M.r Esfahani , M.r Kianoush, M. Lachemi ,
Volume 2, Issue 3 (9-2004)
Abstract
This paper compares the results of two experimental studies on bond strength of steel and GFRP bars in the case of self-consolidating concrete (SCC). Each study included pull-out tests of thirty six reinforcing bars embedded in concrete specimens. Two types of concretes, normal concrete and self-consolidating concrete were used in different studies. Different parameters such as bar location and cover thickness were considered as variables in different specimens. The comparison between the results of GFRP reinforcing bars with those of steel deformed bars showed that the splitting bond strength of GFRP reinforcing bars was comparable to that of steel bars in both normal strength and self-consolidating concrete (SCC). The bond strength of bottom reinforcing bars was almost the same for both normal concrete and self-consolidating concrete. However, for the top bars, the bond strength of self-consolidating concrete was less than that of normal concrete.
Hassan Ziari, Parham Hayati, Jafar Sobhani,
Volume 15, Issue 1 (1-2017)
Abstract
In this paper, self-consolidating concrete (SCC) mixtures are considered for airfield concrete pavements. A series of rheological, mechanical, transport and frost action durability tests were conducted on the prepared SCC mixtures with and without chemical air entraining agents (AEA). Mineral admixtures including slag, fly ash, silica fume and metakaolin were included in SCC mixtures. The results showed that application of mineral admixture led to significant improvements on the performance of airfield concrete pavement mixtures. Moreover, the performance of mixtures against frost action upgraded when AEA included in companion with the mineral admixtures.