Search published articles


Showing 2 results for Moosavi

S.m. Moosavi, M.k. Jafari , M. Kamalian, A. Shafiee ,
Volume 8, Issue 2 (6-2010)
Abstract

Ground differential movements due to faulting have been observed to cause damage to engineered structures

and facilities. Although surface fault rupture is not a new problem, there are only a few building codes in the world

containing some type of provisions for reducing the risks. Fault setbacks or avoidance of construction in the proximity

to seismically active faults, are usually supposed as the first priority. In this paper, based on some 1-g physical

modelling tests, clear perspectives of surface fault rupture propagation and its interaction with shallow rigid

foundations are presented. It is observed that the surface fault rupture could be diverted by massive structures seated

on thick soil deposits. Where possible the fault has been deviated by the presence of the rigid foundation, which

remained undisturbed on the footwall. It is shown that the setback provision does not give generally enough assurance

that future faulting would not threaten the existing structures.


M. Fadaee, M.k. Jafari, M. Kamalian, M. Moosavi, A. Shafiee,
Volume 11, Issue 2 (Transaction B: Geotechnical Engineering 2013)
Abstract

During past earthquakes, many instances of building damage as a result of earthquake surface fault rupture have been observed.

The results of investigating a potential mitigation scheme are presented in this paper. Such plan provides a wall in the soil with

the aim of surface displacement localization in the narrow pre-determined location. This may reduce the risk of the future rupture

downstream the wall. To evaluate the efficiency of the method, this paper (i) provides validation through successful class “A”

predictions of 1g model tests for fault deviation by weak wall and (ii) conducts sensitivity analyses on fault position, fault offset

and wall shear strength. It is shown that wall can be designed to deviate rupture path even downstream of the wall can be

protected.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb