Showing 11 results for Los
S. Mohammadi, A. Bebamzadeh,
Volume 4, Issue 4 (12-2006)
Abstract
Explosion has always been regarded as one of the most complicated engineering
problems. As a result, many engineers have preferred rather simplified empirical approaches in
comparison to extremely complex deterministic analyses. In this paper, however, a numerical
simulation based on the combined finite/discrete element methodology is presented for analyzing the
dynamic behavior of fracturing rock masses in blasting. A finite element discretization of discrete
elements allows for complex shapes of fully deformable discrete elements with geometric and
material nonlinearities to be considered. Only a Rankine strain softening plasticity model is
employed, which is suitable for rock and other brittle materials. Creation of new lines/edges/bodies
from fracturing and fragmentation of original objects is systematically considered in the proposed
gas-solid interaction flow model. An equation of state is adopted to inexpensively calculate the
pressure of the detonation gas in closed form. The model employed for the flow of detonation gas
has resulted in a logical algorithmic procedure for the evaluation of spatial distribution of the
pressure of detonation gas, work done by the expanding gas and the total mass of the detonation gas
as functions of time indicating the ability of model to respond to changes in both the mass of
explosive charge and the size of the solid block undergoing fracture. Rock blasting and demolition
problems are amongst the engineering applications that are expected to benefit directly from the
present development. The results of this study may also be used to provide some numerical based
reliable solutions for the complex analysis of structures subjected to explosive loadings.
R. Abbasnia, M. Kanzadi, M. Shekarchi Zadeh, J. Ahmadi,
Volume 7, Issue 2 (6-2009)
Abstract
Drying shrinkage in concrete, which is caused by drying and the associated decrease in moisture content, is
one of the most important parameters which affects the performance of concrete structures. Therefore, it is necessary
to develop experimental and mathematical models that describe the mechanisms of drying shrinkage and damage build
up in concrete. The main objective of this research is the development of a computational model and an experimental
method for evaluation of concrete free shrinkage strain based on the internal moisture changes. For this purpose and
for modeling of moisture losses in concrete members a computational program based on finite element approach and
the modified version of Fick's second law in which the process of diffusion and convection due to water movement are
taken into account, is developed. Also the modified SDB moisture meter was used to measure the internal moisture
changes in concrete. Based on the obtained results, calculated humidity is in good agreement with measured data when
modified Fick's second law with diffusion coefficient from Bazant method were used, and are very reasonable for
determining the moisture gradient. Also, the predicted value of shrinkage strain from the proposed method is in good
agreement with measured data and also the established relationship can be used for determine the distribution of
shrinkage strains in concrete members.
M.a. Goudarzi, S.r. Sabbagh-Yazdi,
Volume 7, Issue 3 (9-2009)
Abstract
The main objective of this article is evaluation of the simplified models which have been developed for
analysis and design of liquid storage tanks. The empirical formulas of these models for predicting Maximum Sloshing
Wave Height (MSWH) are obtained from Mass Spring Models (MSM). A Finite Element Modeling (FEM) tool is used
for investigating the behavior the some selected liquid storage tanks under available earthquake excitations. First, the
results of FEM tool are verified by analyzing a liquid storage tank for which theoretical solution and experimental
measurements are readily available. Then, numerical investigations are performed on three vertical, cylindrical tanks
with different ratios of Height to Radius (H/R=2.6, 1.0 and 0.3). The behaviors of the tanks are initially evaluated using
modal under some available earthquake excitations with various vibration frequency characteristics. The FEM results
of modal analysis, in terms of natural periods of sloshing and impulsive modes period, are compared with those
obtained from the simplified MSM formulas. Using the time history of utilized earthquake excitations, the results of
response-history FEM analysis (including base shear force, global overturning moment and maximum wave height)
are compared with those calculated using simplified MSM formulations. For most of the cases, the MSWH results
computed from the time history FEM analysis demonstrate good agreements with the simplified MSM. However, the
simplified MSM doesn’t always provide accurate results for conventionally constructed tanks. In some cases, up to
30%, 35% and 70% average differences between the results of FEM and corresponding MSM are calculated for the
base shear force, overturning moment and MSWH, respectively.
F. Hajivalie, A. Yeganeh Bakhtiary,
Volume 9, Issue 1 (3-2011)
Abstract
In this paper, a two-dimensional Reynolds Averaged Navier-Stokes (RANS) model is developed to simulate the shoaling, breaking and overtopping of a solitary wave over a vertical breakwater. Turbulence intensity is described by using a k turbulence closure model and the free surface configuration is tracked by Volume Of Fluid (VOF) technique. To validate the numerical model the simulation results is compared with the Xie (1981) experimental data and a very good agreement between them is observed. The results revealed that wave height and wave energy decrease considerably during the reflection from vertical wall, which illustrates a considerable energy lost during the impaction and wave overtopping process. The turbulence production during the broken wave interaction with vertical breakwater is very significant consequently the vertical breakwater undergoes sever turbulent and dynamic drag force.
M. Davoodii, M. K. Jafari, S. M. A. Sadrolddini,
Volume 11, Issue 1 (5-2013)
Abstract
Spatial Variation of Earthquake Ground Motion (SVEGM) is clearly indicated in data recorded at dense seismographic arrays
The main purpose of this paper is to study the influence of SVEGM on the seismic response of large embankment dams. To this
end, the Masjed Soleyman embankment dam, constructed in Iran is selected as a numerical example. The spatially varying ground
motion time histories are generated using spectral representation method. According to this methodology, the generated time
histories are compatible with prescribed response spectra and reflect the wave passage and loss of coherence effects. To
investigate the sensitivity of the dam responses to the degree of incoherency, three different coherency models are used to simulate
spatially variable seismic ground motions. Finally, the seismic response of the dam under multi-support excitation is analyzed
and compared to that due to uniform ground motion. Also, the Newmark's method is used to estimate seismic-induced permanent
displacements of the embankment dam. The analysis results reveal that the dam responses can be sensitive to the assumed spatial
variation of ground motion along its base. As a general trend, it is concluded that the use of multi-support excitation, which is
more realistic assumption, results in lower acceleration and displacement responses than those due to uniform excitation.
M. Heidarzadeh, A.a. Mirghasemi, S. M. Sadr Lahijani, F. Eslamian,
Volume 11, Issue 1 (5-2013)
Abstract
In a rare engineering experience throughout the world, we successfully stabilized relatively coarse materials of drain using
cement grouting. The grouting work was performed at the Karkheh earth dam, southwest Iran, and was part of the efforts to
extend the dam’s cut-off wall. Since the dam was completed, the execution of the new cut-off wall from the dam crest was
inevitable. Hence, one of the main difficulties associated with the development of the new cut-off wall was trenching and execution
of plastic-concrete wall through the relatively coarse materials of drain in the dam body. Due to high permeability of drain, the
work was associated with the possible risk of excessive slurry loss which could result in the collapse of the trench. In order to
achieve an appropriate grouting plan and to determine the mix ratio for the grouting material, a full-scale test platform consisting
of actual drain materials was constructed and underwent various tests. Results of the testing program revealed that a grouting
plan with at least 2 grouting rows and a Water/Cement mix ratio of 1/ (1.5-2) can successfully stabilize the drain materials. After
finalizing the technical characteristics of the grouting work, the method was applied on the drain materials of the Karkheh dam
body. The results were satisfactory and the drain materials were stabilized successfully so that the cut-off wall was executed
without any technical problem.
R. Prasanna Kumar, G. Dhinakaran,
Volume 11, Issue 1 (3-2013)
Abstract
Delay is one of the principal measures of performance used to determine the Level of Service (LOS) at signalized intersections
and several methods have been widely used to estimate vehicular delay. Very few studies only have been carried out to estimate
delay at signalized intersections under mixed traffic conditions prevailing in developing countries like India. In the present study,
various problems associated with delay estimation under mixed traffic conditions in a developing country (India) and the methods
to over come them were discussed and an attempt was made to improve the accuracy estimating the same. Five isolated signalized
intersections from a fast developing industrial city located in TamilNadu, India were chosen for the study. Site specific PCU
values were developed considering the static and dynamic characteristics of vehicles. Saturation flow was also directly measured
in the field for the prevailing roadway, traffic and signalized conditions and expressed in PCU/h. Control delay was also
measured following HCM 2000 guidelines. Later, this was compared with that estimated from the theoretical delay model. Even
after taking several measures, good correlation between observed and predicted delay could not be obtained. Therefore, in the
present scenario field measured control delay was taken into account to define LOS. A new criteria for Indian cities recently
published in the literature was used to assign LOS grades of study intersections and found to be better reflecting the field
conditions.
M. S. Lee, T. S. Seo,
Volume 12, Issue 1 (3-2014)
Abstract
Because thin plate reinforced concrete members such as walls and slabs are greatly influenced by the drying shrinkage, cracks can occur in these members due to the restraint of the volume change caused by drying shrinkage. Therefore, the control of cracking due to drying shrinkage is very important in building construction that the thin plate members are frequently used. However, few researches of estimating shrinkage cracking in RC walls have been executed, and the cracking control design of RC walls has been conducted based on the experience rather than the quantitative design method.
In this study, the practical cracking prediction method using equivalent bond-loss length Lb was proposed for the quantitative drying shrinkage crack control of RC wall. The calculated values using proposed method were compared with the experimental results from uniaxial restrained shrinkage cracking specimens and the investigative values from the field study. In general, the results of this method were close to those of the experiment and the field study.
H. B. Ozmen, M. Inel, S. M. Senel, A. H. Kayhan,
Volume 13, Issue 1 (3-2015)
Abstract
Seismic performance and loss assessment studies for stock of buildings are generally based on representative models due to extremely large number of vulnerable buildings. The main problem is the proper reflection of the building stock characteristics well enough by limited number of representative models. This study aims to provide statistical information of structural parameters of Turkish building stock for proper modeling using a detailed inventory study including 475 low and mid-rise RC building with 40351 columns and 3128 beams for member properties. Thirty-five different parameters of existing low and mid-rise Turkish RC building stock are investigated. An example application is given to express use of given statistical information. The outcomes of the current study and previous studies are compared. The comparison shows that the previous studies have guidance for limited number of parameters while the current study provides considerably wide variety of structural and member parameters for proper modeling.
M.d. Martinez Aires, M. Lopez Alonso, E. Jadraque Gago, R. Pacheco-Torres,
Volume 13, Issue 2 (6-2015)
Abstract
Workers who carry out manual rebar tying tasks are exposed to muscular-skeletal injuries associated with the use of manual tools and the movements associated with them (force, repetitiveness and awkward wrist postures). This paper presents a background on musculoskeletal injuries directly linked to manual and mechanical rebar tying method is conducted.
The objective of this study is to compare the traditional manual rebar tying method to the innovative mechanical technique. The methodology carried out follows a qualitative and a quantitative analysis of both processes. Firstly, a qualitative analysis is performed by semi-structured interviews to workers. Secondly, a quantitative study is carried out in the region of Andalusia (Spain). This field study includes on-site measurements of lengths of time activities. According to the methodology developed by the International Labour Organization, the work timing is calculated and a comparison is given.
Results state that the operators adapt without difficulty to the mechanical method and it could result in better performance, whilst reducing some of the risks deriving from the manual tying technique.
Yeon Yeu, Youngseok Kim, Dongwook Kim,
Volume 14, Issue 7 (10-2016)
Abstract
Pile penetration and rebound amount measurements during pile driving are important in analysis of penetration and bearing characteristics of piles and for assurance of pile installation quality. Traditional manual measurement of penetration and rebound of piles exposes engineers under unfavorable environment of injury risk and significant vibration and noise. To improve accuracy of pile penetration and rebound measurements and to ensure safety of engineers during pile driving, the close-range photogrammetry approach was implemented. For the track of three-dimensional spatial information of one point on the pile during driving, a series of stereo pair images of the point attached on a pile is required using more than two camera systems at different locations. In this study, two charge coupled device cameras were used to obtain stereo images. Robust measurements and reliable results can be guaranteed by the constrained geometry of close-range photogrammetry. From the field implementation, it was found that the newly developed pile penetration and rebound measurement system is accurate and safe.