Search published articles

Showing 4 results for Degradation

H. Soltani-Jigheh, A. Soroush,
Volume 8, Issue 2 (6-2010)

Mixed clayey soils occur as mixtures of sand (or gravel) and clay in widely varying proportions. Their

engineering behavior has not been comprehensively studied yet. An experimental program, comprising monotonic,

cyclic, and post-cyclic triaxial tests was undertaken on compacted clay-granular material mixtures, having different

proportions of clay and sand or gravel. This paper presents the results of cyclic triaxial tests and explains the behavior

of the mixtures based on number of loading cycles, cyclic strain amplitude, granular material content, grain size, and

effective confining pressure. The results indicate an increase in degree of degradation and cyclic loading-induced pore

water pressure as the number of loading cycles, cyclic strain and granular material content increase. Also the results

show that the grain size has no significant effect on the degree of degradation and cyclic loading-induced pore water

pressure in the specimens. The effect of granular material content on pore water pressure during cyclic loading in

equal-stress-level was also examined. The pore water pressure increases with the increase of granular material


N. Shariatmadari, A.h. Sadeghpour, M. Mokhtari,
Volume 13, Issue 1 (3-2015)

The physical properties of the municipal solid waste (MSW) in Kahrizak Landfill (Tehran, Iran) and its changes due to aging were investigated in this research. A study of the components of the fresh MSW in this landfill showed that more than 60% of it was made from the wastes of foods, fruits, vegetables and organic materials. Next to that, paper/cardboard and plastics, with contributions of 14% and 11%, comprised the greatest parts of the waste materials. Meanwhile, the results obtained from these studies revealed that the contribution of the organic part has been decreased during the last two decade by about 20% while the plastics and paper/cardboard contribution has been increased by the same amount. In order to investigate the effect of aging on the physical properties of MSW, waste samples of 5.5, 14 and 21 years of age were obtained by excavating the aged waste burial regions of this landfill. A study of the changes in the composition of waste materials through aging also revealed that the portion of paste was decreased from 25% to 40% due to the decomposition process, while the contribution of plastics and fabrics was increased up to 200%. Particle size became finer with the mean size being reduced from 70 mm in the fresh wastes to 20 mm in 21-year-old wastes due to the decomposition process. The moisture content of the fresh waste samples was reported to be more than 150%, which was considerably larger than that of other existing landfills. Along with the increase in the age of the waste samples, the moisture content was decreased by as much as one third of the initial value. Furthermore, since the waste mass became more homogeneous by age, the variation of the moisture content was reduced. The organic content of the 14-year-old waste was found to be 20%, which was less than 0.3 of the initial value. Moreover, the variation of the organic content in the waste samples was directly related to the moisture content of the samples with both parameters being reduced to less than one third of the initial value in the older samples. Investigation of the moisture content and the organic content of the aged samples showed that the burial location had a significant effect on the trend of variations. The average density of the fresh waste was measured to be 3.5 and 7.3 kN/m3 after production and burial, respectively. It was found that the average density of the fresh waste grew to about 12kN/m3 as the age was increased.
Guray Arslan, Muzaffer Borekci, Muzaffer Balci, Melih Hacisalihoglu,
Volume 14, Issue 3 (4-2016)

The contribution of concrete to inelastic deformation capacity and shear strength of reinforced concrete (RC) columns failing in shear has been investigated extensively by various researchers. Although RC members are designed to have shear strengths much greater than their flexural strengths to ensure flexural failure according to the current codes, shear degradation of RC columns failing in flexure has not been studied widely. The aim of this study is to investigate the shear degradation of RC columns using finite element analyses (FEA). The results of FEA are compared with the results of experimental studies selected from literature, and it is observed that the lateral load-deflection curves of analysed columns are compatible with the experimental results. Twenty-six RC columns were analysed under monotonically increasing loads to determine the concrete contribution to shear strength. The results of analyses indicate that increasing the ratio of shear to flexural strength reduces the concrete contribution to shear strength of the columns.

Volume 15, Issue 4 (6-2017)

Bridges normally undergo nonlinear deformations during a near field strong ground motion resulting in a critical deviation of their columns from the plumb state due to considerable residual deformations. These excessive residual deformations make a bridge, which has not collapsed, ‘irreparable’ and in turn ‘not operable.’ Therefore, reasonable prediction of these types of bridge piers deformations is of great importance in order to evaluate the serviceability of bridges subjected to a seismic scenario. Conventional hysteresis models formulated for typical concrete columns are normally used for this purpose which most of times fail to correctly predict the residual deformations occurred as a result of a one-sided or directivity pulse excitation. The present research aims at development of a peak oriented hysteresis model being able to regenerate residual deformations more reasonable compared to the conventional hysteresis models. This multi linear peak oriented model considers strength deterioration in each half cycle in addition to stiffness degradations in unloading cycles. Yielding points differ in both positive and negative sides of the hysteresis model that enables us to define a different elastic stiffness of both sides in asymmetric concrete sections. Another remarkable property of this model is breaking points and strength deterioration in unloading and reloading stages. This work also compares the obtained results to the conventional hysteresis models, namely bilinear, Clough, Q-Hyst, Takeda and Bouc-Wen in terms of prediction of residual nonlinear deformations in cyclic or dynamic analysis of reinforced concrete single-column bridge piers. The obtained results prove higher relative accuracy of the proposed model.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb