Search published articles


Showing 4 results for Jalali

Afshar A., Marino M.a., Jalali M.r.,
Volume 1, Issue 1 (September 2003)
Abstract

The reliable operation of spillways, in emergency as well as normal conditions, is one of the vital components in dam safety. Free or uncontrolled overflow spillways are the most reliable choice however. They usually impose higher construction cost and /or results in wasting a considerable amount of water or live capacity of the reservoirs. Employing fuse gates might be a way of reconciling dam safety with maximized storage capacity. The operation of the system can be controlled to within a few centimeters, and the entire installation is not lost for floods less than the maximum design flood. The installation offers more or less the same level of safety as ungated spillways, but avoids their inherent storage capacity loss. Optimum design of fuse gates in particular installation calls for a mathematical model. The model developed in this work includes structural, hydraulics and operational constraints while maximizing the expected cost over the useful life of the project. Accounting for the lost benefit (i.e., water lost as a result of gate tilting) has an influenced effect on the optimum design. To test the performance of the model, data from Zarineh Rud dam in Iran has been used and its result is compared with a direct search technique. The model is capable of helping the design engineer to select the best alternative considering different types of constraints.
Jalali M.r., Afshar A., Mokhtare A.r.,
Volume 2, Issue 4 (December 2004)
Abstract

It is indispensable to explore simulation techniques that not only represent complexdynamic systems in a realistic way but also allow the involvement of end users in modeldevelopment to increase their confidence in the modeling process. System dynamics as a feedbackbasedand object-oriented simulation approach is presented for reservoir operation modeling. Thequick modeling process, the trust developed in the model due to user contribution, group modelsdevelopment possibility and the effective relations of model results are the most significant strongpoints of this approach. The simple modification of model in response to changes in system andcapability to accomplish sensitivity analysis make this approach more attractive and useful ratherthan traditional reservoir operation models. In this paper system dynamics is applied to simulateoperation of a free reservoir with an Ogee spillway, a reservoir with a gated spillway and finally amulti-reservoir system with simple and gated spillways. The multi-reservoir system on Karun riverin south of Iran is modeled under flood condition as a case study in order to demonstrate thecapabilities of the developed model.
A. Afshar, H. Abbasi, M. R. Jalali,
Volume 4, Issue 1 (March 2006)
Abstract

Water conveyance systems (WCSs) are costly infrastructures in terms of materials, construction, maintenance and energy requirements. Much attention has been given to the application of optimization methods to minimize the costs associated with such infrastructures. Historically, traditional optimization techniques have been used, such as linear and non-linear programming. In this paper, application of ant colony optimization (ACO) algorithm in the design of a water supply pipeline system is presented. Ant colony optimization algorithms, which are based on foraging behavior of ants, is successfully applied to optimize this problem. A computer model is developed that can receive pumping stations at any possible or predefined locations and optimize their specifications. As any direct search method, the mothel is highly sensitive to setup parameters, hence fine tuning of the parameters is recommended.
Hon.m. Asce, M.r. Jalali, A. Afshar, M.a. Mariño,
Volume 5, Issue 4 (December 2007)
Abstract

Through a collection of cooperative agents called ants, the near optimal solution to the multi-reservoir operation problem may be effectively achieved employing Ant Colony Optimization Algorithms (ACOAs). The problem is approached by considering a finite operating horizon, classifying the possible releases from the reservoir(s) into pre-determined intervals, and projecting the problem on a graph. By defining an optimality criterion, the combination of desirable releases from the reservoirs or operating policy is determined. To minimize the possibility of premature convergence to a local optimum, a combination of Pheromone Re-Initiation (PRI) and Partial Path Replacement (PPR) mechanisms are presented and their effects have been tested in a benchmark, nonlinear, and multimodal mathematical function. The finalized model is then applied to develop an optimum operating policy for a single reservoir and a benchmark four-reservoir operation problem. Integration of these mechanisms improves the final result, as well as initial and final rate of convergence. In the benchmark Ackley function minimization problem, after 410 iterations, PRI mechanism improved the final solution by 97 percent and the combination of PRI and PPR mechanisms reduced final result to global optimum. As expected in the single-reservoir problem, with a continuous search space, a nonlinear programming (NLP) approach performed better than ACOAs employing a discretized search space on the decision variable (reservoir release). As the complexity of the system increases, the definition of an appropriate heuristic function becomes more and more difficult this may provide wrong initial sight or vision to the ants. By assigning a minimum weight to the exploitation term in a transition rule, the best result is obtained. In a benchmark 4-reservoir problem, a very low standard deviation is achieved for 10 different runs and it is considered as an indication of low diversity of the results. In 2 out of 10 runs, the global optimal solution is obtained, where in the other 8 runs results are as close as 99.8 percent of the global solution. Results and execution time compare well with those of well developed genetic algorithms (GAs).

Page 1 from 1     

© 2025 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb