
1. INTRODUCTION

Symmetry has been widely used in science

and engineering, Hargittai [1], Gruber [2],

Glockner [3], Zingoni [4], Zingoni et al. [5].

Many eigenvalue problems arise in many

scientific and engineering problems,

Livesley [6]), Jennings and McKeown [7],

Bathe and Wilson [8]. While the basic

mathematical ideas are independent of the

size of matrices, the numerical determination

of eigenvalues and eigenvectors becomes

more complicated as the dimensions of

matrices increase. Special methods are

beneficial for efficient solution of such

problems, especially when their

corresponding matrices are highly sparse.

Methods are developed for decomposing and

healing the graph models of structures, in

order to calculate the eigenvalues of matrices

and graph matrices with special patterns. The

eigenvectors corresponding to such patterns

for the symmetry of Form I, Form II and

Form III are studied in references, Kaveh and

Sayarinejad [9,10], and the applications to

vibrating mass-spring systems and frame

structures are developed in Kaveh and

Sayarinejad [11] and Kaveh and

Salimbahrami [12], respectively. These

forms are also applied to calculating the

buckling load of symmetric mechanical

systems [13,14].

The main aim of this paper is to extend the

method developed in Ref. [14] for

calculating the buckling loads of the frames

with rigid joints to include the effect of semi-

rigidity of the joints. This is achieved by

decomposing a symmetric model into two

submodels and then performing healing in

such a manner that the union of the

eigenvalues of the healed submodels result in

the eigenvalues of the entire model. Thus the

critical load of the frame is obtained using

the eigenvalues of its submodels.

2. TRANSFORMATION OF MATRICES

TO CANONICAL FORMS

In this section, an NGN symmetric matrix

[M] is considered with all entries being real.

For three special canonical forms, the

eigenvalues of [M] are obtained using the
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properties of its submatrices.

Canonical Form I: In this case [M] has the

following pattern,

(1)

with N = 2n.

Considering the set of eigenvalues of the

submatrix [A] as {l(A)}, the set of

eigenvalues of [M] can be obtained as:

(2)

Since det (M) = det (A)Gdet (A), the above

relation becomes obvious. The sign      simply

indicates the collection of the eigenvalues of

the submatrices.

Canonical Form II: For this case, matrix

[M] can be decomposed into the following

form:

(3)

The eigenvalues of [M] can be calculated as,

(4)

where:

(5)

[C] and [D] are called condensed submatrices

of [M]. The proof of this Form can be

considered as the special case of the proof for

Form III, and it is not repeated for brevity.

Canonical Form III: This form has a Form

II submatrix augmented by some rows and

columns as shown in the following:

(6)

Where [M] is a (2n+k)G(2n+k) matrix, with

a 2nG2n submatrix with the pattern of Form

II, and k augmented columns and rows. The

entries of the augmented columns are

repeated in the first and second block for

each column, and all the entries of [M] are

real numbers.

Now [D] is obtained as [D] = [A] - [B], and

[E] is constructed as the following:

(7)

The set of eigenvalues for [M] is obtained as:

(8)

More refined description of the above forms

and the proof for their validity can be found

in Refs. [9,10]. An excellent description of

other canonical forms can be found in Ref.

[15].

In order to benefit the symmetry of the

structures, two different methods can be

employed. In the first method, the stiffness

matrix of the structure with an appropriate

numbering of the DOFs is constructed and

according to the rule of Section 2, the
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submatrices C and D or D and E can be

formed for Form II and Form III canonical

forms, respectively. In the second method,

the formation of the entire stiffness matrix

can be avoided by decomposing and healing

of the structural model [15]. Here, both

methods are employed for studying frames

with semi-rigid joints having odd and even

numbers of spans for both non-sway and

sway cases.

3. SYMMETRIC FRAMES WITH AN

ODD NUMBER OF SPANS

Methods for including the effect of semi-

rigidity of joints in frame structures are well-

developed, Chen [16]. In Appendix a brief

introduction is included and used for the

formation of the stiffness matrices in

subsequent sections.

3.1 Frames without sway

In this section frames with an odd number of

spans are studied. The symmetry axis of

these frames passes through the beam

elements and with an appropriate numbering

of the DOFs, the stiffness matrix of this

structure gain the Form II canonical form. As

an example, the frame shown in Fig. 1 has

two rotational DOFs, and the corresponding

stiffness matrix has the following form:

(9)

In all the examples, b indicates that the

element is a beam and c shows that the

element is a column. Considering

LC = 200cm, Lb = 100cm, I = 100cm4,

E=2.01G106Kg/cm2 and k=5G106 for the

spring, the buckling load is calculated as

Pcr=150 ton

The stiffness matrix has the Form II

symmetry and therefore using the results of

Section 2 can be decomposed in order to find

the stiffness matrices of its factors as:

(10a)

(10b)

In the following the factors C and D are

obtained without the formation of the entire
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stiffness matrix of the structure.

Healing Process:

For the non-sway frame with odd number of

spans per storey and semi-rigid joints,

healing consists of the following steps:

1. Delete the beams crossed by the axis of

symmetry. These are link beams, identified

by Lb. Now the structure is decomposed into

two substructures S1 and S2 in the left and

right hand sides, respectively.

2. For S2 add a hinge support to prevent the

lateral displacement at the end of the column

where the beam is cut.

3. For S1, add a hinge support to prevent the

lateral displacement at the end of the column

where the beam is cut. Then add one

rotational spring, with a stiffness equal to 

,to the joint at the ith storey. 

This provides the necessary stiffness

requirement for obtaining the factor C.

S1 and S2 are now healed and the factors C

and D are obtained. 

Example 1: Consider the frame shown in

Fig. 1. Implementing the above process, the

factors C and D are obtained as illustrated in

Fig. 2.

Now the stiffness matrices are formed for the

factors as:

(11a)

(11b)

Using the same assumption as for the

structure, the buckling loads of the

substructures are calculated as:

(Pcg)C=370 ton

(Pcg)D=150 ton

and the smallest of this is 150 ton which is

the buckling load of the structure.

Example 2: Now consider a two-story frame

with four rotational DOFs as shown in Fig. 3.
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Fig. 2 Stiffness for the factors C and D
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The stiffness matrix is formed as:

(12)

Considering LC = 200cm, Lb = 100cm,

I = 100cm4, E = 2.01G106Kg/cm2 and

k=5G106 for the spring, the buckling load is

calculated as

Pcr= 150 ton

After healing, the factors C and D are

obtained as shown in Fig. 4.

For the factors shown in Fig. 4, the stiffness

and mass matrices are constructed in the

follows:

(13a)

.

(13b)

Using the information from Fig. 3 and before

decomposition, for the factors the buckling

loads are calculated as:

(Pcg)C=150 ton

(Pcg)D=37.48 ton

The smallest of these two, namely 37.48 ton,

is the buckling load of the structure.

3.2 Frames with Sway

In this section the behaviour of the sway

frames with semi-rigid joints is studied. For

simplicity the axial deformation of the beams

are neglected, and for each story level one

translation DOF is considered. In order to

have Form III symmetry, first the rotational

DOFs are numbered suitable for Form II

symmetry followed by story level translation

DOFs. For the formation of the factors of the

frame, a column is defined similar to that of

Ref. [13].

The stiffness matrix of the column is as

follows:

(14)
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Fig. 4 Stiffness for the factors D and C
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Healing Process:

For symmetric frames with odd number of

spans per storey and semi-rigid joints,

healing consists of the following steps to

obtain the factors D and E:

1. Delete all the beams which are crossed by

the axis of symmetry. Now the structure is

decomposed into two substructures S1 and S2
in the left and right hand sides, respectively.

2. For S2 the DOF of the beam are removed

add a rotation spring with stiffness equal to  

is added to the corresponding 

joint in each floor.

3. For S1, a hinge support is added to prevent

the lateral displacement at the end of the

column where the beam is cut. This provides

the necessary stiffness requirement for

obtaining the factor D.

4. The effect of lateral displacement on E is

provided by the addition of the new column,

as shown in Fig. 5. 

S1 and S2 are now healed and the factors D

and E are obtained. 

Example 3: Consider a frame with two

rotational DOFs and one translational DOF,

as illustrated in Fig. 6. Nodal ordering is

similar to the previously described process.

The stiffness matrix is constructed in the

following:

(15)

Considering LC = 200cm, Lb = 100cm,

I = 100cm4, E=2.01G106Kg/cm2 and

k=5G106 for the spring, the buckling load is

calculated as:

Pcr=36.9 ton

The above stiffness matrix has Form III

symmetry. Therefore using the healing

required for the Form III symmetry, the

factors D and E are obtained, Fig. 7.
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The stiffness matrices of D and E are

obtained as follows:

(16a)

(16b)

Using the same data as before the

decomposition, the buckling loads are

calculated for the substructures as:

(Pcg)D=150 ton

(Pcg)E=36.9 ton

and the smallest of this is 36.9 ton which is

the buckling load of the structure.

Example 4: Consider the two-story sway

frame with semi-rigid joints, as shown in Fig.

8.

The stiffness matrix of the frame is

constructed as follows: 

(17)

Having the Form III symmetry, the factors D

and E are obtained using the process of

healing for the sway frames with odd number

of spans, Fig. 9.
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Fig. 9 Factors of the structure shown in Fig. 8
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The stiffness matrices of the factors D and E

are formed as follows.

(18a)

(18b)

Considering LC = 200cm, Lb = 100cm,

I = 100cm4, E = 2.01G106Kg/cm2 and

k=4G106 for the spring, the buckling loads of

the substructures are calculated as:

(Pcg)D=37.48 ton

(Pcg)E=27.47 ton

and the smallest of this is 27.47 ton which is

the buckling load of the structure.

4. SYMMETRIC FRAMES WITH AN

EVEN NUMBER OF SPANS

In this section frames with an even number of

spans are studied. For these frames the axis

of symmetry passes through the columns. In

general with an appropriate numbering of the

DOFs the stiffness matrices have Form III

symmetry. For numbering the rotational

DOFs are number suitable for Form II

symmetry followed by an arbitrary

numbering of the translation DOFs.

4.1 Non-sway Frames

Example 5: Consider a two-span non-sway

frame with semi-rigid joints as shown in Fig.

10.

The stiffness matrix is constructed as 

(19)

Now a new beam element is defined which is
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Fig. 10 A two-span frame with no sway
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a directed beam as shown in Fig. 11.

The stiffness matrix for the new beam is as

(20)

The healing process: For frames with an even

number of spans the healing process consists

of the following steps:

Step 1: The structure is cut at an infinitesimal

distance e to the left side of the symmetry

axis.

Step 2: For the substructure at the left hand

side, a clamped support is added at the cut

points, to obtain the factor D.

Step 3: For the substructure at the right hand

side, a hinged support are add to prevent the

substructure from the lateral displacements.

Then directed beams are added at the cut

points. In this way the factor E is constructed.

For the structure shown in Fig. 10, the factors

D and E are shown in Fig. 12.

The stiffness matrices of the factors D and E

are constructed as:

(21a)

(21b)

Considering LC = 200cm, Lb = 100cm,

I = 100cm4, E = 2.01G106Kg/cm2 and

k=7G106 for the spring, the buckling loads of

the substructures are calculated as:

(Pcg)E=150 ton

(Pcg)D=281 ton

and the smallest of this is 150 ton which is

the buckling load of the structure.

Example 6: Consider a two-story frame

without sway a shown in Fig. 13.

The factors D and E are formed using the

process previously described, Fig. 14.

The stiffness matrices of D and E are

constructed in the following:

(22a)
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Considering LC = 200cm, Lb = 100cm,

I = 100cm4, E = 2.01G106Kg/cm2 and

k=4G106 for the spring, the buckling loads of

the substructures are calculated as:

(Pcg)D=95.4 ton

(Pcg)E=37.48 ton

and the smallest of this is 37.48 ton which is

the buckling load of the structure.

Example 7: Consider a two-story symmetric

frame as shown in Fig. 15.

The stiffness matrix has the Form II

symmetry and is formed as:

Considering LC = 200cm, Lb = 100cm,

I = 100 cm4, E = 2.01G106 Kg/cm2 and

k = 4G106 for the spring, the buckling load is

calculated as

(Pcr) = 20.94 ton

Using the suggested healing process the

factors C and D are obtained as illustrated in

Fig. 16.

The stiffness and mass matrices of the

substructures are constructed as:

(24a)

(24b)

Using the same data as in Fig. 15, the

buckling load for the substructures are

calculated as:

(Pcg)C=86.890 ton

(Pcg)D=20.9 ton

and the smallest of this is 20.9 ton which is

the buckling load of the structure.

4.2  Sway frames

For this type of frames the corresponding

matrices have Form III symmetry when the

DOFs are number appropriately as

previously described.

Example 8: Consider a two-span frame with

sway as shown in Fig. 17.

The stiffness matrix has the Form III

symmetry and is formed as follows:

168 International Journal of Civil Engineerng. Vol. 4 , No. 3, September 2006





















































�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

��
�

�
�

�
�

��
�

�
�

�

b

b
2
b

b

C

C

C

C

b

b
2
b

b

C

C

b

b
2
b

b

C

C

b

b
2
b

b

b

b
2
b

b

b

b
2
b

b

C

C

C

C

b

b
2
b

b

C

C

b

b
2
b

b

C

C

L

EI4

L

EI6

L

EI4

L

EI2

L

EI4

L

EI6
0

L

EI2

L

EI4

L

EI6

L

EI8
0

L

EI4

L

EI6

L

EI4

L

EI6
0

L

EI4

L

EI6

L

EI4

L

EI2

0
L

EI4

L

EI6

L

EI2

L

EI4

L

EI6

L

EI8

K

















































�

�

�

�

�

15

L4

30

L2
00

30

L2

15

L6
00

00
15

L4

30

L2

00
30

L2

15

L6

L

P

2
C

2
C

2
C

2
C

2
C

2
C

2
C

2
C

C

(23)

























�

�

�





























�
�

�
�

�
�

�
�

�

15

L4

30

L2
30

L2

15

L6

L

P

L

EI8

L

EI12

L

EI4

L

EI2

L

EI2

L

EI8

L

EI12

L

EI8

2
C

2
C

2
C

2
C

c

b

b
2
b

b

C

C

C

C

C

C

b

b
2
b

b

C

C

CK

























�

�
�

























�

15

L4

30

L2
30

L2

15

L6

L

P

L

EI4

L

EI2
L

EI2

L

EI8

2
C

2
C

2
C

2
C

c

C

C

C

C

C

C

C

C

DK





















































���

��
�

�
�

�
�

��
�

�

��
�

��
�

�
�

��
�

��
�

�
�

�

3
C

C
2
C

C
2
C

C
2
C

C

2
C

C

b

b
2
b

b

C

C

b

b
2
b

b

b

b
2
b

b

2
C

C

b

b
2
b

b

b

b
2
b

b

C

C

2
C

C

b

b
2
b

b

b

b
2
b

b

C

C

L

EI36

L

EI6

L

EI6

L

EI6
L

EI6

L

EI8

L

EI12

L

EI4

L

EI4

L

EI6

L

EI4

L

EI6
L

EI6

L

EI4

L

EI6

L

EI4

L

EI6

L

EI4
0

L

EI6

L

EI4

L

EI6
0

L

EI4

L

EI6

L

EI4

K













































���

�

�
�

5

18

10

L

10

L

10

L
10

L

15

L2
00

10

L
0

15

L2
0

10

L
00

15

L2

L

P

CCC

C
2
C

C
2
C

C
2
C

C

(25)

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
18

 ]
 

                            12 / 19

https://www.iust.ac.ir/ijce/article-1-340-en.html


The factors are obtained similar to the

previous case, with the difference of a new

column being added to the column on the

axis of symmetry, Fig. 18. The lateral

displacement is incorporated only in the

factor E.

The stiffness matrices for the factors D and E

are as follow:

(26a)

(26b)
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Fig. 18 Factors of the structure shown in Fig. 17
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Considering LC = 200cm, Lb = 100cm,

I = 100cm4, E = 2.01G106Kg/cm2 and

k=7G106 for the spring, the buckling loads of

the substructures are calculated as:

(Pcg)D=280 ton

(Pcg)E=38.35 ton

and the smallest of this is 38.35 ton which is

the buckling load of the structure.

5. CONCLUDING REMARKS

Exploiting the symmetry of structures can be

made by using discrete mathematics. This

prepares the ground for more efficient use of

the computer and to an understanding which

enables us to interpret the final results more

readily. Factoring the symmetric structures

has the following advantages:

1. The DOFs of the problem is reduced.

2. The computational effort is decreased.

3. The solution of larger problems becomes

feasible.

Though the examples are selected from small

structures, however, the method shows its

potential more when applied to large-scale

structures. For structural models with hyper-

symmetry, further decomposition can be

performed, leading to smaller factors.

Here, only simple types of symmetry are

studied corresponding to three canonical

forms. The method can be extended to other

cases when more than one axis of symmetry

is present.
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Appendix:  Analysis of frames with semi-

rigid joints

A.1 End fixity factor

There are two different strategies to

incorporate connection flexibility into a

computer-base frame analysis. One way is to

define new connection elements to model the

beam-column connection directly to the

frame analysis. The second approach which

is adopted here, is based on modeling the

connection as a length-less rotational spring.

This method is widely used in semi-rigid

analyses, and the implementation of this

approach requires small modifications in the

existing analysis programs [16].

For the semi-rigid member shown in Fig.

A.1, for each connection of the member the

following connection fixity can be defined: 

(A.1)

where Rj is the end-connection spring

stiffness and EI/L is the stiffness of the

member. For flexible connections, the value

of end fixity factor is zero. For rigid

connections, this factor is unity. For a semi-

rigid connection this value is between zero

and unity.

Fig. A.1 A semi-rigid member

A.2 First Order Analysis

The stiffness matrix of a semi-rigid member i

can be expressed as follows:

(A.2)

where Si is the stiffness matrix of the member

with rigid ends and Ci is the connection
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matrix as:

(A.3)

(A.4)

Where E is Young’s modulus, and L, A and I

are the length, cross sectional area and

moment of inertia, respectively. For

r1 = r2 = r we have 

(A.5)

Considering   

we obtain:

(A.6)

Hence for the first order analysis we have

(A.7)

A.3 Second Order Analysis

When an equilibrium and kinematic

relationship is established with respect to the

deformed geometry of the structure, the

analysis is referred to as geometrical
nonlinear or second order analysis.

Consider a planar beam-column as shown in

Fig. A.2, consisting of three separate

elements with 10 DOFs. For two connections

the moment-rotation relationships can be

written as

(A.8)

where F7, F8, F9 and F10 are the moments in

the connections, u7-u8 = θ1 and u9-u10 = θ2
are the rotations of the connections, and R1
and R2 are the stiffnesses of connections 1

and 2, respectively.
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The relationship between member-end

displacements and forces for the beam-

column considering P-D effects is 

Fi = (Si +Gi).ui (A.9)

Where Si is the elastic stiffness matrix and Gi
is the geometrical stiffness matrix for a rigid-

ended frame and N is the axial force of the

member. In an expanded form we have 

(A.10)

The force-displacement relationship for three

elements of Fig. A.2 can be written as:

(A.11)

Or in a compact form we have:

(A.12)

Now consider the three elements of Fig. A.2

to be combined as in Fig. A.3, to form a

single element with 8 DOFs.

.

(A.13)

The stiffness matrix for the combined

element of Fig. A.3 can be written as

(A.14)

(A.15)
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Fig. A.2 Member and end springs with 10 DOFs
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Fig. A.3 A combined element with 8 DOFs
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where Skl and Gkl for k,L = 1,…,6 are the

elements of the elastic and geometrical

stiffness matrices, respectively, for the rigid-

ended members.

Now the degrees of freedom 7’ and 8’ are

eliminated by static condensation to obtain

the force displacement relationship of the

element shown in Fig. A.1 with six DOFs.

(A.16)

Where U6G1, F6G1 are the displacements and

forces corresponding to the exterior DOFs 1’

to 6’ and U2G1, F2G1 correspond to DOFs  7’

and 8’. From F2G1={0,0}t , the following can

be obtained:

(A.17a)

(A.17b)

leading to

(A.18)

Therefore 

(A.19)

Each entry of KiSR involves non-linear

fractional functions in terms of the parameter

NL2/EA, where N is the member axial force.

A Taylor’s series is used to expand the non-

linear fraction matrix into a polynomial

matrix in terms of NL2/EA. The elastic

stiffness matrix is obtained as the constant

matrix of the Taylor’s series and the

geometrical stiffness matrix Gi is obtained as

the first order terms of the polynomial matrix

and is presented in non-dimensional form as: 

(A.20)

where

(A.21)

where

(A.22)

For simplifying of the analysis, the member

geometrical stiffness matrix Gi can be

expressed in terms of the end-fixity factor r1
and r2 can be expressed as follows:
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(A.24)

After formation of the geometrical stiffness

matrix Gi, the overall stiffness matrix of the

semi-rigid element i is calculated as

(A.25)

Where Si and Ci are previously obtained and

Gi is calculated as (A.20).
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