Showing 20 results for Simulation
A. Ardeshir,
Volume 2, Issue 1 (3-2004)
Abstract
In this research a mathematical model was developed to study bed elevation variation of alluvial rivers. It utilizes two principal modules of hydraulics and sediment transport for simulation purposes. SDAR (Scour and Deposition model of Alluvial Rivers) is a new model with both one and semi-two dimensional (S-2D) computational schemes. It is regarded S-2D in a sence that lateral variation of velocity, hydraulic stresses, and geometrical specifications are achieved by dividing the main channel into serveral stream tubes. In order to overcome the existing limitations, a new idea of reachwise stream tube concept was also introduced. This allows to include branch connections and withdrawal points across the tube barriers. Sediment routing and bed variation calculations are accomplished along each river strip desigated by virtual interfaces of the tubes. Presently, quasi-steady gradually varied flows are processed by the model. It should also be emphasised that this version is only valid for alluvial rivers composed of noncohesive bed material. To assess the model, several river cases and laboratory data base were used. During calibration runs, the ability of model in longitudinal and transversal bed profile simulation and armor layer development predection were especially detected. Results of simulation are also compared with the results of well-known models, e.g. HEC-6, GSTARS-2, and FLUVIAL-I2. It was found that the ability of model in simulating bed variation is noticeably increased when S-2D concept is introduced. Indeed, the comparative validity tests confirm SDAR"s promising functioning in facing with complex real engineering cases. Obviously more article discussions would bring oppurtunities to demonestrate it"s technical cappabilities profoundaly.
Sabagh Yazdi S.r., Mohammad Zadeh Qomi M.,
Volume 2, Issue 2 (6-2004)
Abstract
A numerical model is introduced for solution of shallow water flow equations with negligible physical dissipations due to canal roughness and turbulence effects. Two-dimensional velocity distribution and water depth of the flow field are computed by solving the depth average equations of continuity and motion. The equations are converted to discrete form using cell vertexfinite volume method on triangular unstructured mesh. The formulation of the added numericalviscosity is chosen in such a way that preserves the accuracy of numerical results. The accuracy ofthe model is assessed by computing the challenging case of inviscid frictionless flow in a canal with a 1800 bend. The computed results are compared with analytical solution which is obtainedfrom potential flow theory. Simulation of frictionless free surface flow in a constant width meandering sinusoidal canal is considered as an application of the model. The algorithm produced encouraging results.
N. Adamko, V. Klima, P. Marton,
Volume 8, Issue 1 (3-2010)
Abstract
Railway service terminals are the places of a railway network usually equipped with costly technology based
on highly complicated technological procedures demanding a high degree of coordination and control skills. Design
of these systems and the organization of their operation should facilitate reaching to the required capacity together
with high quality of service processes as well as minimal costs of resources. Due to the complexity of such systems, a
simulation model seems to be the only suitable tool for performing investigations under realistic conditions. The paper
focuses on the possible utilization of simulation methods to support the design and optimisation of infrastructure,
operation, and process control algorithms in railway terminals. The paper also deals with the most important
properties and possibilities offered by the simulation tool Villon and comments on the experience gained during its
utilization. The tool supports tactical (mid-term) and strategic (long-term) planning usually related to infrastructural
or operational proposals which are supposed to guarantee the optimal (or at least effective) behaviour of the modelled
terminal.
D. P. Chen, C. X. Qian, C. L. Liu,
Volume 8, Issue 4 (12-2010)
Abstract
Concrete deformation due to temperature and moisture condition will always develop simultaneously and interactively. The environmentally (hygral and thermally) induced stress and deformation are essential to concrete durability. To simulate the deformation of concrete caused by the coupling effect of temperature and moisture, a numerical simulation approach is proposed comprising analytical process and finite element analysis is proposed based on the mechanism of heat and moisture transfer in porous medium. In analytical method, Laplace transformation and transfer function were used to simplify and solve the coupled partial differential equations of heat and moisture transfer. The hygro-thermal deformation of concrete is numerically simulated by finite element method (FEM) based on the obtained temperature and moisture stress transformed from the solved moisture distribution. This numerical simulation approach avoids the complex eigenvalues, coupling difficulty and low accuracy in other solving method, and also effectively calculates the moisture induced shrinkage which is almost impossible using familiar FEM software. Furthermore, a software named Combined Temperature and Moisture Simulation System for concrete (CTMSoft) was represented and developed by a mix programming of Visual Basic, Matlab and ANSYS. CTMSoft provided a simple and more intuitive interface between user and computer by providing a graphical user interface (GUI). The validity of the numerical simulation approach was verified by two cases analysis.
Kabir Sadeghi,
Volume 9, Issue 3 (9-2011)
Abstract
An energy based damage index based on a new nonlinear Finite element (FE) approach applicable to RC structures subjected to cyclic, earthquake or monotonic loading is proposed. The proposed method is based on the evaluation of nonlinear local degradation of materials and taking into account of the pseudo-plastic hinge produced in the critical sections of the structure. A computer program is developed, considering local behavior of confined and unconfined concretes and steel elements and also global behavior and damage of reinforced concrete structures under cyclic loading. The segments located between the pseudoplastic hinges at critical sections and the inflection points are selected as base-models through simulation by the proposed FE method. The proposed damage index is based on an energy analysis method considering the primary half-cycles energy absorbed by the structure during loading. The total primary half-cycles absorbed energy to failure is used as normalizing factor. By using the proposed nonlinear analytical approach, the structure's force-displacement data are determined. The damage index is then calculated and is compared with the allowable value. This damage index is an efficient means for deciding whether to repair or demolish structures after an earthquake. It is also useful in the design of new structures as a design parameter for an acceptable limit of damage defined by building codes. The proposed approach and damage index are validated by results of tests carried out on reinforced concrete columns subjected to cyclic biaxial bending with axial force.
M. Karamouz, M. Fallahi, S. Nazif, M. Rahimi Farahani,
Volume 10, Issue 4 (12-2012)
Abstract
Runoff simulation is a vital issue in water resource planning and management. Various models with different levels of accuracy
and precision are developed for this purpose considering various prediction time scales. In this paper, two models of IHACRES
(Identification of unit Hydrographs And Component flows from Rainfall, Evaporation and Streamflow data) and ANN (Artificial
Neural Network) models are developed and compared for long term runoff simulation in the south eastern part of Iran. These
models have been utilized to simulate5-month runoff in the wet period of December-April. In IHACRES application, first the
rainfall is predicted using climatic signals and then transformed to runoff. For this purpose, the daily precipitation is downscaled
by two models of SDSM (Statistical Downscaling Model) and LARS-WG (Long Ashton Research Station-Weather Generator). The
best results of these models are selected as IHACRES model input for simulating of runoff. In application of the ANN model,
effective large scale signals of SLP(Sea Level Pressure), SST(Sea Surface Temperature), DSLP and runoff are considered as model
inputs for the study region. The performances of the considered models in real time planning of water resources is evaluated by
comparing simulated runoff with observed data and through SWSI(Surface Water Scarcity Index) drought index calculation.
According to the results, the IHACRES model outperformed ANN in simulating runoff in the study area, and its results are more
likely to be comparable with the observed values and therefore, could be employed with more certainty.
F. Nasirzadeh, M. Khanzadi, A. Afshar, S. Howick,
Volume 11, Issue 1 (3-2013)
Abstract
This research presents a dynamic mathematical system for modeling and simulating the quality management process in
construction projects. Through sets of cause and effect feedback loops, all factors that internally and externally affect the
quality management process are addressed. The proposed system integrates fuzzy logic with system dynamics simulation
scheme to consider the uncertainties associated with the model parameters and estimation of the extra cost and time due to
quality defects. Quantification of the consequences of the quality failures is performed based on the α-cut representation of
fuzzy numbers and interval analysis. The proposed approach is efficient in modeling and analyzing a quality management
process which is complex and dynamic in nature and involves various uncertainties. The proposed approach is implemented
in a real submarine water supply pipe line project in order to evaluate its applicability and performance. The negative impacts
resulting from quality failures are simulated. These negative impacts are mitigated by the implementation of alternative
solutions.
R. Jamshidi Chenari, P. Pishgah ,
Volume 12, Issue 2 (4-2014)
Abstract
In this technical note, a methodology is introduced for reliability calculation of consolidation settlement based on cone
penetration test (CPT) data. The present study considers inherent soil variability which influences consolidation settlements
results. To proceed reliability analysis, the measured data of a sample corrected cone tip resistance () is detrended using a
quadratic trend and the residuals are assumed to be lognormally distributed random field. Realizations of is generated by
using spatial variability of residuals including standard deviation and the scale of fluctuation. The quadratic trend and the
generated residuals are then combined to correlate shear and bulk modulus as input consolidation properties for coupled
analysis and subsequently consolidation settlement was calculated by using finite difference method adopted in Monte Carlo
simulations. The results of reliability analysis are presented describing the range of possible settlements by considering
characteristics of uncertainties involved at the particular site. Number of realizations rendering settlements smaller than the
allowable settlement must be such that guarantee proper performance or acceptable reliability index.
K. Sadeghi,
Volume 12, Issue 3 (9-2014)
Abstract
An analytical nonlinear stress-strain model and a microscopic damage index for confined and unconfined concretes together with a macroscopic damage index for reinforced concrete (RC) structures under cyclic loading are proposed. In order to eliminate the problem of scale effect, an adjustable finite element computer program was generated to simulate RC structures subjected to cyclic loading. By comparing the simulated and experimental results of tests on the full-scale structural members and concrete cylindrical samples, the proposed stress-strain model for confined and unconfined concretes under cyclic loading was accordingly modified and then validated.
The proposed model has a strong mathematical structure and can readily be adapted to achieve a higher degree of precision by modifying the relevant coefficients based on more precise tests.
To apply the proposed damage indices at the microscopic and macroscopic levels, respectively, stress-strain data of finite elements (confined and unconfined concrete elements) and moment-curvature data of critical section are employed. The proposed microscopic damage index can easily be calculated by using the proposed simple analytic nonlinear stress-strain model for confined and unconfined concretes. The proposed macroscopic damage index is based on the evaluation of nonlinear local degradation of materials and taking into account the pseudo-plastic hinge produced in the critical section of the structural element. One of the advantages of the macroscopic damage index is that the moment-curvature data of the critical section is sufficient in itself and there is no need to obtain the force-displacement data of the structural member.
M. Heidarzadeh, A. A. Mirghasemi, H. Niroomand,
Volume 13, Issue 1 (3-2015)
Abstract
We report engineering experiences from the critical task of relief well installation under high artesian flow conditions at the downstream toe of the Karkheh earth dam, Iran. Due to the establishment of excessive uplift pressure at the downstream toe of the Karkheh dam, installation of a series of new relief wells was considered to permanently relieve part of these pressures. The mentioned uplift pressure, as high as around 30 m above the ground level, was produced in a confined conglomerate aquifer bounded above and below by relatively impervious mudstone layers which reduced the safety factor of the dam toe to below 1.0. Investigations on the shortcomings of the old relief wells installed at the dam site showed that the main problems were: insufficient well numbers, insufficient well diameters, irregular well screens causing their blockage by time passing, and insufficient total opening area. Despite engineering difficulties and associated risk of downstream toe instability, installation of new relief wells was successfully completed under high artesian flow conditions” was successfully completed. The employed technique for the construction of the new relief wells under flowing artesian conditions was based on: 1) cement grouting and casing of the well, 2) telescopic drilling, 3) application of appropriate drilling fluid, and 4) controlling the artesian flow by adding a long vertical pipe to the top of the relief wells. Numerical modeling of seepage for the Karkheh dam foundation showed that, as a result of the installation of the new relief wells, the safety factor of the downstream toe increased to the safe value of 1.3 for the normal reservoir water level.
Changjie Xu, Yuanlei Xu, Honglei Sun,
Volume 13, Issue 2 (6-2015)
Abstract
In soft soil areas, equal-length piles are often adopted in the retaining system. A decrease in the bending moment value borne by the retaining structure along the pile depth (below the excavation bottom), leads to an inadequate use of the pile bending capacity near the pile bottom. This paper presents retaining systems with long and short pile combinations, in which the long piles ensure integral stability of the excavation while the short piles give full play to bearing the bending moment. For further analysis on pile and bottom heaves deformations and inner-force characteristics, three-dimensional models were built in order to simulate the stage construction of the excavation. The ratio between long and short pile numbers, and the effects on short pile length pile horizontal deformation, pile bending moment and bottom heave are investigated in detail. In the end, a feasible long-short pile combination is established. Obtained results from the simulation data and the field data prove that the long-short pile retaining system is feasible.
D.p. Chen, C.w. Miao, J.p. Liu, M.s. Tang,
Volume 13, Issue 3 (9-2015)
Abstract
This paper presents theoretical and numerical state-of-the-art information in the field of hygro-thermo-mechanical
deformation simulation in structural concrete. The aspects discussed include coupled hygro-thermo-mechanical performance
of porous materials including concrete, multi-scale simulation of concrete properties especially the volumetric and structural
deformation performance, and the multi-scale simulation of concrete under the coupling effect of multi-physics fields. The
multi-scale simulation section includes the multi-scale simulation of composition and structure in concrete, the multi-scale
simulation of concrete’s mechanical performance, and the multi-scale simulation of durability concerned performance of
concrete. This paper presents an overview of the work, of which data from early 80 recent studies, carried out on the multiscale
simulation of hygro-thermo-mechanical deformation performance of structural concrete. The relating previous studies
and analysis showed that sufficient data have been obtained to give confidence in simulating hygro-thermo-mechanical
performance of concrete based on the theory of heat and mass transfer in porous media, and the clear relationships have been
obtained between moisture-heat transfer and hygro-thermal distribution at different scale. It is necessary to make further
systematic multi-scale research on the relationship between micro-structure and property parameters of cement paste, threephase
basic properties at meso level of concrete and the performance of concrete structures, which makes important practical
significance to solve the crack of large-area and mass concrete structure and improve the durability of concrete structures
R. Abbasnia, M. Aslami,
Volume 13, Issue 3 (9-2015)
Abstract
A new model is proposed for two-dimensional simulation of the concrete fracture in compression. The model generated by
using the Voronoi diagram method and with considering random shape and distribution of full graded aggregates at the
mesoscopic level. The aggregates modeled by combining irregular polygons, which then is placed into the concrete with no
intersection between them. By this new modeling approach, the simulation of high-strength concretes with possible aggregates
fracture is also feasible. After generation of the geometrical model, a coupled explicit discrete element method and a modified
rigid body spring model have been used for solution. In this method, all the neighboring elements are connected by springs.
The mortar springs have Elasto-plastic behavior and considering normal concrete, the aggregate springs behave only
elastically without any fracture. The proposed model can accurately predict the mechanical behavior of concrete under
compression for small and large deformations both descriptively and quantitatively
Shuai Li, Jian-Min Zhang, Wei-Lin Xu, Jian-Gang Chen, Yong Peng, Jun-Ning Li, Xiao-Long He,
Volume 14, Issue 1 (1-2016)
Abstract
The cavitation erosion induced by high flow velocities is very prominent in high head and large unit discharge tunnel. Air entrainment is an effective technology to solve this problem. In this study, numerical simulation and physical model test are applied to the comparative study of air-water flows on bottom and lateral aerator in tunnel. The flow pattern, aeration cavity, air concentration and pressure distribution were obtained and there is a close agreement between the numerical and physical model values. The hydraulic characteristic and aeration effect of anti-arc section are analyzed. The results indicated that added lateral aeration facilities on 1# and 2# aerator can weaken backwater and increase the length of the bottom cavity, but it is limited to improve the air concentration and protect sidewall downstream of the ogee section. Air concentration improved on side walls downstream of anti-arc section when added lateral aeration facility on 3# aerator. The black water triangle zone disappeared and the floor and side walls well protected.
Kabir Sadeghi,
Volume 14, Issue 5 (7-2016)
Abstract
A fast converging and fairly accurate nonlinear simulation method to assess the behavior of reinforced concrete columns subjected to static oriented pushover force and axial loading (sections under biaxial bending moment and axial loading) is proposed. In the proposed method, the sections of column are discretized into “Variable Oblique Finite Elements” (VOFE). By applying the proposed oblique discretization method, the time of calculation is significantly decreased and since VOFE are always parallel to neutral axis, a uniform stress distribution along each oblique element is established. Consequently, the variations of stress distribution across an element are quite small which increases the accuracy of the calculations. In the discretization of section, the number of VOFE is significantly smaller than the number of “Fixed Rectangular Finite Elements” (FRFE). The advantages of using VOFE compared to FRFE are faster convergence and more accurate results. The nonlinear local degradation of materials and the pseudo-plastic hinge produced in the critical sections of the column are also considered in the proposed simulation method. A computer program is developed to calculate the local and global behavior of reinforced concrete columns under static oriented pushover and cyclic loading. The proposed simulation method is validated by the results of tests carried out on the full-scale reinforced concrete columns. The application of the “Components Effects Combination Method” (CECM) is compared with the proposed “Simultaneous Direct Method” (SDM). The obtained results show the necessity of applying SDM for nonlinear calculations. Especially during the post-elastic phase, which occurs frequently during earthquake loading.
Damilola Oyejobi,
Volume 14, Issue 8 (12-2016)
Abstract
The occurrence of wave and wind forces on tension leg platform (TLP) was assumed to be statistically independent but the intensity of wave force is a function of wind velocity because wave is a wind driven force. The focus of this paper is to study the effects of wind velocity on wave force. The contribution of steady and fluctuating wind to the response of the TLP over random wave only was also studied. Pierson Moskowitz wave and Emil Simiu wind spectra are simulated using Monte Carlo simulation. The variable submergence, drag force in Morison equation, tension fluctuation together with coupling between wind and wave contributed to the non-linearity considered in the single degree of freedom equation. The dynamic equation was solved using Newmark-Beta scheme. The statistical and power spectral density functions of the response quantities are reported. It is concluded that wind forces reduce the root mean square (RMS) tension force in the cable and thereby increased the motion responses in intact and a removed tendon TLP. The wind driven force (wave) has higher responses in severe sea states and the contribution of wind effect was suppressed due to hydrodynamic damping. The effect of the wind fluctuation is more pronounced in less severe sea state.Stochastic response of intact and a removed tendon tension leg platform to wave and wind loads
Kabir Sadeghi,
Volume 15, Issue 1 (1-2017)
Abstract
A nonlinear Finite Element (FE) algorithm is proposed to analyze the Reinforced Concrete (RC) columns subjected to Cyclic Biaxial Bending Moment and Axial Loading (CBBMAL). In the proposed algorithm, the following parameters are considered: uniaxial behavior of concrete and steel elements, the pseudo-plastic hinge produced in the critical sections, and global behavior of the columns. In the proposed numerical simulation, the column is discretized into two Macro-Elements (ME) located between the pseudo-plastic hinges at critical sections and the inflection point. The critical sections are discretized into Fixed Rectangular Finite Elements (FRFE). The basic equilibrium is justified over a critical hypothetical cross-section assuming the Kinematics Navier’s hypothesis with an average curvature. The method used qualifies as a “Strain Plane Control Process” that requires the resolution of a quasi-static simultaneous equations system using a triple iteration process over the strains in each section. In order to reach equilibrium, three main strain parameters (the strains in the extreme compressive point, the strains in the extreme tensile point and the strains in another corner of the section) are used as three main variables. The proposed algorithm has been validated by the results of tests carried out on full-scale RC columns. The application of the Components Effects Combination Method (CECM) is also compared with the proposed Simultaneous Direct Method (SDM). The results obtained show the necessity of applying SDM for the post-elastic phase, which occurs frequently during earthquake loading.
Xilin Lu,
Volume 15, Issue 6 (9-2017)
Abstract
This paper presents numerical and theoretical studies on the stability of shallow shield tunnel face found in cohesive-frictional soil. The minimum limit support pressure was determined by superposition method; it was calculated by multiplying soil cohesion, surcharge load, and soil weight by their corresponding coefficients. The varying characteristics of these coefficients with soil friction angle and tunnel cover-to-diameter ratio were obtained by wedge model and numerical simulation. The face stability of shallow shield tunnel with seepage was studied by deformation and seepage coupled numerical simulation; the constitutive model used in the analysis was elastic-perfectly plastic Mohr–Coulomb model. The failure mode of tunnel face was shown related to water level. By considering the effect of seepage on failure mode, the wedge model was modified to calculate the limit support pressure under seepage condition. The water head around the tunnel face was fitted by an exponential function, and then an analytical solution to the limit support pressure under seepage condition was deduced. The variations in the limit support pressure on strength parameters of soil and water lever compare well with the numerical results. The modified wedge model was employed to analyze the tunnel face stability of Qianjiang cross-river shield tunnel. The influence of tide on the limit support pressure was obtained, and the calculated limit support pressure by the modified wedge model is consistent with the numerical result.
Volume 15, Issue 6 (9-2017)
Abstract
It is vital to control the settlement of ultra-high voltage and long span tower foundation because of the difficult construction and strict deformation control. Based on the thinking of deformation compatibility, the mechanical model of deformation compatibility between pile and soil is established. Relying on the long span tower project Lingzhou–Shaoxing ±800 kV DC transmission lines across the Yangtze River, through checking ultimate bearing capacity of existing pile foundation, it can be obtained that the present design foundation can effectively meet the upper 200–220 t load, but it cannot meet the load requirements about 300 t in the construction. The failures of tower foundation mainly display that piles cut into the soil with penetration type in the early condition. With the load increasing, the shallow soil and infrastructure gradually damage with the whole cap sinking, cushion layer destruction and the surrounding soil uplifting. As a result, tower foundation is unable to withstand the effect of upper overload and the whole tower becomes shear failure. The treatment scheme was proposed that it can improve the cushion thickness and strength combined with grouting consolidation to soil around the piles. Thus, the stability of tower foundation improves significantly and settlement was controlled within the permitted range of below 10 mm, which can meet the structure requirements. The results of numerical simulation based on deformation compatibility between pile and soil coincide well with field measured results.
Mohsen Poor Arab Moghadam, Parham Pahlavani,
Volume 15, Issue 7 (10-2017)
Abstract
Traffic simulation is a powerful tool for analyzing and solving several transportation issues and traffic problems. However, all traffic micro-simulation models require a suitable car-following model to show the real situation in the best way possible. Several car-following models have been proposed. An obvious disadvantage of the former models is the great number of parameters which are difficult to calibrate. Moreover, any change in these parameters creates considerable disturbances. In this paper, a car-following model was proposed using the Epsilon -Support Vector Regression method whose output is the acceleration of the following car. Radial Basis Function was used as the kernel of the ε-SVR method, and the model parameters were tuned using the Grid Search method. The best values for the parameters were obtained. Furthermore, linear scaling in the interval [-1, 1] was used for both the training and testing input data, and the method was proven to more accurate than the case where no scaling was used. Accordingly, a car-following model with the mean squared error equal to 0.005 and the squared correlation coefficient equal to 0.98 was proposed using the function estimation method through the ε-SVR method. Finally, the ε-SVR output was compared with the results of the well-known car-following models, including Helly linear model, the GHR model, and the Gipps model. It was shown that, when using the scaling and parameters tuning techniques, the proposed method was more accurate compared to all three of those models. Moreover, a function fitting Artificial Neural Network was ran for this purpose and the outputs showed that the result of the ε-SVR method is better than that of the function fitting method by the proposed ANN. Implementing a microscopic validation of the proposed model showed that it can be used in the drivers’ assistance devices and other purposes of Intelligent Transportation Systems.