Search published articles


Showing 3 results for Construction Industry

Farnad Nasirzadeh, Abbas Afshar, Mostafa Khanzadi,
Volume 6, Issue 2 (6-2008)
Abstract

Presence of risks and uncertainties inherent in project development and implementation plays

significant role in poor project performance. Thus, there is a considerable need to have an effective risk

analysis approach in order to assess the impact of different risks on the project objectives. A powerful risk

analysis approach may consider dynamic nature of risks throughout the life cycle of the project, as well as

accounting for feedback loops affecting the overall risk impacts. This paper presents a new approach to

construction risk analysis in which these major influences are considered and quantified explicitly. The

proposed methodology is a system dynamics based approach in which different risks may efficiently be

modeled, simulated and quantified in terms of time, cost and quality by the use of the implemented object

oriented simulation methodology. To evaluate the performance of the proposed methodology it has been

employed in a bridge construction project. Due to the space limitations, the modeling and quantification

process for one of the identified risks namely “pressure to crash project duration” is explained in detail.


M. T. Banki, B. Esmaeili,
Volume 7, Issue 4 (12-2009)
Abstract

Cash flow forecasting is an indispensable tool for construction companies, and is essential for the survival

of any contractor at all stages of the work. The time available for a detailed pre-tender cash flow forecast is often

limited. Therefore, contractors require simpler and quicker techniques which would enable them to forecast cash flow

with reasonable accuracy. Forecasting S-curves in construction in developing countries like Iran in compare with

developed countries has many difficulties. It is because of uncertainty and unknown situation in nature of construction

industry of these countries. Based on knowledge of authors there is a little attempt for cash flow forecasting in

construction industry of Iran. As a result authors produced An S-curve equation for construction project from historical

data which has reasonable accuracy. A sample of 20 completed projects was collected and classified in to the three

different groups. In order to model S-curves for each group, a simple and reliable method of S curve fitting has been

used. S-curves were fitted into each group by using different techniques. Errors incurred when fitting these curves were

measured and compared with those associates in fitting individual projects. At the end, accuracy of each model has

been calculated and an equation has been proposed to forecast S-curves.


I. Yitmen,
Volume 10, Issue 4 (12-2012)
Abstract

Learning rapidly and competently has become a pre-eminent strategy for improving organizational performance in the

new knowledge era. Improving dynamic learning capability is an exclusive strategy for corporate success in construction

industry. Thus engineering design firms should implement OL to accomplish a state of readiness for change and develop a

competence to respond and identify future business potentials. This study aims to analyze the relationship between

organizational learning (OL) and performance improvement (PI) in civil engineering design firms of Turkish construction

industry. OL structure in engineering design firms incorporates five constructs: organizational environment, strategy

development and implementation, supportive leadership, leveraging knowledge, and learning capability. The empirical data

was collected through a questionnaire survey conducted to engineering design firms registered to the Turkish Chamber of Civil

Engineers. The hypothesized model relationships were tested using Structural Equation Modeling (SEM). The results show that

each of the variables has a different role and significant positive impact on the OL process and organizational PI. The variables

“Supportive leadership” and “Learning capability” proved to be strongly significant and positively related to organizational

performance in engineering design firms. In engineering design firms, supportive leadership is needed in order to establish a

participative cultural environment that helps design a new form of organization which emphasizes learning, flexibility, and

rapid response. Learning capability is the potential to explore and exploit knowledge through learning flows that make possible

the development, evolution and use of knowledge stocks enacting engineering design firms and their members to add value to

the design business.



Page 1 from 1     

© 2021 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb