Search published articles

Showing 4 results for Limit Equilibrium

A. Ghanbari, M. Ahmadabadi,
Volume 8, Issue 2 (6-2010)

Inclined retaining walls with slopes less than perpendicular are appropriate candidates in several

engineering problems. Yet, to the knowledge of authors, only a few analytical solution for calculation of active earth

pressure on such walls, which will be usually smaller than the same pressure on vertical ones, has been presented

neither in research papers nor in design codes. Considering limit equilibrium concept in current research, a new

formulation is proposed for determination of active earth pressure, angle of failure wedge and application point of

resultant force for inclined walls. Necessary parameters are extracted assuming the pseudo-static seismic coefficient

to be valid in earthquake conditions. Moreover, based on Horizontal Slices Method (HSM) a new formulation is

obtained for determining the characteristics of inclined walls in granular and or frictional cohesive soils. Findings of

present analysis are then compared with results from other available methods in similar conditions and this way, the

validity of proposed methods has been proved. Finally according to the results of this research, a simplified relation

for considering the effect of slope in reduction of active earth pressure and change in failure wedge in inclined

retaining walls has been proposed.

F. Askari, A. Totonchi, O. Farzaneh,
Volume 10, Issue 2 (6-2012)

Presented is a method of three-dimensional stability analysis of convex slopes in plan view based on the Lower-bound theorem of
the limit analysis approach. The method’s aim is to determine the factor of safety of such slopes using numerical linear finite
element and lower bound limit analysis method to produce some stability charts for three dimensional (3D) homogeneous convex
slopes. Although the conventional two and three dimension limit equilibrium method (LEM) is used more often in practice for
evaluating slope stability, the accuracy of the method is often questioned due to the underlying assumptions that it makes. The
rigorous limit analysis results in this paper together with results of other researchers were found to bracket the slope stability
number to within ±10% or better and therefore can be used to benchmark for solutions from other methods. It was found that using
a two dimensional (2D) analysis to analyze a 3D problem will leads to a significant difference in the factors of safety depending
on the slope geometries. Numerical 3D results of proposed algorithm are presented in the form of some dimensionless graphs which
can be a convenient tool to be used by practicing engineers to estimate the initial stability for excavated or man-made slopes

C. Vieira,
Volume 12, Issue 1 (1-2014)

This paper presents a simplified approach to estimate the resultant force, which should be provided by a retention system, for the equilibrium of unstable slopes. The results were obtained with a developed algorithm, based on limit equilibrium analyses, that assumes a two-part wedge failure mechanism. Design charts to obtain equivalent earth pressure coefficients are presented. Based on the results achieved with the developed computer code, an approximate equation to estimate the equivalent earth pressure coefficients is proposed. Given the slope angle, the backslope, the design friction angle, the height of the slope and the unit weight of the backfill, one can determine the resultant force for slope equilibrium. This simplified approach intends to provide an extension of the Coulomb earth pressure theory to the stability analyses of steep slopes and to broaden the available design charts for steep reinforced slopes with non-horizontal backslopes
Xilin Lu,
Volume 15, Issue 6 (9-2017)

This paper presents numerical and theoretical studies on the stability of shallow shield tunnel face found in cohesive-frictional soil. The minimum limit support pressure was determined by superposition method; it was calculated by multiplying soil cohesion, surcharge load, and soil weight by their corresponding coefficients. The varying characteristics of these coefficients with soil friction angle and tunnel cover-to-diameter ratio were obtained by wedge model and numerical simulation. The face stability of shallow shield tunnel with seepage was studied by deformation and seepage coupled numerical simulation; the constitutive model used in the analysis was elastic-perfectly plastic Mohr–Coulomb model. The failure mode of tunnel face was shown related to water level. By considering the effect of seepage on failure mode, the wedge model was modified to calculate the limit support pressure under seepage condition. The water head around the tunnel face was fitted by an exponential function, and then an analytical solution to the limit support pressure under seepage condition was deduced. The variations in the limit support pressure on strength parameters of soil and water lever compare well with the numerical results. The modified wedge model was employed to analyze the tunnel face stability of Qianjiang cross-river shield tunnel. The influence of tide on the limit support pressure was obtained, and the calculated limit support pressure by the modified wedge model is consistent with the numerical result.

Page 1 from 1     

© 2021 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb