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Abstract: This paper presents a new framework based on modified EMD method for 

detection of single and multiple PQ issues. In modified EMD, DWT precedes traditional 

EMD process. This scheme makes EMD better by eliminating the mode mixing problem. 

This is a two step algorithm; in the first step, input PQ signal is decomposed in low and 

high frequency components using DWT. In the second stage, the low frequency component 

is further processed with EMD technique to get IMFs. Eight features are extracted from 

IMFs of low frequency component. Unlike low frequency component, features are directly 

extracted from the high frequency component. All these features form feature vector which 

is fed to PNN classifier for classification of PQ issues. For comparative analysis of 

performance of PNN, results are compared with SVM classifier. Moreover, performance of 

proposed methodology is also validated with noisy PQ signals. PNN has outperformed 

SVM for both noiseless and noisy PQ signals. 
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Nomenclature1 

PQ Power Quality 

EMD Empirical Mode Decomposition 

IMF Intrinsic Mode Function 

DWT Discrete Wavelet Transform 

PQD Power Quality Disturbance 

FFT Fast Fourier Transform 

STFT Short-Time Fourier Transform 

CWT Continuous Wavelet Transform 

DWPT Discrete Wavelet Packet Transform 

PNN Probabilistic Neural Network 

SVM Support Vector Machine 

PLL Phase Locked Loop 

ICA Independent Component Analysis 

HHT Hilbert Huang Transform 

WT Wavelet Transform 
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1 Introduction 

ONCERN towards PQ has become the sine-qua-

non for the industrial, domestic and commercial 

domains. In today’s world, proliferation in the 

application of nonlinear loads like fluorescent lamps 

with electronic ballasts, switched mode power supplies, 

solid state control devices, power converters etc. has 

drawn more attention towards PQ. All these nonlinear 

loads, capacitor switching banks, short-circuit faults, 

starting of large machines, and renewable energy 

integration with grid cause PQ disturbances [1]. PQD is 

any distortion in the standard voltage and current. PQ 

limits are given by the international standards, for 

instance, IEC-61000, IEEE-1159 and EN50160 to keep 

PQ parameters within acceptable limits. PQ 

disturbances like sag, swell, harmonics, transient, 

flickers, interruption etc., pose risk to the life and 

efficiency of end user equipments like computers, TV, 

refrigerators, highly sensitive control equipments, 

tubelights, microwaves etc. and also cause interference 

to communication lines. Prior detection and continuous 

monitoring are necessary to mitigate the aftermaths of 

PQ disturbances [2].  

   Profuse attempts have been undertaken for the 

analysis of these disturbances. The most primary 
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technique used in PQ analysis is Fast Fourier Transform 

but it is unsuccessful in case of non-stationary transient 

signal.    To overcome the limitation of FFT, STFT and 

WT started being used. There are many variants of WT, 

being employed by the researchers like CWT, DWT, 

DWPT and many others [3-5]. In [6], authors have 

implemented DWPT using polyphase-decomposition 

based wavelet filters on Xilinx Artix-7 field-

programming gate array AC701 board for estimation of 

power system harmonics. This hardware design 

facilitates reduction in computational requirements and 

memory resources. To deal with problem of spectral 

leakage in WT, authors [7] utilized modified WT, i.e., 

generalized empirical wavelet transform for estimation 

of PQ indices like instantaneous values of fundamental 

amplitude, root mean square, frequency variation, THD, 

form factor, normalized distortion energy index, and K-

factor.  Another variant of WT, i.e., Tunable-Q wavelet 

transform has been applied by Karthik Thirumala et al. 

[8] for accurate decomposition of signal into different 

components among which one is fundamental and 

others are harmonic components. Authors have tuned 

the wavelet depending upon the inter-harmonics present 

near fundamental frequency for better analysis of both 

single and combined disturbances.   

   Suhail Khokhar et al. [9] have proposed DWT for 

feature extraction from sixteen PQD signals. They have 

optimized the features using Ant Bee Colony 

optimization before feeding them to PNN whose spread 

constant has also been optimized using the same 

technique. DWT-PNN based method has been also 

tested on the noise-ridden signals having Gaussian noise 

of 20 dB, 30 dB and 40 dB. In [10] also, authors 

implemented DWT using Daubechies family filter 

banks for better feature extraction from PQDs. They 

have determined the unique adaptive threshold for the 

decomposed PQDs depending upon their value of 

energy and entropy. The intersection of thresholds and 

curves of decomposed PQD signals has provided the 

automatic segmentation of PQ signals. DWT using 

modified wavelets called fraclets have also been 

proposed by some authors to further improve wavelet 

decomposition results for having correct classification 

of PQ disturbances [11, 12].   

   Like other techniques, WT have their own limitations 

like time-frequency uncertainty relation, caution needed 

while choosing the mother wavelet, interference terms, 

border distortion, energy leakage etc. Another technique 

used by the researchers for time-frequency analysis of 

PQDs is S-transform. M. V. Reddy and Ranjana Sodhi 

[13] have improved the usability of S-transform for PQ 

assessment by designing its rule-base using statistical 

entropy measure for selecting the suitable window. 

Twelve features have been computed from magnitude 

and phase values of ST matrix; these features have been 

fed to AdaBoost classifier  using decision stump also. 

Authors have improved the performance of the classifier 

by using adaptable initial weights to avoid over-fitting 

of the classifier. Offering more robustness and less 

computational complexity, double resolution S-

transform has been implemented by J. Li et al. in a 

digital signal processor for effective feature analysis of 

PQDs with the help of reduced instruction set of 

processor [14]. Features provided by double resolution 

S-transform have been accurately classified into PQ 

issues by directed acyclic graphs-SVM.     

   Raj Kumar et al. [15] have opted a different strategy 

for detection of PQ issues, namely, transients, flickers, 

interruption, sag, harmonics, swell, spikes and notch. 

They have implemented the method based on 

symmetrical components of PQD signals on a digital 

signal processor, i.e., dSPACE 1104. PLL has been used 

to generate two other ideal phases to have symmetrical 

components of all three phases whose positive and 

negative sequence components have been used for 

identification of PQ issues. ICA is used to statistically 

decompose a multivariate signal into independent 

components. In [16], authors have applied single-

channel ICA for detection of transient. This method has 

been compared with other methods used for transient 

detection, e.g., average fundamental waveform analysis, 

notch and high-pass filters, cycle-by-cycle difference 

etc.  

   Many analysis works have been carried out depending 

upon the threshold values without the use of classifiers. 

For instance, in [17], authors present a modified 

potential function based technique to detect the PQ 

disturbances having short duration, e.g., sag, swell and 

transient. This technique computes a diffusion matrix 

having threshold values, as per the proposed algorithm 

which is used for fast real-time tracking and detection. 

PQ events have been successfully classified by using the 

concept of neural networks in different forms. 

Manjeevan Seera et al. [18] have developed PQ analysis 

model by modifying the basic concepts of fuzzy min–

max clustering neural network. Voltage harmonics and 

total harmonic distortion have been extracted from all 

three phases of acquired PQD signals. Fuzzy min-max 

clustering network have been applied upon those 

features due to their individual capabilities of online 

learning and prediction explanation respectively. This 

method can have setback due to increasing complexity 

while learning due to increase in number of clusters. 

Another neural network based approach using conjugate 

gradient back-propagation algorithm has been adopted 

by Chetan B. Khadse et al. [19] for detection and 

classification of sag and swell in LabVIEW.  This 

technique recognizes PQ events from their odd and even 

harmonic components extracted using FFT.   

   Another main technique for time-frequency 

localization of PQ events is Hilbert-Huang Transform 

which comprises of EMD and then Hilbert spectral 

analysis. Many researchers have relied upon EMD for 

decomposition of PQD signals to have effective feature 

extraction. Since, EMD has certain drawbacks like 

envelope undershoot or overshoot due to the cubic 
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spline interpolation, negative effects at the boundary 

and the mode mixing [20]; noise-assisted ensemble 

EMD has been proposed but it also lacks somewhere 

due to drastic increase in computational burden. 

Therefore, David Camarena-Martinez et al. [20] have 

fused the down-sampling stage and spline-cubic 

interpolation to the standard EMD process to have more 

adequate IMF extraction and less computational burden. 

This method extracts the first IMF as the fundamental 

component and rest information that is mainly of PQDs 

lies in other IMFs. This technique facilitates elimination 

of overshoots, undershoots and mode mixing problem 

with fundamental component of PQD.  

   To address the limitations of traditional EMD, for 

instance, intermittence, mode-mixing, and undesirable 

IMFs, authors have proposed new framework utilizing 

modified EMD in this work. Ideally, every IMF should 

have one single oscillatory mode or frequency 

component. But, as PQD signal has numerous 

harmonics and time-varying amplitude and frequency, 

there are chances that each IMF computed by EMD has 

multiple frequency components. Hence, to ward off this 

improper decomposition of PQD signal, a pre-

processing stage has been introduced before the process 

of EMD. That pre-processing stage is DWT in this 

paper. The combination of DWT and EMD is named as 

modified EMD. Modified EMD has been applied on 

eleven PQ signals, simulated by parametric equations, 

i.e., normal, swell, sag, flicker, interruption, harmonics, 

swell with harmonics, sag with flicker, sag with 

harmonics, swell with flicker and interruption with 

harmonics. DWT has been used to split PQ signal into 

two narrow bands, i.e., low frequency and high 

frequency components. Only low frequency components 

are further treated with EMD since main frequency 

components of PQ signal reside in low frequency 

region. Eight statistical features such as mean, root 

mean square, standard deviation, variance, skewness, 

kurtosis, energy and entropy have been further 

calculated from the obtained IMFs. The same features 

have been computed from the high frequency 

component of PQ signal to also utilize the high 

frequency information of PQ signal. These features have 

been used as the characteristics of PQ issues and 

employed in the training of PNN for automatic 

classification of PQ issues. PNN has been adopted in 

this work on account of its faster training procedure and 

has been also proved superior to SVM for classification 

of single and multiple PQ issues.  

   Rest of the paper is organized as follows: Section 2 

contains proposed methodology for the classification of 

PQ issues. Section 3 briefs theoretical background of 

DWT, modified EMD, and PNN classifier, and Section 

4 presents results and discussion followed by conclusion 

of the proposed technique with the future directions in 

Section 5. 

 

 

2 Proposed Methodology  

   Detection and classification of PQ issues (sag, swell, 

flicker, interruption, harmonics, sag with harmonics, 

swell with harmonics, sag with flicker, swell with 

flicker and interruption with harmonics) have been 

illustrated in this section. The proposed technique 

considers the analysis of both single and multiple PQ 

issues. Single PQ issues include sag, swell, flicker, 

interruption and harmonics; whereas multiple PQ issues 

are sag with harmonics, swell with harmonics, sag with 

flicker, swell with flicker and interruption with 

harmonics. This method is based mainly on the 

application of modified EMD and PNN. The block 

diagram of the proposed methodology is presented in 

Fig. 1. Different steps of block diagram have been 

discussed as follows. 

 

2.1 Simulation of PQ Issues 

   Proposed methodology starts with simulation of PQ 

input signal which undergoes the detection and 

classification process. Input signals with PQ issues are 

generated in MATLAB by varying the parameters of 

parametric equations as per IEEE-1159 standard. The 

parametric equations used for simulating PQ issues 

considered in this work are given in Table 1. Both 

single and multiple PQ issues such as sag, swell, flicker, 

interruption, harmonics, sag with harmonics, swell with 

harmonics, sag with flicker, swell with flicker and 

interruption with harmonics, have been simulated in this 

work. 

 

2.2 Signal Decomposition using Modified EMD 

   This stage explains the application of signal 

processing technique for transforming the signal into a 

form which contains significant recognizable 

information to characterize PQ issue. For this purpose, 

modified EMD is proposed in this work. Modified EMD 

presents application of DWT on input  
 

 
Fig. 1 Proposed methodology for detection and classification 

of PQ issues. 
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PQ signal first and then EMD of resultant low 

frequency signal. For applying DWT, db4 wavelet is 

used which divides signal into low frequency and high 

frequency components. EMD is then applied only on 

low frequency signal and produces IMFs from the low 

frequency part of PQ issue.  All these IMFs now 

obtained have single oscillatory modes, thus 

overcoming the problem of mode-mixing. 

 

 

2.3 Feature Extraction  

   Feature extraction implies the process of transforming 

the signal into a set of features. Signal obtained after 

EMD is too big to be dealt with, so, it is transformed 

into set of features which represents its characteristic 

information. Eight statistical features such as mean, root 

mean square (RMS), standard deviation, variance, 

skewness, kurtosis, energy and entropy, are calculated 

from IMFs having useful signal information. These 

features have also been extracted from the high 

frequency component of PQ signal to extract the signal 

information hidden in high frequency component.  

These features are introduced in Table 2 with their 

labels. In PQ analysis, feature extraction is a prominent 

step. More the features are relevant; more is the 

classification accuracy for PQ issues. 

 
Table 1 Parametric equations used for PQ issues generation. 

PQ Issue Class Parametric Equation Parameters 

Normal 

signal 
C1    sin

m
s t A wt  1  ,  2 *50

m
A pu w    

Voltage 

Sag 
C2          

1 2
1 sin

m
s t A u t t u t t wt      

0.1 0.9;   

2 1
9T t t T    

Voltage 

Swell 
C3          

1 2
1 sin

m
s t A u t t u t t wt      

0.1 0.8;   

2 1
9T t t T    

Interruption C4          
1 2

1  sin
m

s t A u t t u t t wt      
0.9 1;   

2 1
9T t t T    

Harmonics C5         1 3 5
 sin  sin 3  sin 5

m
s t A wt wt wt      

3 5
0.05 ,  0.15;     

2
1

i
   

Flicker C6       
1 2

1 sin sin
m

s t A wt wt    
1

0.1 0.2;   

2
5 20 Hz   

Sag with 

Harmonics 
C7               1 2 1 3 5

1 sin sin 3 sin 5
m

s t A u t t u t t wt wt wt           

0.1 0.9;   

2 1
9 ;T t t T    

3 5
0.05 ,   0.15;     

2
1

i
   

Swell with 

Harmonics 
C8               1 2 1 3 5

1 sin  sin 3 sin 5
m

s t A u t t u t t wt wt wt           

0.1 0.8;   

2 1
9 ; T t t T    

3 5
0.05 ,  0.15;     

2
1

i
   

Interruption 

with 

Harmonics 

C9               
1 2 1 3 5

1 sin  sin 3 sin 5
m

s t A u t t u t t wt wt wt           

0.9 1;   

2 1
9 ; T t t T    

3 5
0.05 ,  0.15;    

2
  1

i
   

Sag with 

Flicker 
C10             

1 2 1 2
1 sin sin 1

m
s t A wt wt u t t u t t         

0.1 0.9;   

2 1
9 ;T t t T    

1
0.1 0.2;   

2
5 20 Hz   

Swell with 

Flicker 
C11             1 2 1 2

1 sin sin 1
m

s t A wt wt u t t u t t         

0.1 0.8;   

2 1
9 ;T t t T    

1
0.1 0.2;   

2
5 20 Hz   
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Table 2 Characteristic features of PQ signal. 
Feature 

Label 
Features Expression 

Feature 

Label 
Features Expression 

F1 Mean 
1

X
N

    F5 Skewness 

3

skew

rms

1
 

X
X

N X




 
 
 

  

F2 RMS 2

rms

1
 X X

N
   F6 Kurtosis 

4

kurt

rms

1
 

X
X

N X




 
 
 

  

F3 Standard Deviation 
 

2

X

N








  F7 Energy 
2

energy
 

N

X X  

F4 Variance 
 

2

2
X

N








  F8 Entropy  
entropy

logX X X   

 

2.4 Classification of PQ Issues 

   Features have been extracted from all the samples of 

PQ signals to form the corresponding feature vector. 

The feature vectors of randomly selected PQ issue 

samples are used for training of PNN. PNN is a feed 

forward neural network based on the Bayesian network. 

The spread constant is adjusted by hit and trial method 

in order to achieve maximum classification accuracy. 

PNN gets trained with all the feature vectors in one go 

facilitating fast response. Trained PNN has been 

employed for the automatic classification of PQ issues. 

Test samples are randomly selected for testing of trained 

classifier. 

 

3 Theoretical Background 

3.1 Discrete Wavelet Transform 

   Discrete wavelet transform (DWT) is one of the most 

prominently used tool for time-frequency localization of 

the signal. DWT has been adopted instead of CWT due 

to the redundancy present in continuous wavelet 

transform [23]. DWT utilizes the analysis filter-bank to 

split the signal into approximation and detail 

information of the signal. Coarse (or approximation) 

information of the signal is present in low frequency 

components and detail information of the signal is 

present in high frequency components. The analysis 

filter bank for DWT is presented in Fig. 2. DWT of a 

signal is represented mathematically as below in 

(1) [24]: 
 

   
1

,  
p

pp
k

n kbs
DWT p n i n

ss

 

  
 

   (1) 

 

where i(n) represents the discrete version of i(t), the 

continuous PQ signal; s and b are constant real values 

and p and n are the integers. ψ(n), the wavelet function 

is the mother wavelet that is used to extract signal 

information at different scaling level, s and translation 

level, bsp. Here, p decides the resolution level of the 

decomposition. There are many mother wavelets used in 

DWT, e.g., Daubechies, Morlet, Haar, Mexican etc. In 

this work, ‘db4’, a member of Daubechies wavelet 

family has been utilized as the wavelet function. ‘db4’ 

wavelet has low-pass, h[n] and high-pass filter 

coefficients, g[n]  as given in equation (2). 
 

 
 

1 3 3 3 3 3 1 3

  4 4 4 4
 

    1 3 3 3 3 3 1 3

4 4 4 4

h n

g n

    
  
  
       
 
 

  (2) 

 

   DWT utilizes the principle of multiresolution analysis 

(MRA) to decompose signal under analysis to different 

resolution levels. Approximation signal obtained from 

first level decomposition is further decomposed to have 

approximation and detail coefficients at second level, as 

per Mallat’s algorithm. This process is continued till the 

signal gets splitted into desired frequency bands. 

Though, DWT provides time-frequency information of 

signal simultaneously, but it is limited by Heisenberg 

uncertainty [21]. Moreover, choice of mother wavelet is 

also a task to be done carefully which demands prior 

knowledge of signal. Hence, DWT has not been relied 

upon by authors as the single and only technique for PQ 

analysis. 

 

3.2 Modified Empirical Mode Decomposition  

   Modified empirical mode decomposition is only the 

preferment of traditional EMD as the only difference 

between EMD and modified EMD is the pre-processing 

stage in modified EMD before application of EMD. Pre-

processing stage includes application of DWT on PQ 

signal. The genesis of modified EMD lies in the 

shortcomings of traditional EMD like mode mixing and 

intermittence according to Gibbs phenomenon [25]. 

Sometimes, EMD decomposes the signal into intrinsic 

mode functions (IMFs) which are not having single 

oscillatory modes, representing frequency mixing in 

IMFs. This situation doesn’t allow the proper 

representation of the signal into mono-components. 

Hence, modified EMD has been adopted which 

proposes application of DWT to decompose PQ signal 

into narrow bands, prior to the application of EMD for 

IMF generation. EMD of the  
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Fig. 2 DWT analysis filter bank. 
 

narrow band signals results into IMFs having only 

single oscillatory modes. 

   EMD is the process that deals with both non-

stationary and nonlinear signal and provides adaptive 

time-frequency localization. The concept of EMD is 

similar to wavelet transform which decomposes the 

signal in higher and lower frequency band. In EMD, the 

first IMF having the highest frequency is followed by 

other IMFs having decreasing frequency components. 

The basis of empirical mode decomposition is the 

sifting process in which mean of upper and lower 

envelope of the signal is repetitively subtracted from the 

original signal [26]. This sifting process extracts the 

highest frequency component from the signal in the 

repetitive manner. 

   An oscillating signal is called as an intrinsic mode 

function if it satisfies following two conditions [25]: 

 

i. Number of extrema and zero crossing must be 

equal or vary by one only. 

ii. The mean of envelope which is defined by local 

maxima and local minima is zero. 

The process of EMD is progressed as per the flowchart 

presented in Fig. 3. 

i. Calculate maxima and minima of the signal and 

apply cubic spline to get upper and lower 

envelope. 

ii. Calculate mean m(t) of the envelopes and 

subtract it from input signal  i(t), define it as 

in (3): 
 

     1d t i t m t   (3) 

 

iii. Check whether d1(t) satisfies two conditions of 

IMF, if yes then d1(t) is first IMF otherwise 

repeat steps i-iii by considering d1(t)  as input 

signal and define the next component as in (4): 
 

     11 1 1d t d t m t   (4) 

 

iv. The process of sifting is replicated j times until 

first IMF d1j(t) is obtained and residue is 

calculated as per (5): 
 

     1 1 jr t i t d t   (5) 

 

v. Consider r1(t) as input and repeat steps i-iv to get 

second IMF. 

This algorithm is executed g times to get g IMFs. If rg(t) 

is monotonic, then no further decomposition is possible 

and the process is stopped here. 

   After this process, the original signal i(t)  can be 

represented by (6), 
 

     
1

 
g

g k

k

i t r t IMF t


   (6) 

 

In this way, g IMFs are extracted from the original input 

signal i(t). These IMFs are used for analysis of PQ 

signals, as these IMFs depict the varying amplitude and 

frequency of non-stationary PQ signals. EMD also 

offers freedom from Heisenberg uncertainty thus 

facilitating better time-frequency representation. 

 

3.3 Probabilistic Neural Network Classifier 

   There are many variants of classifiers based on neural 

network, for instance, artificial neural network, back 

propagation neural network, multi-layer perceptron, 

deep neural network and PNN.  D. F. Specht proposed 

probabilistic neural network in the early 1990s, which 

was a feed forward neural network based on Bayesian 

network [27]. PNN comprises of four layers of neurons 

which are input layer, pattern layer, summation layer 

and output layer. The architecture of PNN is presented 

in Fig. 4. Feature vector is presented at the input layer 

and neurons in pattern layer computes the distance of 

feature vector from training patterns according to 

Gaussian function. The summation unit simply sums the 

input from the pattern units that corresponds to the 

category from which the training pattern is selected. 

Summation layer contains as much neurons as the 

number of classes of training patterns. At the end, 

output layer uses the principle of maximum a posteriori 

to produce the final class to which feature vector 

belongs.    

   The classification process of PNN can be described as 

a two class problem. Let the state of a variable δ be 

either δA or δB . Decision of whether it is δA or δB, 

depends on the set of measurements captured by p-

dimensional vector [25], 
  

1 2 3, , , , , ,t

j pY Y Y Y Y Y      (7) 

 

then Bayes decision rule becomes as (8) and (9), 
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     ifA A A A B B Bd Y h I f Y h I f Y   (8) 

       i  fB B B B A A Ad Y h I f Y h I f Y   (9) 

 

where fA(Y) and fB(Y) gives probability density function 

for categories A and B respectively, IA and IB are loss 

function of decisions, hA is prior probability of having 

pattern of category A and hB is prior probability of 

having pattern of category B. Thus, the boundary 

between the regions given by Bayes decision, is 

represented as in (10), 
 

    where B B

A B

A A

h I
f Y Kf Y K

h I
   (10) 

 

   One of the various advantages of PNN is that it does 

not require any weight initialization. Addition or 

removal of training patterns is very easy in PNNs as 

addition and removal of training samples just demands 

addition or removal of neurons of pattern layer, hence 

minimal efforts are required for retraining PNN, if 

needed [28]. PNN is much faster and accurate than 

multilayer perceptron networks. The higher learning 

speed of PNN makes it suitable for signal classification 

and fault diagnosis problems. In this work, PNN 

classifier has been relied upon for the classification of 

PQ issues due to its capability of being trained by all the 

features in one go only. High dimensional feature set 

obtained from modified EMD is used for the training 

and testing of PNN in this work. 

 

4 Results and Discussions 

   The proposed methodology has been validated in this 

section with the experimental results and discussions. 

The results of various stages from PQ issue generation 

to classification have been discussed below. 

 

4.1 PQ Signal Generation 

   The proposed methodology has been investigated by 

using 100 patterns of each desired PQ issue. These 

issues are simulated by using MATLAB software 

expressions given in Table 1 [21,22]. The controlling 

parameters in these equations are illustrated in the same 

table. For the harmonic issue, fundamental component 

and the two other harmonic components are required. In 

this study, 3rd and 5th harmonic components are used.  

 

4.2 Detection of PQ Issues 

   Synthetic signals used for the analysis of PQ issues 

are obtained from the mathematical equations in 

MATLAB. Normally, a signal consists of multiple 

oscillatory components which represent its physical 

properties. If these components are extracted from the 

signal, then the interpretation of the signal becomes 

much easier.  Hence for extracting the information from 

these signals, modified EMD is applied. As PQ signals 

have multiple oscillatory modes, therefore, DWT has 

been first applied on PQ signal using ‘db4’ wavelet. The 

lower frequency narrow band obtained from wavelet 

decomposition has been used as the input for EMD 

rather than the original PQ signal.  On applying EMD, 

IMF components and residue (last IMF) are obtained. In 

this work, five single and multiple PQ issues each, 

along with normal signal have been worked upon. 

Results of three single and two multiple PQ 

disturbances, i.e.,  sag, swell, flicker, sag with 

harmonics, and swell with harmonics are presented in 

this subsection. 

 

 
Fig. 3 Flowchart of EMD. 

 

 
Fig. 4 Basic structure for classification of patterns into 

categories. 



Recognition of Multiple PQ Issues using Modified EMD and 

Neural Network Classifier Matrix 
… M. K. Saini and R. K. Beniwal 

 

Iranian Journal of Electrical & Electronic Engineering, Vol. 14, No. 2, June 2018 195 

 

   Three single PQ issues are here discussed, which are 

sag, swell and flicker. All these issues are shown in 

Fig. 5. Sag is dip in the voltage or current for a short 

duration, as shown in Fig. 5(a) which represents PQ 

signal with voltage sag of amplitude 0.7 p.u. Voltage 

sag signal has been decomposed using wavelet ‘db4’. 

The approximation and detail coefficients of the voltage 

sag signal have been shown in Fig. 6 corresponding to 

low frequency and high frequency bands. Among these 

narrow bands obtained from wavelet decomposition, 

low frequency part is selected for further empirical 

mode decomposition to analyse the primary frequency 

components of PQ signal. IMF components for low 

frequency component  
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 5 Power quality signals a) sag, b) swell, c) flicker, d) swell with harmonics and e) sag with harmonics. 
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are depicted in Fig. 7.  

   The portion specified by A in Fig. 7, represents the 

presence of sag in signal and B represents the posterior 

event. First IMF preserves the frequency and phase of 

signal, and the little change is observed during the 

occurrence and termination of sag. During the voltage 

sag, the voltage amplitude becomes 0.7 p.u. First IMF 

component contains the highest frequency information. 

It is clearly visible from the Fig. 7 that the frequency 

content gets reduced from first IMF component to last 

IMF component. The last component (fifth IMF) 

obtained from EMD process is known as residue. After 

residue, no mono-component is derived. Residue 

contains no important information about the signal. 

Hence, only (N-1) IMFs, i.e., four in the case of voltage 

sag signal, are useful for extracting the time-frequency 

information of PQ signal; N is the number of mono-

components obtained from EMD of sag signal and Nth 

mono-component is treated as residue.  

   For getting significant information about PQ issue in 

compact form, eight features mentioned in Table 2 have 

been computed from first four IMFs. There is also some 

remnant information of PQ issue in the high frequency 

component obtained from DWT. So, both components 

are used to provide various characteristic features of the 

signal. The same features have also been calculated 

from high frequency component of PQ signal. The 

feature vector formed is presented in Fig. 8. In this way, 

forty features have been computed for the voltage sag. 

These features form a feature vector as shown in Fig. 8, 

which has been used to train PNN for voltage sag. Next 

single disturbance presented is voltage swell. 

 

 

 
Fig. 6 Low and high frequency components of voltage sag. 

 

 
Fig. 7 IMF components and residue of low frequency component of voltage sag. 
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   Voltage swell signal of amplitude 1.3 has been 

generated as presented in Fig. 5(b). DWT has been 

applied on the swell signal using wavelet ‘db4’. The 

resultant low frequency and high frequency decomposed 

bands of the swell signal are represented by the 

approximation and detail coefficients, Fig. 9. Then, 

IMFs have been extracted from this low frequency 

component as given in Fig. 10.  

   EMD of low frequency band of swell signal has 

generated seven mono-components among which 

seventh mono-component is treated as residue. Like sag 

signal, same features have been computed from first 

four IMFs and from the higher frequency component of 

the swell signal. 

 

 

  
Fig. 8 Feature vector formed for voltage sag. 

 

 
Fig. 9 Low and high frequency components of voltage swell. 
 

 
Fig. 10 IMF components and residue of low frequency component of voltage swell. 
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   All these features collectively form the feature vector 

representing the unique swell signal for training the 

classifier. 

   Third single PQ issue is flicker which is the distortion 

in the magnitude, waveform and frequency of the 

voltage signal, as shown in Fig. 5(c). Flicker signal is 

decomposed into low frequency and high frequency 

bands using wavelet ‘db4’ which results into 

approximation and detail coefficients plotted in Fig. 11. 

The low frequency signal is further decomposed into 

IMFs using EMD as shown in Fig. 12. Flicker signal has 

six IMF other than one residue. Characteristic features 

have been extracted from first four IMFs and also from 

the high frequency band of the flicker signal to tap the 

high frequency information of flicker signal. 

   Multiple PQ issues represent the occurrence of more 

than one PQ disturbance simultaneously. Five multiple 

PQ disturbances, namely, sag with harmonics, swell 

with harmonics, interruption with harmonics, sag with 

flicker and swell with flicker have been worked upon 

according to the proposed technique of modified EMD. 

Sag with harmonics and swell with harmonics have 

been discussed here. Fig. 5(d) depicts PQ signal having 

harmonics of third and fifth order with swell. This PQ 

signal is first decomposed using wavelet ‘db4’ upto first 

level and the decomposed signals are shown in Fig. 13. 

   EMD has been carried out for the lower frequency 

band. Resultant IMF components for swell with 

harmonics are presented in Fig. 14. The first IMF 

component contains the highest frequency information 

and the last IMF, i.e., seventh IMF contains lowest 

frequency due to the subtraction of local mean from the 

signal during various iterations. The last component 

obtained from EMD process (residue) has no inherent 

information. The frequency content is very much high 

in first IMF. In similar fashion, characteristic features 

have been extracted from first four IMFs of low 

frequency component and from high frequency 

component of PQ signal. 

 

 
Fig. 11 Low and high frequency components of voltage flicker. 
 

 
Fig. 12 IMF components and residue of low frequency component of voltage flicker. 
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   Sag with harmonics is another major PQ issue that is 

simulated as in Fig. 5(e). Harmonics of third and fifth 

order occurs simultaneously with sag. ‘db4’ wavelet has 

been used for decomposing PQ signal into low and high 

frequency bands to further apply EMD on low 

frequency band. Fig. 15 presents the approximation and 

detail coefficients of PQ signal showing the low and 

high frequency component of PQ signal respectively. 

EMD of low frequency band of sag with harmonics 

signal has generated seven IMFs and one residue, that 

does not signify any information about the PQ issue. 

Characteristic features have been computed from first 

four IMFs (as more significant information lies in initial 

IMFs of the PQ signal), given in Fig. 16, and the high 

frequency band of PQ signal. 

 

 
Fig. 13 Low frequency and high frequency components of swell with harmonics. 
 

 
Fig. 14 IMF components and residue of low frequency component of voltage swell with harmonics. 
 

 
Fig. 15 Low frequency and high frequency components of sag with harmonics. 
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Fig. 16 IMF components and residue of low frequency component of voltage sag with harmonics. 

 

   Feature vector has been formed corresponding to all 

the samples of PQ issues. These feature vectors have 

been used for training PNN for classification of both 

single and multiple PQ issues. 

 

4.3 Classification of PQ Issues using PNN 

   PNN classifier is proposed for classification of single 

and multiple PQ issues. For classification, eleven 

classes for ten different PQ issues and normal signal are 

defined and these classes are such that C1 represents 

normal, C2 represents sag, C3 represents swell, C4 

represents interruption, C5 represents harmonics, C6 

represents flicker, C7 represents sag with harmonics, C8 

represents swell with harmonics, C9 represents 

interruption with harmonics, C10 represents sag with 

flicker and C11 represents swell with flicker. Feature 

vectors obtained for some randomly selected 

disturbance samples corresponding to each PQ issue 

have been utilized for training PNN. Spread constant of 

PNN has been selected randomly to achieve good 

classification accuracy. Classification performance of 

trained PNN has been evaluated by using randomly 

selected 50% samples of PQ issues as the test samples.  

   The classification accuracy of PNN corresponding to 

all PQ issues has been presented in Table 3. The 

effectiveness of proposed classifier has been 

investigated for noisy PQ signals also. For this purpose, 

uniform Gaussian noise has been added to PQ signals at 

different SNR level. The classification accuracy for PQ 

signals having SNR of 20 dB, 30 dB and 40 dB has 

been presented in Table 3. The classification 

performance of PNN has been compared with that of 

support vector machine (SVM) using Gaussian kernel. 

SVM has also been used for the classification of all PQ 

issues, in both the cases, i.e., noiseless and noisy PQ 

signals. Though, both PNN and SVM are based on 

Gaussian function; in the case of PQ issue classification, 

PNN outperforms SVM in this work due to high-

dimensional set of features. SVM has shown average 

97.58% accuracy in recognition of noiseless PQ signals. 

PNN has resulted into average accuracy of 99.64% for 

noiseless PQ signals. As the SNR of PQ signal 

decreases, recognition accuracy decreases for both the 

classifiers. SVM and PNN give 91.09% and 93.25% 

accuracy respectively for SNR of 20 dB.  

   The classification accuracy obtained with the 

proposed work has been compared with some state-of-

the-art techniques in the same field of PQ issues 

recognition in Table 4. Table 4 illustrates the 

classification accuracy of other established techniques 

compared with our proposed technique particularly for 

noiseless PQ signals. These results focus on the better 

performance of the proposed technique for the 

classification of PQ issues. 

 

5 Conclusions 

   This paper presents the application of modified EMD 

for the analysis of single and multiple PQ issues which 

are nonlinear and non-stationary. Various types of 

single and multiple PQ issues such as sag, swell, 

interruption, harmonics, flicker, sag with harmonics, 

swell with harmonics, interruption with harmonics, sag 

with flicker and swell with flicker have been considered 

in this work for automatic classification. For the 

detection of these PQ issues, a signal processing 

technique, modified EMD has been proposed which has 

DWT preceding traditional EMD. DWT has been 

applied on PQ signal to split the signal into low and 

high frequency components. EMD of low frequency 

component has been carried out producing certain IMFs 

which represents the oscillatory modes of PQ signal. To 

extract distinctive information from IMFs, eight 

characteristic features are extracted from first four 

IMFs.  High frequency component has also been used 

for the feature extraction. These extracted features are 

used to train PNN classifier and further test the 

classification performance of PNN classifier into eleven 

classes of PQ issues including normal voltage signal. 
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PNN has remarkably performed the classification of PQ 

signals even with varying levels of noise. The 

performance of proposed method is compared with 

SVM classifier; the results of PNN highlight the 

outperformance of PNN over SVM.  

   The current study has tried to implement a signal 

decomposition technique (EMD) for the detection of PQ 

anomalies and a neural network for their classification 

of PQ anomalies. Further, the work can be extended by 

using optimization techniques for having more suitable 

features for the classification process. The proposed 

method is in the process of being tested on the real time 

PQ issues caused by different faults in the power 

system. 
 

Table 3 Performance comparison of PNN and SVM under different SNR. 

Issue Class 
PQ Issue SVM  PNN 

 Noiseless 40 dB 30 dB 20 dB  Noiseless 40 dB 30 dB 20 dB 

C1  Normal 100 97.7 96.4 91.2  100 97.8 97.5 92.2 

C2  Sag 99.1 98.4 97.3 90.6  99.9 98.6 96.6 94.2 

C3  Swell 99.2 98.1 96.3 90.1  99.8 98.5 97.3 95.1 

C4 Interruption 99.8 96.7 95.4 91.1  99.9 97.1 96.9 93.5 

C5 Harmonics 97.5 96.1 95.2 90.1  99.8 96.8 95.7 92.4 

C6 Flicker 97.2 96.4 94.1 91.5  99.9 97.6 95.5 93.8 

C7 Sag with Harmonics 96.9 95.8 93.2 91.3  99.7 97.4 95.1 92.9 

C8 
Swell with 

Harmonics 
96.2 95.1 93.1 90.4  99.6 96.4 94.8 92.5 

C9 
Interruptions with 

Harmonics 
96.9 95.8 94.2 92.7  98.8 96.9 95.1 93.9 

C10 Sag with Flicker 95.4 94.8 93.2 91.7  99.2 95.9 94.7 92.5 

C11 Swell with Flicker 95.2 94.7 92.2 91.3  99.4 95.2 93.1 92.8 

Average Accuracy 97.58 96.33 94.60 91.09  99.64 97.11 95.66 93.25 
 

Table 4 PQ issue classification performance of other state-of-the-art techniques. 

   Ref. Feature Extraction Classifier No. of PQ issue 
Classification 

Accuracy (%) 

[30] S-Transform  MPNN 6 96.17 

  SVM 6 97.67 

[31] Wavelet Packet Transform SVM 8 98.33 

[8] Tunable-Q  Wavelet Transform Dual Multiclass SVM 14 98.78 

[29] Hilbert Huang Transform PNN 1 98.63 

Proposed 

method 
DWT and EMD PNN 11 99.64 
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