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1. Introduction and Background

Rainfall-Runoff mathematical models, based on the physical

mechanism of the overland flow, must be able to consider all

types of watershed geometries. Because of the inherent

complexity of natural watersheds, researchers are interested in

simplifying their geometry with using a rectangular, V-shape,

converging, or diverging plane. Wooding [1, 2] was the first

who solved the kinematic equations of overland flow on a V-

shape or open book plane analytically and numerically.

According to many researchers, the kinematic wave, as a

simplification of Saint Venant's equations, is enough for the

simulation of the overland flow [3]. Wooding [4] applied the

kinematic wave theory to simulate the overland flow on an

open book shaped plane and compared the results with

observed data. Although obtaining good results, Wooding

insisted on using a better and more detailed geometry for the

channels. However, the Wooding model is not able to simulate

the sharpness of the hydrograph of a converging plane [5].

Woolhiser [6] proposed a sloped V-shape plane as a part of a

truncated cone for simulation of the converging flow, which is

basically regarded as a two dimensional (2D) flow (Figure 1).

Because of the geometrical similarity of the upstream

subbasins in large watersheds to the converging planes [3],

finding a robust and simple solution for kinematic wave has

been a concern of the 2D overland flow modeling since the

1960s. Veal [7] obtained the unsteady continuity and
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momentum equations with the lateral flow for a converging

plane. He presented a numerical solution for some special

cases. Woolhiser [6] was the first who utilized Veal's proposed

equations for hydrological modeling. He imposed a constant

rate rainfall on a converging plane and by using the

characteristic method in dimensionless form could achieve a

numerical and an analytical solution for the rising and the

falling limb of the resulted hydrograph respectively. Singh [8],

Singh, and Woolhiser [9] both presented a model based on the

numerical solution of the converging flow and evaluated the

results with observed data. Singh [10, 11] performed many

tests to calculate the lag time on the converging planes and

introduced some simple methods for deriving the kinematic

wave parameters for such 2D flows. Sherman and Singh [12,

13] studied and described the mathematical basis of the

kinematic wave modeling for the converging planes. Ellis et al.

[14] reported successful application of a kinematic wave based

model in an urban watershed. Agiralioglu [15, 16, and 17]

studied the overland flow on the converging/ diverging planes.

He used the kinematic wave's time to equilibrium on a

rectangular plane and derived an equation to relate the

obtained results with that of a converging plane with the same

length. Campbell and Parlange [18] evaluated some numerical

methods for converging flow solution. Saghafian and Julien

[19] reported the development and application of a 2D finite

difference model named CASC2D for converging flow

simulation. When there is a small river and regardless of the

shape of the upstream watershed, Mohammad T. Dastorani and

Nigel G. Wright [20] used a hydrodynamic model for river

flow prediction and then tried to optimize the results by

applying artificial neural networks (ANN).  Singh [3] reported

results of using an explicit single step Lax-Wendrov algorithm

for solving the converging flows. As he mentioned, the method

uses an analytical method in its boundaries that improves the

precision and convergence speed of the algorithm. He reported

using this algorithm on more than 50 watersheds and for more

than 500 events. 

Literature review shows that a simple, robust, and analytical

solution for the rising limb of a hydrograph has not been

presented since the introduction of the kinematic wave

equations for the converging flow. The available numerical

methods, in spite of their efficiency, have some limits. All of

the numerical explicit methods have conditional stability. They

may not converge when the stability conditions are not

considered. Taking small time or distance steps (∆t or ∆x)

regarding the aforementioned conditions may make those

methods unfeasible. Implicit numerical methods, although

unconditionally stable, have their own problems. For example,

by choosing a specific time step, the user may get an illogical

answer. However, the inherent errors of numerical

approximation and the existence of numerical diffusion,

besides bringing no solution state for some situations, may

introduce some limitations for solving some problems.

Analytical methods, as a tool for checking correctness and

precision of numerical methods, always give precise answers.

However, many situations are not easy or in some cases

impossible. Solving the kinematic wave equation for the rising

limb of a hydrograph over a converging plane has been such a

case up to now. The method presented in this paper is a semi

analytical solution for the 2D converging flow and is based on

two major concepts: the Agiralioglu method for simplifying

the governing equations, and a modified Time Area method for

finding the potential discharge of a converging plane. In

addition, this new method uses a geomorphologic property of

the plane and introduces a reduction factor to consider the

convergence effect of the flow lines in such a domain. The

proposed approach is able to solve the kinematic wave

equation on a converging plane and derives the rising limb,

peak discharge, and time to peak of a hydrograph due to an

effective rainfall with constant rate. This research is an attempt

to fill a gap that was supposed to be unsolvable for more than

40 years. 

2. Materials and methods

Governing Equations

One of the most attractive features of the kinematic wave

equation is its simplicity and sufficiency for the overland flow

routing [3], but for the converging plane, this attraction could

be offset by the complexity of the governing equations. As a

common procedure in flow analysis, the equations are defined

in the Cartesian coordinate system that for the converging

flow, by introducing additional terms, makes them so

complicated. The converging flow equations in such a

coordinate system have two dimensions, but defining the

geometric location of the points in the polar coordinate system

can reduce it to one. According to Woolhiser [6], using the 1D

equations of the kinematic wave in the radial direction is

enough for the simulation of the overland flow over the

converging planes. 

The continuity and momentum (resistance) equations in the

radial form, regarding the primary Veal equations, are as

follows [3]:

(1)

(2)

Where h = flow depth; u = average velocity; i = input lateral

discharge, which can vary in time and space (in simulation of

rainfall-runoff process i is rainfall intensity); q = discharge of

unit width; R = Radius of converging plane; β= power and  α=

friction parameter are used in the resistance equation and can

vary in time and space. For the Manning equation, β and α are

given as follows:

(3)

In which n is the roughness coefficient and Sf is the friction

slope for the Manning equation. 

By the substitution of Equation 1 into Equation 2 and

regarding u as the average velocity, one can write:

(4)

If α is considered constant in space and time, Equation 4 is

simplified as follows:
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(5)

The Boundary conditions for Equation 5 are as follows:

(6)

Where c=convergence coefficient (Fig. 1), and T=rainfall

duration. It is obvious that for t <= T; i (x, t) > 0 and for t > T;

i(x,t) = 0.

3. Relating converging flow to parallel flow 

As it can be seen in the subsequent section, the new method

uses a modified version of the Time Area method, which needs

to compute the kinematic wave front in each time step. To

overcome the complexity of the governing equations in the

converging flow and to find an analytical solution for which, it

was decided to use the parallel flow as the solution domain and

then transfer the results to the converging flow. In this respect,

the Agiralioglu method was used. Agiralioglu [15] developed

a method for determining the time to equilibrium of the

converging plane. The basis of this method is finding the ratio

of the time to equilibrium (te) of a converging plane to that of

a rectangular one. Therefore, upon calculating the time of

equilibrium of the rectangular plane, one can find the required

te of the converging plane. The basic condition for applying

this method is the length equality of the two planes. Figure 2

demonstrates the geometry used by Agiralioglu. In this Figure,

L is the length of planes, R is the radius of the flow field, and

c is the convergence coefficient. It is seen in Figure 2 when c
comes to unity, a converging plane changes to a rectangular

plane.  

The kinematic wave equations, which were used by

Agiralioglu, are as follows:

(7) 

(8)

Equations 7 and 8 are for the rectangular and converging

plane respectively. For comparison of the two planes, Equation

8 must be dimensionless. Using Equation 7, one can obtain the

depth of flow in the equilibrium state (H0) and the time 

to equilibrium (T0) at the end of the rectangular plane as

follows:

(9) 

(10)

Now by introducing the following parameters, one can make

Equation 8 dimensionless. 

(11) 

(12)

In Equation 11, L is the length of flow (Fig. 2) and i0 is the

maximum intensity of rainfall. The boundary conditions of

Equation 12 are as follows:

(13) 

(14)

Where T*=T/T0 and is the dimensionless time of rainfall

duration. Equation 12 can be changed to a set of ordinary

differential equations as follows:                                                         

(15) 

(16) 

Integration of Equation 16 yields:

(17) 

Equation 17, which is derived by Agiralioglu [15], can be

calculated easily. If i is constant, one can write  i* = 1, hence
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(a)                                                                           (b)

Fig. 2. (a) Rectangular plane (b) Converging plane
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after some algebraic operations it gives: 

(18)

Regarding that in the outlet r*=r/L=1 (Fig. 3), one can find

h* in equilibrium state from Equation 18 as follows:

(19)

On the basis of h* from Equation 18 one can find t* from

Equation 15 as follows:

(20)

For r* =1 , t* converges to  te*=te/T0 , in which te and T0 are

the time to equilibrium of the converging and rectangular

planes respectively. Substitution of h* from Equation 18 in

Equation 20 yields: 

(21)

Agiralioglu used a modified form of equation 21 and drew te*
vs. convergence coefficient c (Fig. 4). By β=3/2, 5/3 and 3

Equation 21 yields te* for the Chezy, Manning, and Darcy-

Weisbach equations (as the resistance equation) respectively

(Fig. 4). Given c, one can find te* from Equation 21 or 

Figure 4, then by calculating T0 for the equivalent rectangular

plane (Equation 10), te for the converging plane can be

calculated. 

4. The Time Area method

The Time-Area model as embedded in the Clark unit

hydrograph technique is semi-distributed in nature. The time-

area method was originally developed in the recognition of the

basic importance of storm temporal pattern effects on runoff

[21]. The time-area method was first developed by Clark in

1945 which accounts for spatial pattern of watershed features

as well as the temporal pattern of the storm. The most critical 

step in application of time-area model is the determination of

travel time throughout the watershed (delineation of

isochrones). 

The general equation of Time –Area method which gives a

direct runoff hydrograph due to an effective rainfall is as

follows:

(22)

where j = time step, Q = discharge, i = effective rainfall

intensity and A = area between two consecutive isochrones

(for further study see: [22], [23], and [24]).GIS (Geographic

Information system, which its capability has been known in

different areas of study [25 and 26], could be a useful tool to

derive isochrones effectively.  

5. The new method 

Some basic assumptions were made to develop the new

method for solving the kinematic wave equation on

converging planes to find the rising limb of a direct runoff

hydrograph. These assumptions are as follows:

a) With q0 as the unit discharge at the outlet of the rectangular

plane (q0=αH0β ), and qc as the unit discharge at the outlet of

the converging plane (q0=αhβ ), a relative unit discharge can

be defined as follows:

(23)

(24)
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Fig. 3. Non dimensional solution domain for converging flow
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Fig. 4. Time to equilibrium of a converging plane as a proportion of a rectangular plane time to equilibrium (after Agiralioglu, [16])
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(25)

(26)

In Equation 25, Q = total outflow of converging plane at any

desired point, and w= width of flow at the point where Q is

calculated. 

b) If the rainfall duration is equal to or greater than the time

to equilibrium of the plane, discharge at the outlet (r* = 1)

reaches equilibrium. In this situation the time to equilibrium

can be calculated by using Equation 21 with the specified

condition: r* = 1. The result is as follows:

(27)

c) The wave moves from the edge of the plane and after a time

step traverses the distance r1. All of the points on a line that lie

at the distance r1 from the edge of the plane with a width equal

to w reach  equilibrium and are in a steady state (Fig. 5-a and

5-b). In the second step, the wave front reaches to a distance,

say r2 (Fig. 5-a, and 5-c), in a similar manner. 

d) Each step in the wave propagation is considered as an

independent step. The wave front at the end of each time step

is considered as the end of a converging plane. Then one can

find the discharge in each step using the above-mentioned

equations. The boundary conditions (Equation 13) remain

unchanged in each step. 

Regarding the above principals, the kinematic wave equation

is solved for overland flow routing on a converging plane.

Accordingly, obtaining the rising limb of a hydrograph due to

an effective rainfall needs to go through the following steps:

1- Set the radius equal to r.

2- The convergence coefficient for radius r (cr) is calculated

by Equation 26 as follows:

(28)

3- The values of H0, T0 and Q0 are calculated for a

rectangular plane with a length of r.  

4- By Equation 21 or using Figure 4, te* and then by

Equation 11, te(r) is calculated. 

5- The value of (h*)e from Equation 19 and hence he from

Equation 11 is obtained. 

6- The value of Qr for te(r) (obtained in step 4) is calculated

by using Equations 23, 24, and 25.

7- Add ∆r to r and repeat steps 2 through 7, till wave front

reaches the end of the plane. 

Apparently, the rising limb of the hydrograph can be

computed after step 7 and acquiring the required data (Qr vs.

te(r)). But, there is an inherent mistake in the above mentioned

method that needs the modification of the calculated

discharge. Because of setting the basis of the whole method on

driving the kinematic wave on a rectangular plane and then

modifying the obtained result in favor of the converging plane,

the effects of convergence of the flow lines has been ignored.

Doing this makes the final results overestimated and

thoroughly unacceptable (Figure 7). 

The proposed method applies the principals of the Time Area

method. Based on the basics of the Time Area method, it can

be said that the proposed method tries to simulate the wave

traversed length by the application of the kinematic wave

principals. However, there are two fundamental differences

between the proposed method and the Time Area method.

Firstly, the first isochrone in the Time Area method is the

closest one to the outlet of the basin, while in the proposed

method, it is supposed that the first isochrone is the farthest

one to the outlet of the basin. Saghafian and Shokoohi [22] and

Shokoohi [23, 24] showed that it is necessary to modify the

sequence of the isochrones to achieve the exact solution of the

kinematic wave equations for a rectangular plane. Secondly, it

is supposed that the wave front works as an outlet in each step.

This supposition is important to find a way to consider the

flow lines' convergence effect. In respect to this fact that the

width of the flow is reducing by advancing the isochrone

toward the basin outlet, the idea of introducing a reduction

factor to the proposed method was considered. Recalling that

the outflow of the kinematic wave is nonlinearly dependent to

the upstream drainage area, this factor is seen as the 

most important geomorphologic property of a basin for this

purpose. 

Suppose that the wave after its first step of translation travels

a distance r from the upstream edge of the plane. After this

translation, a new sector with radius r is created. As it can be

seen in Figure 6, the upstream area of this location is equal to

A1, while for the actual outlet the drainage area is equal to AB1
. The reduction factor was set to be the proportion of these two

areas.  The area of a sector with the central angle of θ and the

radius R is obtained by a simple formula: A=θR2/2, then one
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(a)                                             (b)                                                   (c)

Fig. 5. Parameters of converging plane when wave translates from upstream edge to outlet
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can write the following:

(29)

Hence, the geomorphologic reduction factor can be

introduced as:

(30)

By this tuning function, the proposed method will have an

additional step (between steps 6 and 7) as follows:

- The calculated Q in step 6 is multiplied by f. 

6. Results

The most reliable approach to verify the proposed method is

to compare the results of its application on a theoretical

converging plane with those of a well recognized and

acceptable method. For the case study, a basic problem that has

been solved by the Woolhiser numerical method for the rising

limb of a hydrograph was chosen [3]. The assumed plane is a

converging plane with S0=0.05, c=0.1, R=100 ft, θ=30
o
, and a

Chezy resistance coefficient of 10 ft1/2/sec. A net rainfall with

the intensity of i=10 in/hr and the duration of 90 sec was

applied throughout the plane. The results of applying the

Woolhiser method, according to Singh [3], have been shown in

Figure 7. The problem was then solved with and without the

geomorphologic correction factor f using the new method

(Equation 30). The new method result after the application of

the geomorphologic reduction factor completely coincides

with the Woolhiser solution.  

7. Summary and conclusion 

Because of the similarity of the upstream subbasins in large

watersheds to converging planes, finding a robust and simple

solution for the kinematic wave is a concern of 2D overland

flow modeling since the 1960s. For the sake of simplicity,

robustness, and speed, almost all of the hydrological models

use the rectangular planes for the simulation of the kinematic

overland flow, even though it is widely recognized that this

assumption for upstream subbasins could increase inaccuracy

and the burden of the calibration process of the models. In this

regard, the model calibration may change some of the physical

parameters that are important in flow routing. In such a

condition, the calibrated parameters lose their value to reflect

the actual condition of the basin and the probable usage for

reliable long-term prediction. 

The convergence of the flow lines complicates the continuity

equation, so there is no analytical solution for the rising limb

of the hydrograph in the overland flow routing. In this paper, a

new analytical/semi analytical geomorphologic based method

for solving the kinematic wave equations on converging

planes was presented. This method is analytical because of

using a basic procedure that is founded on finding the

kinematic wave propagation velocity in order to compute the

discharge at the outlet. This method is semi analytical because

of the successful application of a correction factor onto the

results of the analytical portion of the proposed method. This

method is a geomorphologic one because it relies on the most

important feature of watersheds: the drainage area. 

The main idea in this research was to modify the intricate

governing equations of the converging flow so that they could

be solved analytically. In this regard, solving the kinematic

equations for parallel flow and then modifying the results in

favor of converging flow was considered. In this respect, the

Agiralioglu method was used. This method, which is based on
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Fig. 6. Illustration of areas used to derive correction factor
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the original works of Wollhiser, uses the dimensionless form

of Veal’s equations and determines the ratio of the converging

plane time to equilibrium to that of a rectangular plane. In the

new presented method, the location of the wave front, the

corresponding equilibrium depth (he), and equilibrium

discharge (Qe) at each time step are calculated. In this respect,

the performance of the new method is the same as the Time

Area method, while there are two distinct differences between

them. In the proposed method, the first isochrone is the

farthest one to the basin outlet, and the isochrone in each time

step is regarded as an outlet as if the location of the outlet of

the basin changes with time. For the translation of the

calculated discharge in the wave front toward the actual outlet,

a reduction (correction) factor, based on the varying degree of

convergence in each time step, was proposed. The

multiplication of this factor by the calculated Qe yields the

discharge at the basin's outlet. This procedure must be iterated

until the wave front reaches the basin's outlet. 

The results of applying the new method and the Woolhiser

numerical technique to a representative problem were

compared. The outcomes indicated that the two methods gave

similar results, but the proposed method in this paper has an

analytical nature without any kind of limitations.

Some further studies are needed for coding and incorporating

the proposed method in a comprehensive hydrological model.

It helps to evaluate the new method in the actual basins and

appraise its effects on enhancing the calibration processes in

order to reduce the burden of calibration in large watersheds.

In doing this, the physical meaning of the involved parameters

can be appropriately interpreted. 
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Notation

The following symbols are used in this paper:

h = flow depth

u = average velocity 

i = input lateral discharge or rainfall intensity

q = discharge of unit width

R = length of converging plane

β = power used in resistance equation

α = friction parameter used in resistance equation

c = convergence coefficient

T = rainfall duration

H0 = flow depth in steady state on rectangular plane

T0 = Time to equilibrium on rectangular plane

L = flow length 

i0 = maximum rainfall intensity

h*=h/H0
t*=t/T0
r*=r/L

49International Journal of Civil Engineering, Vol. 10, No. 1, March 2012

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
22

 ]
 

                               7 / 8

https://www.iust.ac.ir/ijce/article-1-524-en.html


R*=R/L
i*=i/i0
T*=T/T0
q0 = unit discharge at the outlet of rectangular plane

qc = unit discharge at the outlet of converging plane

Q = converging plane at any desired point

w = width of flow at the point that Q is calculated. 

Q0 = total outflow of rectangular plane.  

A1 = upstream area of any desired location 

AB1 = actual outlet drainage area 

θ = central angle of sector 

f = Correction (reduction) factor

S0 = slope of plane
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