Search published articles


Showing 3 results for Yield

Amir Hamidi, S. Mohsen Haeri,
Volume 6, Issue 3 (9-2008)
Abstract

The deformation and stiffness characteristics of a cemented gravely sand was investigated using triaxial equipment. The triaxial tests were conducted in both dry and saturated undrained conditions. Artificially cemented samples are prepared using gypsum plaster as the cementing agent. The plaster was mixed with the base soil at the weight percentages of 1.5, 3, 4.5 and 6. The applied confining pressure varied between 25 to 500 kPa in triaxial tests. The process of yielding of the soil was investigated for the considered soil and the bond and final yield points were identified for the cemented soil with different cement contents. The variations of deformation and stiffness parameters with cement content and confining stress were studied as well. Some of the parameters were determined for both drained and undrained conditions to investigate the effect of drainage condition on the stiffness and yield characteristics of the tested cemented gravely sand. According to the results, the difference between drained and undrained tangent stiffness decreases with increase in confining stress. Finally the effect of cement type was investigated as an important parameter affecting the stiffness at bond yield. The rate of increase in tangent stiffness at bond yield changes with cement content for different cementing agents.
M.d. Martinez Aires, M. Lopez Alonso, E. Jadraque Gago, R. Pacheco-Torres,
Volume 13, Issue 2 (6-2015)
Abstract

Workers who carry out manual rebar tying tasks are exposed to muscular-skeletal injuries associated with the use of manual tools and the movements associated with them (force, repetitiveness and awkward wrist postures). This paper presents a background on musculoskeletal injuries directly linked to manual and mechanical rebar tying method is conducted. The objective of this study is to compare the traditional manual rebar tying method to the innovative mechanical technique. The methodology carried out follows a qualitative and a quantitative analysis of both processes. Firstly, a qualitative analysis is performed by semi-structured interviews to workers. Secondly, a quantitative study is carried out in the region of Andalusia (Spain). This field study includes on-site measurements of lengths of time activities. According to the methodology developed by the International Labour Organization, the work timing is calculated and a comparison is given. Results state that the operators adapt without difficulty to the mechanical method and it could result in better performance, whilst reducing some of the risks deriving from the manual tying technique.
Saeid Sabouri-Ghomi, Barash Payandehjoo,
Volume 15, Issue 1 (1-2017)
Abstract

Abstract The Drawer Bracing System (DBS) is a ductile bracing system that is developed to enhance the seismic performance of braced frames. The system is composed of three parallel plates that are attached together via transfer plates at right angle. Seismic energy is dissipated through the formation of flexural plastic hinges at the two ends of the transfer plates. The parallel plates must have adequate strength and stiffness to prevent global buckling and to remain elastic while transferring forces to transfer plates. Height, width, thickness and the number of the transfer plates may be varied to achieve the desired strength and stiffness of the system. In contrast to common bracing systems, the main advantage of a DBS is the conversion of the axial forces to flexural moments in the dissipating elements. In the present paper, the nonlinear shear response of the DBS is predicted via closed-form formulas for calculation of strength, stiffness and post-yield behavior of the system. These formulations are based on both experimental observations and theoretical analysis. The calculated force-displacement backbone curve is verified to be a very good approximation for predicting the nonlinear shear response of the system.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb