complex structure. Therefore, their design is 

difficult and it is impossible to obtain their optimal 

structure for more complex systems. Consequently, a 

training-based intelligent control strategy is required to 

control the frequency of the hybrid mini/micro-grid, so 

that it can adapt itself to the system's variable conditions 

and always perform the optimal control policy [17, 18]. 

Reinforcement learning (RL) is a computational method 

that can be used to obtain such a goal-oriented and 

adaptive control mechanism [18]. In recent years, RL 

has obtained a special position in controlling power 

systems and has been successfully applied to small 

signal stability [18-20], voltage stability [21], transient 

stability and power market issues [22]. Authors in [23] 

represent an RL-fuzzy-PID frequency controller for a 

micro-grid. The structure of the suggested controller is 

relatively complex and its impact on the dynamic 

performance of the original fuzzy-PID controller is low. 

Must be noticed, an important point in using RL is the 

time it takes to learn the optimal control policy [24]. In 

Ref. [23], there are twenty-seven actions for each state 

of the system, which means it needs a much more time 

to learn the optimal control policy in the nonlinear 

complex power systems. Maybe, that's why the 

proposed strategy does not have much effect on the 

performance of the fuzzy-PID controller, according to 

the simulations results. 

   In this paper, an innovative control structure based on 

the RL integrated with a classical PID controller is 

proposed to enhance the frequency fluctuations of a 

mini/micro-grid with a high penetration of renewable 

energy resources. The suggested controller consists of 

two distinct parts. The first part is a traditional PID 

controller whose parameters are optimized using the 

new optimizer called Salp swarm algorithm (SSA) [25]. 

This section of the controller is fixed and will be tuned 

once. The second part is a consistent control mechanism 

that is robust against changes in the parameters and 

system operating points, based on the learning of 

intelligent agents in the context of multi-agent systems. 

The suggested strategy learns the optimal control policy 

(which is the recognition of the correct state of the 

system and applying the best control signal) with a trial 

and error method. Eventually, in addition to applying 

the optimal control signal to the system under different 

conditions, it also updates its knowledge about the 

system. Another key point of the proposed controller is 

that operates independently from the system dynamics 

and the type and location of the disturbance. In other 

words, when a disruptive event occurs, the frequency of 

the micro-grid begins to oscillate. The intelligent agent 

understands the frequency oscillation after a while 

(based on the sampling time in simulation) and damps 

the deviations immediately. In order to clarify the 

effectiveness of the proposed control mechanism, first, a 

micro-grid including renewable energy resources such 

as wind turbines and solar-thermal system along with 

diesel generator, integrated with energy storages, like 

batteries, flywheel and ultra-capacitor, are simulated in 

MATLAB environment considering system 

uncertainties and nonlinearities. After that, in different 

realistic scenarios, the dynamic response of the 

proposed controller is compared to traditional PID and 

FOFPID controllers, which are optimized using SSA. In 

the final analysis, the superb performance of the 

proposed control strategy in damping frequency 
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oscillations is clearly verifiable compared to PID and 

FOFPID control methods. 

 

2 Hybrid Microgrid Integrated with Renewable 

and Energy Storage Systems 

   In this section, the transfer function model of the 

different parts of the proposed hybrid micro-grid is 

derived [1]. 

 

2.1 Solar Thermal Power Station 

   The STPS is modelled with a second-order transfer 

function. 
 

(1 )(1 )

D
=

D + +

STPS s T

Solar s T

P K K

P sT sT
  (1) 

 

where TT and Ts are time constants, KT and Ks are DC 

gains. 

 

2.2 Wind Turbine Generator  

   Equation (2) shows the transfer function of the WTG. 
 

(1 )

D
=

D +

WTG WTG

Wind WTG

P K

P sT
  (2) 

 

where TWTG is time constant, KWTG is gain of WTG and 

PWind is the power of wind. 

 

2.3 Aqua-Electrolyzer 

   Aqua-electrolyzer is used to provide the requested 

hydrogen for fuel-cell based on a portion (1-Kn) of 

renewable power. As a result, fuel-cell can improve the 

uncertainties of renewable power. 
 

(1 )
(1 )

D
= -

D +D +

AE AE

n

WTG STPS AE

P K
K

P P sT
  (3) 

 

   In Eq. (3), TAE is time constants and KAE is DC gain of 

aqua-electrolyzer. 

 

2.4 Fuel Cell 

   Fuel cell can be described using a first order transfer 

function, which is shown by Eq. (4). 
 

(1 )

D
=

D +

FC FC

AE FC

P K

P sT
  (4) 

 

where TFC and KFC are time constant and DC gain of 

FC, respectively. 

 

2.5 DEG 

   DEG has a first-order transfer function with a DC gain 

and a time constant along with generation rate constraint 

(GRC) integrated with governor dead band (GDB). 

0.2
0.8

.
(1 ) (1 )

-
+

D
=

D + +

DEG DEG

G DEG

s
P K

f sT sT

p   (5) 

 

where TG is governor time constant. 

 

2.6 UC, BESS, and FESS 

   Ultra-capacitor (UC), batteries energy storage system 

(BESS), and flywheel energy storage system (FESS) 

have a similar first-order transfer function with a DC 

gain and a time constant along with generation rate 

constraint (GRC). Consequently, the mathematical 

model of this parts can be expressed by Eqs. (6)-(8). 
 

(1 )

D
=

D +

UC UC

UC

P K

f sT
  (6) 

(1 )

D
=

D +

BESS BESS

BESS

P K

f sT
  (7) 

(1 )

D
=

D +

FESS FESS

FESS

P K

f sT
  (8) 

 

   As an illustration, the block diagram of the considered 

hybrid micro grid along with renewable and storage 

energy devices and system physical nonlinearities is 

shown in Fig. 1. 

 

3 The Proposed RL-PID Controller  

3.1 Reinforcement Learning 

   Reinforcement learning is an algorithmic method 

based on trial and error, in which one or more agents 

learn an optimal control policy by interact with their 

environment (system under control) [26]. In other 

words, the environment is divided into several discrete 

states, in each state, there are a definite number of 

actions to be implemented. The intelligent agent learns 

to determine the optimal action that has to be applied to 

the system in each state [18]. In general, there are 

several methods for solving RL problems like adaptive 

heuristic critic (AHC), Q-learning, average reward 

(AR), and etc. [27]. In this paper, Q-learning is used to 

solve the proposed RL based frequency controller. 

 

3.2 Q-Learning 

   The main advantages of Q-learning based controllers 

are a simple structure, independent of the model of the 

system under control, robustness against changes in the 

operating point and system uncertainties and adaptive 

behaviour [18, 28]. Q-learning based reinforcement 

learning assumes the environment (system under 

control) is divided into a finite number of states is 

shown with set S. Agent forms a matrix called Q, which 

has a value (initially ó0ô) for each set of action-state 

pairs and indicates the goodness of particular action in 

the corresponding state. In each time step, agent  
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Fig. 1 The block diagram of the considered hybrid micro grid. 

 

calculates its state st, and based on a defined strategy 

selects action a among available actions of stat st. 

Immediately after applying the action, the agent takes a 

reward r from the environment and calculates its next 

state st+1. Then it updates the corresponding element of 

the Q matrix. The goal of the agent in Q-learning 

method is to learn a strategy which maps the states to 

actions to maximize discounted long-term reward [29]. 

The discounted long-term reward of the system is given 

by Eq. (9). 
 

1

0

¤

+ +

=

=ä k

t t k

k

R rg   (9) 

 

where r is the reward, ɔ is a number at the range 0 to 1 

and is called discount factor. Q matrix is defined as: 
 

1

0

( , ) | ,  
¤

+ +

=

ë û
= = =ì ü
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t k t t

k

Q s a E r s s a ap
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where ,́ s, a, and r are the control policy, current state, 

selected action, and the received reward, respectively. In 

each time step, Eq. (10) should be updated using 

optimal Bellman equation, which is given by Eq. (11). 
 

1 1 1  max ( , ) ( , )+ + +
è øD = + -
ê út t t t t

a
Q r Q s a Q s aa g   (11) 

 

where Ŭ  ᷾(0, 1) and is called attenuation factor. The 

flowchart of the proposed Q-learning method is 

summarized in Fig. 2. It is evident from Fig. 2 that after 

completing the learning phase (offline simulation), the 

system will be switched to online simulation. 

 

3.3 RL-PID 

   Fig. 3 shows the block diagram of the RL-PID 

controller. As can be seen, the RL-PID controller 

consists of two parts. The first part is a traditional PID 

controller that its coefficients are optimized using 

SSA [25] in this paper. It must be noticed that this 

section is fixed and is adjusted only once. The second 

part, which is a compatible controller, has two stages. In 

the preprocessing section, the system state after the 

previous action is determined by using the received 

signal discretization. In the other part, the RL control 

mechanism, in a supervisory manner, corrects the output 

of the PID controller utilizing information obtained in 

preprocessing stage. This part is variable and updated at 

any time step. As its name implies, reinforcement 

learning, this controller after applying an action to the 

system, receives the impact of it in a reward/penalty 

form and gives it a score in the corresponding state. 

Certainly, in each state of the system, an action with a 

higher score, is best suited to be implemented to the 

system. 

 

4 A Short Overview of SSA 

   Salp is a tubular and floating sea creature that moves 

by pumping the water through its gelatinous body [25]. 

Similar to the other particle-based optimization 

methods, the position of the particles defined in an 

n-dimensional space, where n is the number of 

optimization variables. The target which the Salp 

particles have to move towards it (the optimal problem) 

is a hypothetical source of food that is indicated by F. 

The particles leader updates its position using Eq. (12).
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*Ů-greedy method is expressed in [24]. 

Fig. 2 Steps of the Q-learning solution method for RL. 
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Fig. 3 Descriptive model of the proposed adaptive RL-PID controller. 
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where 1

jX  refers to the position of the leader, Fj is the 

position of the food, ubj and lbj are upper and lower 

band of particle positions in j th dimension, respectively. 

Parameters c1 ï c3 are random numbers. Generally 

speaking, in optimization techniques, the optimization 

process can be divided into two phases: exploration and 

exploitation. In the first phase, the algorithm combines 

random answers using random methods to find the best 

range of the existing answers. But in the second phase, 

the progressive changes in random responses are carried 

out with a lower percentage of randomness compared to 

the first phase [30].  

   The parameter c1 is very important because it balances 

the exploration and exploitation phases, and calculated 
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by Eq. (13). 
 

24
( )

1 2
l

Lc e
-

=   (13) 

 

where l is the current iteration and L is the maximum 

number of iterations. The parameters c2 and c3 are 

random numbers generated using normal distribution in 

the range 0 to 1. Using Newton's displacement law, the 

position of the follower Salps is expressed by Eq. (14). 
 

2

0

1

2

i

jX at v t= +   (14) 

 

where 2i² , i

jX  is the position of particle i in dimension 

j, t is time, v0 is the initial speed, 0finala v v= and 

0( )v x x t= - . Since the concept of time is expressed in 

terms of iteration in the optimization process, and the 

interval of iterations is equal to 1. Also, taking into 

account the initial velocity of 0 for all particles, Eq. (14) 

can be simplified in the form Eq. (15). 
 

11
( )

2

i i i

j j jX X X -= +   (15) 

 

More details about the SSA can be found in Ref. [25]. 

Fig. 4 shows the simplified flowchart of SSA. 

 

5 Optimization Results 

   In order to obtain the best dynamic performance of the 

PID and FOFPID controllers, their control coefficients 

optimized using the SSA. For the purpose of optimizing 

these controllers, an objective function defined based on 

the integral of time multiplied by absolute error (ITAE) 

criterion. In accordance with Eq. (16), in the simulation 

time interval and under micro-grid disturbances along  

 
 

with the uncertain output of renewable resources, the 

area under the frequency deviation curve is considered 

as the controllersô optimal criterion. 
 

120

0

| | J t f dt= ³ Dñ   (16) 

 

The optimization of the classical PID controller which 

has three control parameters, namely Kp, Ki, and Kd can 

be formulated as the constrained optimization problem 

of Eq. (17). 
 

minimize    

subject to:

                  0 , , 5p i d

J

K K K< <

  (17) 

 

   Likewise, the FOFPID controller has six control 

parameters which Ke, Kdf, Kpi, Kpd are the gain 

coefficients, and µ and ɚ are the fraction degrees of 

derivative and integrator components, respectively. 

Other details about the FOFPID controller, including the 

structure, the input and output membership functions, 

and the fuzzy rules are mentioned in [1]. In this paper, 

the excessive explanations have been ignored to avoid 

increasing the volume of the paper. Given this points, 

the problem of optimizing the FOFPID controller for 

controlling the frequency of the micro-grid is 

formulated by Eq. (18). 
 

minimize    

subject to:

                  5 , , , 5

                   0.5 , 1

e df pi pd

J

K K K K

m l

- < <

< <

  (18) 

 

   The optimization problems of Eqs. (17) and (18) are  
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Fig. 4 The simplified flowchart of SSA. 
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Table 1 SSA based control parameters of the PID and FOFPID controllers. 

PID controller 

Parameter Kp Ki Kd 

Value 4.9834 4.6713 3.6949 

FOFPID controller 

Parameter Ke Kdf Kpi Kpd µ ɚ 

Value -3.8012 -2.2297 3.0125 2.1014 0.8559 0.8007 

 

 
Fig. 5 The convergence curve of the objective function. 

 

solved separately by SSA with 50 initial populations 

and 50 iterations. The optimization results and the 

convergence process of the objective function are 

shown in Table 1 and Fig. 5, respectively. 

 

5.1 Ingredients of the RL Controller, State, Action 

and Reward/Penalty Function 

   Important to realize, the proposed RL controller is 

portable and can be added as a supervisory controller to 

any other kinds of controllers to improve their dynamic 

performance. In this paper, the PID controller is chosen, 

because along with its acceptable performance, has a 

simple structure and is widely used in the industry. 

Formerly, it was stated that the Q-learning method is 

used to solve the reinforcement learning in this paper. 

Another key point is that the Q-learning based 

controller's performance depends largely on how the 

states, actions, and reward/penalty functions are 

defined, which are described in more detail below. 

 

5.1.1 States 

   Given that point, that the frequency oscillation 

enhancement is the primary objective of this paper, the 

ȹF signal is sampled and used as the feedback signal 

from the system under control to determine the system 

state. For this aim, the time interval from -0.02 to + 0.02 

divided into 50 equal segments and Eq. (19) is utilized 

at each time step to determine the state of the system. 

The zero-centered state is called normal state, and the 

intelligent agent does not do anything in the normal 

state. In fact, this equation, in addition to determining 

the value of system frequency, it makes it clear whether 

the frequency oscillations are going to the instability or 

moving towards the establishment [18].  
 

( , )t

d f
s f

dt
x

D
= D   (19) 

 

where st is the state of the micro-grid at time t and is a 

function of ȹf and its derivative. 

 

5.1.2 Actions 

   Although, there are no particular laws for defining of 

actions for RL based controllers, and this makes it a 

complex matter [20]. But it may be determined by 

inspiring from the output limits of the usual controllers 

that used for the same purpose [24]. Must be noticed, 

various actions can be defined for different states of the 

system and they can even be increased. These efforts 

have two positive and negative aspects. On the positive 

side, it can improve the dynamic performance of the 

controller by increasing the degree of freedom (the 

controller has more choices to perform). On the 

negative side, it increases the learning time extremely 

and makes it challenging (or even impossible) to find 

the optimal control policy. With this in mind, in this 

paper, the same actions are suggested for all states and 

expressed by Eq. (20). 
 

{ } 0.02, 0, 0.02all statesA = - +   (20) 

 

where A is the action set for all states of the system. 

 

5.1.3 Reward/Penalty Function 

   The reward/penalty function is important because it 

assesses the degree of satisfaction from the action taken 
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in the previous state in line with the overall goal. In the 

event that the system state is st, the agent utilizes its 

experience to perform the best action (a) among the 

actions defined for state st. Without delay, the agent 

receives a reward/penalty from the system under control 

concerning the performed action. On the basis of this 

reward/penalty, the agent assigns a score for a pair of 

(st, a) and updates the corresponding element of Q 

matrix. If the score is positive, the probability of 

performing the action a at the state st increases for the 

next times. Otherwise, if the score is negative (penalty), 

the agent selects the action a with a lower probability in 

the state st, in next times. With this intention that the 

primary objective of this paper is frequency control, 

therefore ȹf signal is selected for determination of 

reward/penalty for corresponding (st, a) pairs. In 

essence, if an action causes the system to go out of the 

normal state, it will be fined. In return, if an action 

causes the system to go to the normal state, will receive 

the highest reward. In summary, the reward/penalty 

function is described by Eq. (21), in this paper. 
 

1

1

1

1 If  is normal state

1 If  is normal state and  

 is not normal state

1 Otherwise

(1 ( ))

t

t

t

t

t

k t

s

s

s

f k

+

+

= -

ë
î+
î
î
î-î

Á =ì
î
î
î
î + D
îí
ä

  

(21) 

 

where t is the time step. 

 

6 Results and Discussion 

   Finally, in order to assess the RL controller's ability 

for mitigation of the frequency deviations, first, the 

dynamic equations of the micro-grid of Fig. 1 are 

simulated in MATLAB R2015b environment. Then the 

superiority of the proposed controller is proved in  

 

realistic scenarios compared to traditional and FOF PID 

controllers. It should be noted that the simulation time 

step and sampling time are considered equal to 1 and 50 

milliseconds, respectively. Moreover, in computer 

simulations, physical constraints on energy storage (ES) 

devices and DEG, including dead band and generation 

rate constraints (GRC), are considered. For this reason, 

the dead band is considered equal to 20ms and located at 

the input of the devices and GRC is considered as 0.02, 

0.005, 1.2, and 0.001 for FESS, BESS, UC, and DEG, 

respectively. In addition, variable wind speed and solar 

radiation have been created using Eqs. (22) and (23), 

respectively. More details are given in [11]. 
 

4

1 1
0.8 10 1 10

1010 1
windP

s
f

å õå õå õ
= ³ ³ - + ³ ³Gæ öæ öæ ö

+ç ÷ç ÷ç ÷

  

(22) 

where ( 1,1)Uf - , and Gis a function of Heaviside 

step function. 
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where ( 1,1)Uf - . 

 

6.1 Scenario1: Performance of the Controllers in 

Nominal Conditions of the Hybrid Micro -grid  

   In this scenario, it is assumed that all the elements 

exist in the hybrid micro-grid are in their nominal 

conditions. The renewable resources do not have 

production from the beginning, and they start 

production at time 5s according to the pattern shown in 

Fig. 6. Moreover, the sudden load changes of 10 and 20 

percent occur at seconds 5 and 65, respectively. 

   Under those circumstances, the dynamic frequency 

response of the proposed control strategy is shown in 

Fig. 7 compared to traditional and FOF PID controllers. 

 

 
Fig. 6 The renewable resources production in scenario 1. 
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Fig. 7 The dynamic response of the proposed control strategies in Scenario 1. 

 

 
Fig. 8 The output signal of the RL controller during simulation time in Scenario 1. 

 

 
Fig. 9 The power absorbed/supplied by ES devices and DEG in Scenario 1; Solid: RL, Dashed: FOF PID, and Dotted: PID. 

 

   As shown in Fig. 7, it is obvious that in the first 

overshoot/undershoot after disturbance, the performance 

of the RL has a mild superiority over the other control 

methods. This is due to the delay in detecting the 

turmoil by the intelligent agent. From Fig. 7, after few 

sampling steps, ȹf is going out of the normal range and 

the controller recognizes the disturbance, then the 

intelligent agent immediately begins to apply a 

supplementary control signal to improve the dynamics 

of the system. Fig. 8 shows the output signal of the RL 

controller during simulation time. 

   Considering Figs. 7 and 8, it is evident that the 

controller is inactive and when the frequency 

oscillations start, it will be activated. In the time interval 

of 0 to 5 seconds, which disturbance has not yet 

occurred, the RL controller is inactive (its output is 

zero). Once turbulence is triggered, it will be activated 

and performs the optimal control policy. The output 

power of various ES devices along with DEG is shown 

in Fig. 9. 
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6.2 Scenario 2: Performance of the Controllers in 

Presence of Changing in Hybrid Micro-grid 

Components 

   As can be seen from Fig. 9, the output power of UC is 

much more than the other ES devices. Thus, UC 

parameter changing can be considered as the worst test 

case for robustness of the controllers against system 

parameter changes. Therefore, in this scenario, 2 percent 

increase in the gain along with 2 percent decrease in the 

time constant of UC energy storage device are assumed. 

All the other conditions are as same as the conditions of 

scenario 1. Fig. 10 shows the frequency deviation of the 

hybrid micro-grid with three control methods. 

   Fig. 10 shows that the changes in the UC parameters 

have caused the frequency oscillations to be continued 

more in comparison with scenario 1 after disturbance. 

Under those circumstances, it is evident from Fig. 10 

that the dynamic performance of the proposed control 

mechanism is superb compared to the PID control 

method. Further, the optimal control signal of the RL 

and the power absorbed/supplied by ES devices and 

DEG are shown in Figs. 11 and 12, respectively. 

 
Fig. 10 The dynamic response of the proposed control strategies in Scenario 2. 

 

 
Fig. 11 The output signal of the RL controller during simulation time in Scenario 2. 

 

 
Fig. 12 The power absorbed/supplied by ES devices and DEG in Scenario 2; Solid: RL, Dashed: FOF PID, and Dotted: PID. 

 



Q-learning Based Supervisory PID Controller for Damping 

 
é A. Younesi and H. Shayeghi 

 

Iranian Journal of Electrical and Electronic Engineering, Vol. 15, No. 1, March 2019 136 

 

6.3 Scenario 3: Performance of the Controllers with 

Large Variations in the Output Power of the 

Renewable Resources Along with the Pattern Load 

Changes 

   In this scenario, in order to demonstrate the excellent 

performance of the proposed controller compared to the 

classical PID and intelligent FOFPID controllers, a 

challenging condition is produced by sudden decreasing 

the output power of STPS and WTG by 13% and 15% 

in seconds 20 and 60, respectively. Fig. 13 shows the 

power generated by renewable resources in scenario 3. 

Additionally, to make a more realistic scenario a pattern 

load change accordance with Fig. 14 is considered. The 

performance of three control strategies is shown in 

Fig. 15. 

   The optimal control signal generated by the RL 

controller and the powers absorbed/supplied by ES 

devices and DEG are shown in Figs. 16 and 17, 

respectively. 

 
Fig. 13 The renewable resources production in scenario 3. 

 

 
Fig. 14 The load variation pattern in scenario 3. 

 

 
Fig. 15 The dynamic response of the proposed control strategies in Scenario 3. 
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Fig. 16 The output signal of the RL controller during simulation time in Scenario 3. 

 

 
Fig. 17 The powers absorbed/supplied by ES devices and DEG in Scenario 3; Solid: RL, Dashed: FOF PID, and Dotted: PID. 

 

7 Discussion 

   As can be seen in some cases of simulations, the 

proposed RL control method has a mild superiority over 

the other PID and FOFPID controllers. For this reason, 

in order to demonstrate the superiority of the RL control 

structure compared to the other control methods, four 

appropriate numerical criteria are chosen and computed 

for all scenarios. Integral of squared error (ISE), ITAE, 

overshoot (OS) and undershoot (US) are the criteria 

which are computed according to Eqs. (24)-(27), 

respectively. Table 2 and Fig. 18 show the numerical 

time domain analysis of the dynamic performance of the 

proposed RL controller compared to PID and FOFPID 

in damping of hybrid micro-grid frequency deviations. 
 

  (24) 

  (25) 

  (26) 

  (27) 
 

where tsim is equal to 120 in all scenarios. 

As can be seen in Table 2 and Fig. 18, the dynamic 

performance of the RL controller has a remarkable 

superiority over the PID and FOFPID control methods. 

In the final analysis, in order to emphasize the 

superiority of the proposed controller compared to PID 

and FOFPID controllers, the results shown in Table 2 

are statistically analyzed. In this regard, it can be seen 

that the RL controller has improved the index ISE 60%, 

62%, and 71% compared to PID and 57%, 60%, and 

68% compared to FOFPID in scenarios 1, 2, and 3, 

respectively. In the view of ITAE index, frequency 

deviations have been improved approximately 50% 

compared to PID and 41% compared to FOFPID in all 

three scenarios. It must be noted that the US and OS 

were calculated in the worst case of each controller. As 

shown in Fig. 19, the OS index have been decreased 

approximately 2%-6% compared to PID and 2% 

compared to FOFPID controller. The reason for low 

impact of the RL control structure on the OS is 

previously described in scenario 1. Similarly, the RL 

controller has enhanced the US of the frequency 

deviations by 24%, 25%, and 5% compared to PID and 

20%, 21%, and 3% compared to FOFPID in scenarios 1, 

2, and 3, respectively. In conclusion, as shown above, 

the proposed consistent mechanism based on RL can 


