Showing 15 results for Cyclic Load
H. Soltani-Jigheh, A. Soroush,
Volume 4, Issue 3 (9-2006)
Abstract
This paper presents the results of a series of monotonic and post-cyclic triaxial tests
carried out on a clay specimen and three types of clay-sand mixed specimens. The focus of the paper
is on the post-cyclic mechanical behavior of the mixed specimens, as compared to their monotonic
behavior. Analyses of the tests results show that cyclic loading degrade undrained shear strength
and deformation modulus of the specimens during the post-cyclic monotonic loading. The
degradation depends on the sand content, the cyclic strain level and to some degrees to the
consolidation pressure.
M.a. Khan, A. Usmani, S.s. Shah, H. Abbas,
Volume 6, Issue 2 (6-2008)
Abstract
In the present investigation, the cyclic load deformation behaviour of soil-fly ash layered system is
studied using different intensities of failure load (I = 25%, 50% and 75%) with varying number of cycles (N =
10, 50 and 100). An attempt has been made to establish the use of fly ash as a fill material for embankments of
Highways and Railways and to examine the effect of cyclic loading on the layered samples of soil and fly ash.
The number of cycles, confining pressures and the intensity of loads at which loading unloading has been
performed were varied. The resilient modulus, permanent strain and cyclic strength factor are evaluated from
the test results and compared to show their variation with varying stress levels. The nature of stress-strain
relationship is initially linear for low stress levels and then turns non-linear for high stress levels. The test
results reveal two types of failure mechanisms that demonstrate the dependency of consolidated undrained
shear strength tests of soil-fly ash matrix on the interface characteristics of the layered soils under cyclic
loading conditions. Data trends indicate greater stability of layered samples of soil-fly ash matrix in terms of
failure load (i) at higher number of loading-unloading cycles, performed at lower intensity of deviatoric stress,
and (ii) at lower number of cycles but at higher intensity of deviatoric stress.
M. Reza Esfahani,
Volume 6, Issue 3 (9-2008)
Abstract
In this paper, the effect of cyclic loading on punching strength of flat slabs strengthened with Carbon
Fiber Reinforced Polymer (CFRP) sheets is studied. Experimental results of ten slab specimens under
monotonic and cyclic loading are analyzed. Eight specimens were strengthened with CFRP sheets on the
tensile face of the slabs and the two other specimens were kept un-strengthened as control specimens. The
width of CFRP sheets varied in different specimens. After the tests, the punching shear strength of specimens
under cyclic loading was compared with those with monotonic loading. The comparison of results shows that
cyclic loading decreases the effect of CFRP sheets on punching shear strengthening. This decrease was more
for the specimens with a larger value of reinforcing steel ratio. Therefore, it can be concluded that for
specimens with large reinforcing steel ratios, cyclic loading may completely eliminate the effect of CFRP
sheets on shear strengthening of slabs.
Arash Nayeri, Kazem Fakharian,
Volume 7, Issue 4 (12-2009)
Abstract
Abstract: This paper presents the results of pullout tests on uniaxial geogrid embedded in silica sand under monotonic and cyclic pullout forces. The new testing device as a recently developed automated pullout test device for soil-geogrid strength and deformation behavior investigation is capable of applying load/displacement controlled monotonic/cyclic forces at different rates/frequencies and wave shapes, through a computer closed-loop system. Two grades of extruded HDPE uniaxial geogrids and uniform silica sand are used throughout the experiments. The effects of vertical surcharge, sand relative density, extensibility of reinforcement and cyclic pullout loads are investigated on the pullout resistance, nodal displacement distributions, post-cyclic pullout resistance and cyclic accumulated displacement of the geogrid. Tell-tale type transducers are implemented along the geogrid at several points to measure the relative displacements along the geogrid embedded length. In monotonic tests, decrease in relative displacement between soil and geogrid by increase of vertical stress and sand relative density are the main conclusions structural stiffness of geogrid has a direct effect on pullout resistance in different surcharges. In cyclic tests it is observed that the variation of post-cyclic strength ranges from minus 10% to plus 20% of monotonic strength values and cyclic accumulated displacements are increased as normal pressure increase, but no practical specific comment can be made at this stage on the post-cyclic strength of geogrids embedded in silica sand. It is also observed that in loose sand condition, the cyclic accumulated displacements are considerably smaller as compared to dense sand condition.
O. Omidi, V. Lotfi,
Volume 8, Issue 3 (9-2010)
Abstract
Neither damage mechanics model nor elastoplastic constitutive law can solely describe the behavior of concrete satisfactorily. In fact, they both fail to represent proper unloading slopes during cyclic loading. To overcome the disadvantages of pure plastic models and pure damage approaches, the combined effects need to be considered. In this regard, various classes of plastic-damage models have been recently proposed. Here, the theoretical basics of the plastic-damage model originally proposed by Lubliner et al. and later on modified by Lee and Fenves is initially presented and its numerical aspects in three-dimensional space are subsequently emphasized. It should be mentioned that a part of the implementation in 3-D space needs to be reformulated due to employing a hyperbolic potential function to treat the singularity of the original linear form of plastic flow proposed by Lee and Fenves. The consistent algorithmic tangent stiffness, which is utilized to accelerate the convergence rate in solving the nonlinear global equations, is also derived. The validation and evaluation of the model to capture the desired behavior under monotonic and cyclic loadings are shown with several simple one-element tests. These basic simulations confirm the robustness, accuracy, and efficiency of the algorithm at the local and global levels. At the end, a four-point bending test is examined to demonstrate the capabilities of the model in real 3-D applications.
Kabir Sadeghi,
Volume 9, Issue 3 (9-2011)
Abstract
An energy based damage index based on a new nonlinear Finite element (FE) approach applicable to RC structures subjected to cyclic, earthquake or monotonic loading is proposed. The proposed method is based on the evaluation of nonlinear local degradation of materials and taking into account of the pseudo-plastic hinge produced in the critical sections of the structure. A computer program is developed, considering local behavior of confined and unconfined concretes and steel elements and also global behavior and damage of reinforced concrete structures under cyclic loading. The segments located between the pseudoplastic hinges at critical sections and the inflection points are selected as base-models through simulation by the proposed FE method. The proposed damage index is based on an energy analysis method considering the primary half-cycles energy absorbed by the structure during loading. The total primary half-cycles absorbed energy to failure is used as normalizing factor. By using the proposed nonlinear analytical approach, the structure's force-displacement data are determined. The damage index is then calculated and is compared with the allowable value. This damage index is an efficient means for deciding whether to repair or demolish structures after an earthquake. It is also useful in the design of new structures as a design parameter for an acceptable limit of damage defined by building codes. The proposed approach and damage index are validated by results of tests carried out on reinforced concrete columns subjected to cyclic biaxial bending with axial force.
R. Abbasnia, A. Holakoo,
Volume 10, Issue 3 (9-2012)
Abstract
One important application of fiber reinforced polymer (FRP) is to confine concrete as FRP jackets in seismic retrofit process
of reinforced concrete structures. Confinement can improve concrete properties such as compressive strength and ultimate axial
strain. For the safe and economic design of FRP jackets, the stress-strain behavior of FRP-confined concrete under monotonic
and cyclic compression needs to be properly understood and modeled. According to literature review, it has been realized that
although there are many studies on the monotonic compressive loading of FRP-confined concrete, only a few studies have been
conducted on the cyclic compressive loading. Therefore, this study is aimed at investigating the behavior of FRP-confined
concrete under cyclic compressive loading. A total of 18 cylindrical specimens of FRP-confined concretewere tested in uniaxial
compressive loading with different wrap thickness, and loading patterns. The results obtained from the tests are presented and
examined based on analysis of test results predictive equations for plastic strain and stress deterioration were derived. The
results are also compared with those from two current models,comparison revealed the lack of sufficient accuracy of the current
models to predict stress-strain behavior and accordingly some provisions should be incorporated.
R. Vidjeapriya, V. Vasanthalakshmi, K. P. Jaya,
Volume 12, Issue 1 (3-2014)
Abstract
The present study focuses on the performance of precast concrete beam-column dowel connections subjected to cyclic loading by conducting experiments. In this study, one-third scale model of two types of precast and a monolithic beam-column connection were cast and tested under reverse cyclic loading. The precast connections considered for this study is a beam-column connection where beam is connected to column with corbel using (i) dowel bar and (ii) dowel bar with cleat angle. The experimental results of the precast specimens have been compared with that of the reference monolithic connection. The sub-assemblage specimens have been subjected to reverse cyclic displacement-controlled lateral loading applied at the end of the beam. The performance of the precast connections in terms of the ultimate load carrying capacity, post- elastic strength enhancement factor, load-displacement hysteresis behaviour, moment-rotation hysteresis behaviour, energy dissipation capacity, equivalent viscous damping ratio and ductility factor were compared with that of the monolithic beam-column connection. The monolithic specimen was found to perform better when compared to the precast specimens in terms of strength and energy dissipation. In terms of ductility, the precast specimen using dowel bar and cleat angle showed better behaviour when compared to the reference monolithic specimen.
P. Vahabkashi, A. R. Rahai, A. Amirshahkarami,
Volume 12, Issue 1 (3-2014)
Abstract
Piles or drilled shafts used in bridge foundation, waterfronts, and high rise buildings are generally subjected to lateral loads. In order to study the effect of concrete pile geometry on the structural behavior in layered soils, several models with different shapes and dimensions for piles and different properties for two soil layers with variable thickness were selected and analyzed using the finite difference method.
The performance of piles situated in layered granular soil with different compaction and thicknesses were studied in two cycles of lateral loading and unloading. The applied finite difference procedure is also validated based on experimental and published results.
The pile head displacement of different models due to their overall deformation and rotation were calculated under maximum loading. For a comparison of pile head displacement due to their overall deformation and rotation in different models, the "performance index” is defined as the ratio of “displacement due to deformation” to the “total displacement”.
K. Sadeghi,
Volume 12, Issue 3 (9-2014)
Abstract
An analytical nonlinear stress-strain model and a microscopic damage index for confined and unconfined concretes together with a macroscopic damage index for reinforced concrete (RC) structures under cyclic loading are proposed. In order to eliminate the problem of scale effect, an adjustable finite element computer program was generated to simulate RC structures subjected to cyclic loading. By comparing the simulated and experimental results of tests on the full-scale structural members and concrete cylindrical samples, the proposed stress-strain model for confined and unconfined concretes under cyclic loading was accordingly modified and then validated.
The proposed model has a strong mathematical structure and can readily be adapted to achieve a higher degree of precision by modifying the relevant coefficients based on more precise tests.
To apply the proposed damage indices at the microscopic and macroscopic levels, respectively, stress-strain data of finite elements (confined and unconfined concrete elements) and moment-curvature data of critical section are employed. The proposed microscopic damage index can easily be calculated by using the proposed simple analytic nonlinear stress-strain model for confined and unconfined concretes. The proposed macroscopic damage index is based on the evaluation of nonlinear local degradation of materials and taking into account the pseudo-plastic hinge produced in the critical section of the structural element. One of the advantages of the macroscopic damage index is that the moment-curvature data of the critical section is sufficient in itself and there is no need to obtain the force-displacement data of the structural member.
M. Mojezi, M.k. Jafari, M. Biglari,
Volume 13, Issue 3 (12-2015)
Abstract
Experimental study of the cyclic behavior of unsaturated materials is more complex than that of the saturated materials due to the required equipment, experience and time. Furthering investigations in the field of unsaturated materials is necessary to better understand its complexity and sensitivity of unsaturated cyclic parameters to different determinants such as suction path, stress path, loading speed, deviatoric stress amplitude, physical specifications, and etc. To this end, the main focus of this study has been to analyze the effects of factors such as mean net stress and deviatoric stress levels in fast cyclic loading on the cyclic behavior of a normally consolidated unsaturated fine-grained trade soil, namely the Zenoz kaolin. Various unsaturated tests were performed in three mean net stress levels and three amplitudes of cyclic deviatoric stress levels. Results showed that increase of suction in the same strain level leads to increase in stiffness in normally consolidated samples (i.e. increase in elastic modulus and shear modulus and decrease in damping ratio). Also, in the same suction value and strain level, increase of the mean net stress during the isotropic consolidation causes to the denser normally consolidated samples and results to increase of elastic modulus and shear modulus, and decrease of damping ratio.
Hanane Dob , Salah Messast, Abdelhamid Mendjel, Marc Boulon, Etienne Flavigny,
Volume 14, Issue 7 (10-2016)
Abstract
Considerable strains appear in the structures during accumulation of the irreversible strains of the subgrade under the effect of the cyclic loads. If the number of cycles is very large, even a small strain after accumulation becomes significant and sometimes harmful. In this study, a simple numerical modeling of the behavior of sand under cyclic loading is proposed. The suggested approach consists, in drained condition, in determining the parameters characterizing the average cyclic path of the soil under the effect of the number of cycles duly characterized and translating the cyclic effect by a volumetric strain cumulated by a variation of the module of the soil. In this study, we are interested in cyclic triaxial compression tests simulated by a finite element calculation. While proposing an analogy between the cyclic pseudo creep and the soft soil creep model (SSCM), on the first hand we propose an equivalence between the cyclic parameters and the parameters of SSCM, and on the other an equivalence time number of cycles will be established. The application of the formulation suggested on a shallow foundation under cyclic loading confirms the good adaptation of the model suggested to this type of problem.
Kabir Sadeghi,
Volume 15, Issue 1 (1-2017)
Abstract
A nonlinear Finite Element (FE) algorithm is proposed to analyze the Reinforced Concrete (RC) columns subjected to Cyclic Biaxial Bending Moment and Axial Loading (CBBMAL). In the proposed algorithm, the following parameters are considered: uniaxial behavior of concrete and steel elements, the pseudo-plastic hinge produced in the critical sections, and global behavior of the columns. In the proposed numerical simulation, the column is discretized into two Macro-Elements (ME) located between the pseudo-plastic hinges at critical sections and the inflection point. The critical sections are discretized into Fixed Rectangular Finite Elements (FRFE). The basic equilibrium is justified over a critical hypothetical cross-section assuming the Kinematics Navier’s hypothesis with an average curvature. The method used qualifies as a “Strain Plane Control Process” that requires the resolution of a quasi-static simultaneous equations system using a triple iteration process over the strains in each section. In order to reach equilibrium, three main strain parameters (the strains in the extreme compressive point, the strains in the extreme tensile point and the strains in another corner of the section) are used as three main variables. The proposed algorithm has been validated by the results of tests carried out on full-scale RC columns. The application of the Components Effects Combination Method (CECM) is also compared with the proposed Simultaneous Direct Method (SDM). The results obtained show the necessity of applying SDM for the post-elastic phase, which occurs frequently during earthquake loading.
Xiaolei Chen, Jianping Fu, Feng Xue, Xiaofeng Wang,
Volume 15, Issue 4 (6-2017)
Abstract
This paper presents a comparative numerical research on the overall seismic behavior of RC frames with different types of rebars (normal versus high strength rebar). A nonlinear numerical model is developed and is validated using experimental results. Comparing the numerical and experimental behaviors shows that the developed model is capable of describing the hysteretic behavior and plastic hinges development of the experimental RC frames with various strength longitudinal steel bars. The validated model is then used, considering the influences of axial load ratios and volumetric ratios of longitudinal rebars of column, to investigate the effects of reinforcement strength on the overall seismic behavior of RC frames. The simulation results indicate that utilizing high strength reinforcement can improve the structural resilience, reduce residual deformation and achieve favorable distribution pattern of plastic hinges on beams and columns. The frames reinforced with normal and high strength steel bars have comparable overall deformation capacity. The effect of axial load ratio on the energy dissipation, hysteretic curves and ultimate lateral load of frames with different strength rebars is similar. In addition, increasing the volumetric ratios of longitudinal rebars can increase the ultimate lateral load of frame and improve the plastic hinge distribution of frame.
Chayanon Hansapinyo,
Volume 15, Issue 4 (6-2017)
Abstract
This paper presents an evaluation on lateral cyclic behaviors of precast concrete columns using a steel box connection through experimental investigation. The test consisted of one monolithic reinforced concrete column as a reference and five precast concrete columns. All specimens had identical dimensions of 0.25 x 0.25 m2 cross sectional area and 1.7 m in height with a longitudinal reinforcement ratio of 0.0152. Materials used for all specimens were also from the same batch. The study was aimed at understanding the design concept of the steel connecting box and detailing of column reinforcement for avoiding the brittle failure of precast concrete frame buildings. The experimental results show that without premature failure in welding or nut slipping, depending largely on the reinforcement details, the precast system with a steel box connection can be effectively used. Flexural failure mode with a ductile mechanism can be achieved to resemble the monolithic one. With a higher relative stiffness and capacities of the designed connecting box, the precast columns show a higher capacity as the failure section was shifted to an upper level. Hence, it can be said that the proper details of precast concrete columns contain acceptable seismic performances e.g. ultimate capacity, stiffness, energy dissipation, and capacity degradation under repeated loading.