Search published articles



Ali Allahverdi, Mostafa Mahinroosta, Shima Pilehvar,
Volume 15, Issue 5 (7-2017)
Abstract

Compressive strength is as one of the most important properties of concrete and mortar that its measurement may be necessary at both early and later ages. Prediction of compressive strength by a proper model is a fast and cost-effective way for evaluating cement quality under various curing conditions. In this paper, a logarithmic model based on the results of an experimental work conducted to investigate the effects of curing time and temperature on the compressive strength development of chemically activated high phosphorous slag content cement has been presented. This model is in terms of curing time and temperature as independent variables and compressive strength as dependent variable. For this purpose, mortar specimens were prepared from 80 wt.% phosphorous slag, 14 wt.% Portland cement, and 6 wt.% compound chemical activator at Blaine fineness of 303 m2/kg. The specimens were cured in lime-saturated water under temperatures of 25, 45, 65, 85 and 100 ºC in oven. The model has two adjustable parameters for various curing times and temperatures. Modeling has been done by applying dimensionless insight. The proposed model can efficiently predict the compressive strength of this type of high phosphorous slag cement with an average relative error of less than 4%.


Dr. Abazar Asghari, Mr. Behnam Azimi Zarnagh,
Volume 15, Issue 5 (7-2017)
Abstract

For years, coupling shear walls have been used in  the mid to high-rise buildings as a part of lateral load- resisting system mostly, because of their ability to control the displacement of structures, Recently by changing the design codes from strength based design to performance based  design, nonlinear behavior of coupled walls became important for practical engineers, so that many researchers  are looking for ways to improve and also predict the behavior of coupled walls under severe earthquakes. This paper  presents  the results of   linear,  nonlinear static ( pushover)  and  nonlinear inelastic time-history analysis  of a 10-story  two- dimensional coupling shear wall (CSW) which is perforated with 3 different patterns which are taken from considering  the S22 stress of shell elements used for modeling shear walls,  nonlinear static analysis results confirm that perforation can increase the response modification  factor of coupled walls up to 33 percent and also the results of  linear analysis and design indicate that perforation can reduce the amount of reinforcement of coupling beams and other frame's  structural components. Also results of nonlinear inelastic time history  analysis confirm that by using perforation patterns the base shear- roof displacement hysteretic response get better and the  systems with perforation patterns can absorb more energy under severe earthquakes.


Dr Mahdi Sharifi, Eng Majid Kamali,
Volume 15, Issue 5 (7-2017)
Abstract

Fiber Reinforcement Concrete is mainly distinguished in their behavior in cracked tension zone which is called tension softening behavior. Wide researchers have been investigated this behavior and present many tensioned softening models. This paper presents a compression between four tension softening models including constant, linear, bilinear and exponential models in flexural behavior. In this study the behavior of rectangular beam section under four/three point bending test have been predicted by iteration procedure. These models has been compared in some parametrical properties. The result of this study shows variety in result for four used models and indicate concern in applied assumptions.


Dr. Kabir Sadeghi, Dr. Fatemeh Nouban,
Volume 15, Issue 5 (7-2017)
Abstract

This paper describes both global and local versions of an energetic analytical model to quantify the damage caused to reinforced concrete (RC) structures under monotonic, cyclic or fatigue loading. The proposed model closely represents the damage to structures and yields a damage index (DI) for the RC members. The model is cumulative and is based on the energy absorbed. The energy under the monotonic envelope curve at the failure of the member is taken as a reference capacity. The data required to apply the model in any given situation or member can be obtained either by numerical simulation or from experimental tests. An analytical computer program was developed to simulate numerically the response of RC members taking into account the nonlinear behavior of the materials and structures involved. The proposed model was verified by comparison with practical tests undertaken by other researchers on over 20 RC columns. The comparison demonstrates that the model provides a realistic estimation of the damage of the RC structural members. The comparison between values of the proposed DI calculated based on experimental test data and numerical simulation results for a cyclic loading case shows that to calculate DI, it is not necessary to perform expensive experimental tests and that using a nonlinear structural analytical simulation is sufficient. The results are also compared to a damage model proposed by Meyer (1988).


Parviz Ghoddousi, Amir Masoud Salehi,
Volume 15, Issue 8 (12-2017)
Abstract

The fresh properties of Self Compacting Concrete (SCC) might be more susceptible to quality and quantity changes of ingredients than conventional concrete because of a combination of detailed requirements, more complex mix design, and inherent low yield stress and viscosity. In spit of the low robustness of SCC, there are a few methods available to assess the SCC robustness that the accuracy of these methods has not been fully agreed. The current study provides an index for SCC robustness based on the rheology parameters. Thus, an experimental program was undertaken to evaluate the robustness of eight selected SCCs. For doing this, water content of each SCC was changed slightly and their fresh and hardened properties were measured. The results indicated that the length of rheology parameters curve due to variation of mixing water is able to assess the SCC robustness that is comparable with combined performance based on the workability tests changes. According to this index, the robustness of SCC increases about 10% by using air-entraining admixture (AEA) and decreases considerably by reduction the paste volume (up to about 5 times). Also, the most appropriate single workability test to assess the robustness is sieve segregation test. Moreover, the scattering of compressive strength results show that there is a level of robustness in fresh state that after that the scattering of results in hardened state can be affected.

Page 5 from 5     

© 2025 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb