
1.  Introduction

The buried pipeline is decaying due to

insufficient quality control, resulting in poor

installation, little or no inspection and

maintenance, and a general lack of

uniformity and improvement in design,

construction and operation practices. Many

researchers have focused on this topic and

developed the soil-pipe interaction

experimentally, numerically or presented the

mathematical relations or empirical

equations. The original work was carried out

by Marston and Anderson (1913) [1], and a

theory for calculating diametric change under

soil overburden, was used by Spangler

(1941) [2] to obtain a formula for calculating

the horizontal deflection of buried pipes

under soil overburden. Masada (2000) was

revisited the classical work of Spangler to

derive a modified Iowa formula for

estimating vertical deflection of flexible pipe

under soil overburden [3]. 

These design methods, whether developed

from empirical or theoretical bases, deal with
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predicted loading experienced by embedded

flexible pipes as a result of static stress.

Hence, study the pipe behavior under

temporary or permanent repeated load

similar to heavy vehicles is an important

case. Many laboratory or field studies have

been carried out by Rogers et al. (1995) [4],

Faragher (1997) [5], Faragher et al. (2000)

[6], Mir Mohammad Hosseini & Moghaddas

Tafreshi (2002) [7], Arockiasamy et al.

(2006) [8] performed field tests on

polyethylene, PVC, and metal large diameter

pipes subjected to highway design truck

loading, then the numerical simulations using

finite element method are performed to

determine pipe-soil interaction under live

load application. Bueno et al. (2006) were

conducted an experimental testing program

to evaluate the effect of geosynthetic

reinforcements on vertical stresses acting on

top of the pipe.

Above literature indicates that, in spite of

extensive experimental or numerical studies

which have been carried out to model the

soil-pipe interaction on buried pipe

embedded in unreinforced soil leading to

many mathematical relations and empirical

equations, no possibility was provided for

studying of the pipe behavior under repeated

loads conditions in reinforced sand.

In recent years, artificial neural networks

(ANNs) and regression method have been

successfully used for many civil engineering

problems (Flood and Kartam, 1994 [10, 11];

Turkkan and Srivastava, 1995 [12]; Kartam

et al., 1997 [13]; Lee, 2003 [14]; Ataeia et al.,

2000 [15]; Bera et al.2005 [16]). The current

paper investigates the feasibility of using

artificial neural networks and regression

model to evaluate the vertical diametric

strain (VDS: Vertical Diametric Strain which

defined as the reduction in vertical diameter

divided by original vertical diameter) of

buried plastic pipes in reinforced sand under

repeated-loads such as heavy traffic at the

end of the cyclic which the deformation of

pipe is stabled. The effects of various vital

parameters such as, relative density of sand

(Dr), number of reinforced layers (N) and

embedded depth of pipe (H/D) on VDS were

studied by artificial neural networks and

regression method. Finally, Comparison

between predictions obtained from the

trained neural network, regression model and

those from experimental data are presented.

The used experimental data for training and

verification the neural network and

regression model is obtained from the

physical model which was developed in K.N.

Toosi University of Technology by the first

author. 

2. Description of experimental model 

The used data in the present study are

obtained from experimental model test of 110

mm plastic pipe embedded in reinforced sand

with geogrid layers. Fig.1 shows the

schematic layout of the trench, which

accommodates the soil, layers of

reinforcement, pipe and steel plate (as

loading surface). According to this figure the

values of u/B= h/B and h/D are 0.35 and 4,

respectively.

The properties of the materials used in the

present research are given below:

Soils: Based on Fig. 1, two types of soil are

prepared in the test tank as the surrounding

materials. 

Soil A: This soil which is used to simulate the

natural ground (at bedding and two sides of

the trench) was a granular soil of grains size

between 0.08 and 20 mm, with D50=3.7 mm,

Cc=0.79 and Cu=13.75.
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Soil B: The main soil which is used in this

study was a relatively uniform silica sand of

grains size between 0.07 and 1.24 mm, with

D50=0.64 mm, Cc=1.29, Cu=1.51 and

Gs=2.67. This sand is classified as SP in

unified soil classification system. In order to

study the effect of the soil density on the

behavior of the buried pipe, three different

relative densities: 42%, 57%, and 72% were

selected as the relative loose, medium dense

and dense states, respectively.

Pipe: The plastic pipes used in this research

had 110 mm external diameter, 4.03 mm

thickness and 210 mm length. The pipes were

made of polyethylene (HDPE: High Density

Polyethylene). The modulus of elasticity and

the Poisson’s ratio of pipe were 8160

Kg/cm2, and 0.46 respectively. 

Geogrid: The geogrid was used in this

research made of HDPE (High Density

Polyethylene). The engineering properties of

this geogrid are: thickness 5.2 mm, mass per

unit area 695 gr/m2, ultimate tensile strength

5.8 kN/m, Poison ratio 0.4, modulus of

elasticity  8000 kg/cm2 and  aperture size

27G27 mm.

The time history of repeated load which

applied on the soil surface is shown in Fig. 2.

It can be seen that the repeated load was

returned to zero at the end of each cycle that

is typical of a vehicle loading on a track or

pavement support. The tests were carried out

under repeated load with amplitude of 5.5

kg/cm2 to simulate the heavy vehicle loading. 

The typical trends of pipe deformation in

term of change in VDS (Vertical Diametric

Strain: defined as the reduction in vertical

diameter divided by original vertical

diameter) of pipe and with the time (or

number of load cycles) under loading and

unloading are shown in Fig. 3. This figure is

shown that, the variation of VDS is stabled

after short time (almost 400 sec) which is

called maximum VDS. The influence of

parameters such as number of reinforced

layers (N); relative density of sand (Dr); and

embedded depth of pipe (H/D) has

investigated in the testing program.

3. Artificial Neural Networks (ANNs)

Recently, there has been a great resurgence of

research in neural network classifiers.

Artificial neural networks (ANNs) are

introduced as computing systems made up of
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Fig. 1. The schematic layout of the trench.

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
22

 ]
 

                             3 / 16

https://www.iust.ac.ir/ijce/article-1-318-en.html


a number of simple, highly interconnected

processing elements called neurons. The

networks are represented by connective

weights between the neurons. These weights

are the parameters that define the non-linear

function performed by the neural network.

The process of determining these weights is

called training or learning and depends on the

presentation of as many reliable training

patterns as possible. ANNs are capable of

performing an amount of generalization from

the data entries on which they are trained. 

The most widely used connection pattern is

the three layers back propagation neural

network [17], which has proved to be useful

when modeling input-output relations [18]

and is also used in this study. The number of

neurons of input and output layers coincide

with the number of input and output variables

in the data set whereas there is no specific

rule to determine the number of hidden layers

or the number of neurons in each hidden

layer, hence the number of neurons in each

hidden layer must be found experimentally.

But usually, a network with two hidden

layers (two sub-layers) is sufficient to handle

most of complex problems in civil

121International Journal of Civil Engineerng. Vol. 5, No. 2, June 2007
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engineering applications.

By varying the weights, among neurons, a

network may be trained to reproduce the

desired input-output relationship. The

nonlinear transformation between input and

output is performed by neurons in hidden

layer, which transforms the weighted inputs

using a transfer function. The most

commonly used transfer functions are the

linear, sigmoid, log-sigmoid and the tan-

sigmoid functions [17]. Training consists of

(i) calculating outputs from input data, (ii)

comparing the calculated outputs for each

pattern with a target output for that pattern,

and (iii) adjusting the weights for each

neuron to decrease the difference between

the measured and calculated values

(calculating the error and propagating an

error function backward through the neural

network). This training procedure uses the

back propagation algorithm [19].

4. Regression analysis

Regression analysis attempts to derive

equations, which can be used to estimate the

relationships between two or more variables.

A general regression model is mathematical

equation in the form of: 

y = f (x1,x2,...,xp) (1)

Where y is the dependent variable usually

called response variable, and (x1,x2,...,xp) are

independent variables (the variables used to

explain y).

A famous form of this model is linear

function which has been assumed in the

following form:

(2)

In this model ζ i is the parameter related to ith

independent variable and p is the number of

independent variables and parameters.

In great of engineering problems a non-linear

relationship between parameters established.

Hence it is necessary which the non-linear

models transform to linear models. For

example; the non-linear model as below:

y = ζ0 x1
ζ
1 x2

ζ
2 ... xp

ζ
p (3)

Can be linearized by using a logarithmic

transformation, which is given as follows:

Log y = Log ζ0 +ζ1 Log x1+ζ2 Log x2+...+ζp Log xp

Or

yt= ζ0t+ ζ1 x1t + ζ2 x2t +...+ ζp xpt (4)

Where   yt = Log y ,    ζ0t = Log ζ ,

x1t = Log x1 ,  x2t = Log x2 , xpt = Log xp

Standard regression techniques can now be

used to estimate ζ0t, ζ1, ζ2, ..., ζp for Eq. (4).

In  practice,  n observations  would  be

available  on  y with  the  corresponding  n
observations on each of the p independent

variables. Thus n numbers of equations, in

the form of Eq. (4), can be written, one for

each observation.  Essentially, n equations

will be solved for the p unknown parameters.

Thus n must be equal to or greater

than p (pPn). 

A simple method which solves this equation

and estimates the unknown parameters ζ, is

minimizing the sum of squares of the errors,

S = Σ ei
2 ; Where ei = ( yi - ŷi ),  and ŷi is the

predicted value of yi .

Assessment of regression model can be done

estimating of at least two indices: the

multiple coefficient of determination (R2)

122 International Journal of Civil Engineerng. Vol. 5, No. 2, June 2007
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and standard error (Es). The most powerful

measure of quality of fit is R2. The multiple

coefficient of determination R2 gives an

indication of how good choice the

independent variables x1, x2,..., xp is in

predicting, the dependent variable y. It

describes the amount of variation in y values

explained by the regression line. The range of

R2 is 0 through 1(or 0 through 100%); the

larger value of R2 and the smaller value of Es,
indicate the better regression model for the

data. 

5. Training of ANNs and Regression

model for buried pipe in reinforced sand

The training of each model is carried out

using the training data set. Out of the total 72

experimental data, 48 data are allocated

(randomly chosen) for training the ANNs and

regression model. The range of input

parameters of the data used for training the

ANNs and regression model according to

experimental program is given in Table 1.

5.1. Training of ANNs 

In this study, neural network is trained for

maximum vertical deformation of embedded

pipe in reinforced sand (VDS). The best

neural network was identified after a number

of trials. An input layer of three neurons (Dr,

N, H/D), an output layer of one neuron VDS,

and also two hidden layers are considered in

the design of the ANNs for neural network

which the number of optimum neurons in

first and second hidden layer is obtained 6

and 28 neurons for predicting of VDS. It is

noted that the number of neurons in each

hidden layers is considered trained once the

error of network reaches a minimum value

[20]. The ANNs structure as schematically is

shown in Fig. 4.

For a better network performance, the input

and output data pairs are subjected to scaling

process before being use in the network

operation, because the compiled raw training

data for different parameters can vary

significantly in their actual values. When

such non-scaled data are directly used in the

training procedure, the network could exhibit

ill-conditioning.

Also the selection of transfer functions plays

an important role in ANNs problems. Hence,

among the several different types of transfer

functions, the log-sigmoid transfer function

is used in this study.

In case of the log-sigmoid transfer function,

the output is in the range (0, +1), and so the

input is sensitive in a range not much larger

than (0, +1). Scaling of data can be linear or

non-linear, depending on the distribution of

the data [21]. In this study, the scaling of the

training data set, based on the positive range

of input parameters in Table 1, was carried

out a linear form using the following

equation:

(5)

Where (x)iscaled and xi are the scaled and

123International Journal of Civil Engineerng. Vol. 5, No. 2, June 2007

Neural network input parameters Range of parameter 

number of reinforced layers, N 0 to 5 

relative density of sand, Dr 42% to 72% 

embedded depth of pipe, H/D 1.5 to 3 

Table 1 Range of input parameters of the experimental data used to train the ANNs and regression model.
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un-scaled values of the training set,

respectively and  α is 5, 100 and 5 for scaling

the N, Dr and H/D, respectively. The output

of the network VDS is subjected to an inverse

scaling to return the normal quantities of the

output parameters. Also the neural network

available in MATLAB version 7 [22] was

utilized to construct the proposed neural

network. A package of neural network

comments has been used to model the

problem using back propagation neural

networks [23].

The training of the neural network is carried

out using the training data set. Testing and

monitoring of the developed neural network

during the training stage is performed by

computing the mean squared error overall

training, validation and testing data sets.

After each training iteration, the obtained

weights are used to predict the corresponding

VDS to the input parameters of the training,

validation and testing data sets. The mean

squared error was calculated for each pattern

as the difference between the VDS obtained

from the trained neural network and the

corresponding experimental VDS.

5.2. Training of Regression model

Based on existing experimental data, it’s

revealed that the relationship between

dependent variable (VDS) and independent

variable (N, Dr, and H/D) is nonlinear (see

Figs 9-11). Therefore, in the present study a

non-linear power model has been chosen for

predicting VDS.

In order to determine the best fitted equation,

a great number of non-linear power possible

regressions model is used to select the best

subset of predictors. Among the equations,

by using least-squares technique, the final

equation of the fitted model to estimate VDS

is obtained as given below: 

(6)

Goodness of fit statistics, such as multiple

coefficient of determination R2(=0.9597) is

the highest (near to 1) in case of the relevant

parameters for model, and also the value of

standard error, Es (=0.048) for above model

is the minimum considering the values of Es
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for all of the models. 

5.3. Result of training 

A plot of experimental data and those

obtained from the trained neural network and

regression model for VDS are presented in

Fig. 5(a) and (b), respectively. It is shown

that, there is no serious out layer point around

the 0% error line for ANNs in comparison

regression model and it is in good agreement

with experimental results. Hence, it is

implied that the ANNs model can be used to

predict the value of VDS. 

Table 2 gives different statistical parameters

estimated to measure the performance of the

trained ANNs and regression method. The

absolute average percentage of error (eave.) in
estimating the value of VDS is less than

0.5% with ANNs and less than 8.33% with

regression model, whereas the maximum

percentage of error (emax.) in estimating the

value of VDS using the trained ANN and

regression method are 1.56% and 27.4%,
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respectively as given in Table 2. 

The coefficients of determination of R2 the

ANN (=99.98%) is greater than regression

method (=95.97%) as indicated in Table 2.

The R2 statistic indicates that the model as

fitted explains 99.98% and 95.97% of the

variability in VDS for ANN and regression

method, respectively. Also the value of

standard error Es of the ANN (=0.003) is less

than regression method (=0.048), the

standard error of the estimation shows the

value of standard deviation of the residuals.

In addition, these statistical parameters show

that the predicted VDS using the trained

ANN and regression method are in good

agreement with experimental results and the

predictions obtained from the trained ANN

are better than those obtained from

regression method and it is identified that an

ANNs can give satisfactory performance to

apply in the final predicting. 

Also, in order to clarify the magnitude of

error, Fig. 6 shows cumulative histogram

percentage of errors of ANNs and regression

model for the prediction of VDS. For

example it shows that 90% trained data have

less than 1.2% and 16% error for ANNs and

regression model, respectively. 

6.  Verification of the trained ANNs and

regression model

For verification of the proposed models, to

predict the value of VDS; the models have

been tested with 24 additional experimental

data that were not used in training stage. A

comparison of VDS from experimental data

and those obtained from the ANNs and

regression model predicted results are given

in Fig. 7. It can be clearly observed that the

values of VDS are predicted by the neural

network better than regression model

126 International Journal of Civil Engineerng. Vol. 5, No. 2, June 2007

Method eave (%) emax(%).
2R Es

ANNs 0.5 1.56 0.9998 0.003 
Regression 8.33 27.40 0.9597 0.048 

Table 2 Statistical parameters for measuring the performance of the trained  ANN and regression model.
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Fig.6. cumulative histogram percentage of errors for the prediction of VDS for ANNs and regression model.    
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significantly, as the average percentage of

error is less than 2.81% and 10.83% for

ANNs and regression model, respectively.

Table 3 compares the different statistical

parameters to measure the performance of

the trained ANN and regression method. In

general, it is identified that the neural

network approaches performed better and

produced more consistent results than the

regression model. 

The cumulative histogram percentage of

errors of the final models for the prediction

of VDS for data not used in training the

models is shown in Fig. 8. It shows that the

maximum percentage of error is less than

13% for ANNs and less than 29.8% for

regression model. Also 90% predicted data

have less than 7% and 21.5% error for ANNs

and regression model, respectively. It is

obvious that the ANNs and regression model

for estimating the value of VDS have a good
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ANNs 2.81 13 0.9950 0.0183 
Regression 10.83 29.8 0.9445 0.0653 

Table 3 Comparison of the statistical parameters of the ANN and regression for data not used in training stage.
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 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
22

 ]
 

                            10 / 16

https://www.iust.ac.ir/ijce/article-1-318-en.html


128 International Journal of Civil Engineerng. Vol. 5, No. 2, June 2007

0

4

8

12

16

40 45 50 55 60 65 70 75

 Relative Density (%)

M
ax

im
um

 V
D

S
 (%

)

N=0 Exp. N=0 ANN N=0 Reg.
N=2 EXP. N=2 ANN N=2 Reg.
N=4 EXP. N=4 ANN N=4 Reg.

0

4

8

12

16

0 1 2 3 4

Number Of Reinforced Leyers

M
ax

im
um

 V
D

S
 (%

)

Dr=42% EXP. Dr=42% ANN Dr=42% Reg.

Dr=57% EXP. Dr=57% ANN Dr=57% Reg.

Dr=72% EXP. Dr=72% ANN Dr=72% Reg.

0

2

4

6

8

10

12

1.5 2 2.5 3

Depth Of Embedment (in term of pipe diameter)

M
ax

im
um

 V
D

S
 (%

)

N=0 EXP. N=0 ANN N=0 Reg.
N=2 EXP. N=2 ANN N=2 Reg.
N=5 EXP. N=5 ANN N=5 Reg.

Fig. 9. comparison of ANNs and regression model predicted with experimental data of VDS versus soil relative density.

Fig.10. comparison of ANNs and regression model predicted with experimental data of VDS versus soil reinforcement.

Fig. 11.  comparison of ANNs and regression model predicted with experimental data of VDS versus embedment depth of
pipe.

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
22

 ]
 

                            11 / 16

https://www.iust.ac.ir/ijce/article-1-318-en.html


fitting to data but the accuracy of ANN

model is better than regression model and it

can be used to predict the value of VDS.

In order to show more clearly the accuracy of

predicted results using ANNs against the

regression model, a comparison of VDS from

experimental data and those obtained from

ANNs and regression model predicted results

by considering the effect of soil relative

density (Dr), soil reinforcement (N) and

embedment depth of pipe (H/D) are

presented in Fig. 9-11. As it can be seen, the

ANNs predicted results are almost identical

to the experimental results, and it is in good

agreement with observed data. On the other

hand, these predictions agree significantly

(favorably) with the general experimental

observations for ANNs better than those

obtained from the regression model.

Some points are necessary to discuss as

below: 

1. As it can be shown, the accuracy of

predictions from ANNs are better than

regression model, but the presentation a

simple equation by regression method

comparing to ANNs can be accounted an

important advantage for regression model as

it can be obtained the value of VDS, easily,

quickly and inexpensive, as 90% predicted

data have less than 21.5% error.

2. The regression model can be applied for

extrapolation as the predictions from this

model, provide reliable results, whereas the

prediction from the trained neural network

should be reliable provide that the input data

within the range used in the training set as

given in Table 1, and out of the pointed range

should be used carefully. On the other hand,

beyond  these  ranges  of  the  parameters  and

for  other  field  conditions,  the model should

be  checked  through  for  at  least  one  set

of  laboratory  model test results.

3. It can be expected that, with the increase of

the size and diversity of the database for the

training of the ANNs and regression model, it

will be possible to obtain more robust models

for the prediction of VDS studying the effects

of input variables in a wider variation range.   

7. Parametric study

After training and verification, the trained

ANNs and regression model can be used to

simulate the effect of the input parameters on

the value of VDS. As it has observed, the

neural networks can be predicted the values

of VDS better than regression model. Hence

the trained neural networks are used to

predict the values of VDS for any

combination of the input variables so long as

their values are within the coverage range of

the training database as given in Figs. 12-14. 

Fig. 12 shows the variation of VDS versus

soil relative density for different values of

reinforced layers and 2D of embedment

depth. From these figures, the key role of the

soil density on the deformational behavior of

the pipe (VDS) is quite evident. It is clear

that, VDS decreases due to increase in the

relative density, irrespective of the number of

the reinforced layers.

The influence of the soil reinforcement on

the maximum VDS at 57% of relative density

and various embedment depths is given in

Fig. 13. As expected, the value of VDS

decreases due to addition of reinforced

layers, irrespective of embedment depth of

pipe. It can be observed that the decrease in

VDS due to additional layers of

reinforcement begin to converge at around

the fourth layer and almost constant at the

fifth layer of reinforcement.

129International Journal of Civil Engineerng. Vol. 5, No. 2, June 2007

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
22

 ]
 

                            12 / 16

https://www.iust.ac.ir/ijce/article-1-318-en.html


130 International Journal of Civil Engineerng. Vol. 5, No. 2, June 2007

Number Of Reinforced Layers

0

3

6

9

12

15

18

40 50 60 70 80 90 100

 Relative Density (%)

M
ax

im
um

 V
D

S
(%

)
N=0 N=1
N=2 N=3
N=4 N=5

Depth Of Embedment (H/D)

0

3

6

9

12

0 1 2 3 4 5

Number Of Geogrid Layers

M
ax

im
um

 V
D

S
 (%

) 1.5
2
2.5
3
4

0

2

4

6

8

10

12

1.5 2 2.5 3 3.5 4 4.5 5

Depth Of Embedment (H/D)

M
ax

im
um

 V
D

S
 (%

) N=0 N=1
N=2 N=3
N=4 N=5

Number Of Reinforced Layers

Fig. 12. Effect of soil relative density for H/D= 2 on the maximum VDS.

Fig. 13. Effect of number of reinforced layers for Dr= 57% on the maximum VDS.

Fig. 14. Effect of embedment depth for Dr= 57% on the maximum VDS.
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Fig. 14 presents the effect of embedment

depth on the maximum VDS in reinforced

sand for different values of reinforced layers

and for 57% of relative density of soil. It can

be seen that, an increase in the embedment

depth of the pipe in the ranges of 1.5D to

2.5D results in a sharp decrease in the

maximum VDS of the pipe, while increasing

the depth more than 2.5D, the rate of

reduction decreases considerably. It shows

that, the efficiency decreases with the

increase of the embedment depth of pipe.

Finally, from Fig. 12-14 can be observed that,

the variation of VDS out of the coverage

range of training database is feasible, as the

results is similar to experimental data, and

with increasing the relative density or

embedment depth, the value of VDS

converge to a constant value.

8. Conclusions

This paper demonstrated the possibility of

adopting neural networks and regression

model to predict the vertical deformation

(VDS) of high-density polyethylene (HDPE)

pipes buried in reinforced (or unreinforced)

trenches. The training and verification of the

ANNs and regression model was achieved

using experimental data prepared by the first

author. The prediction from the trained neural

network and regression model should be

reliable provide that the input data within the

range used in the training set as given in

Table 1. 

On the basis of analysis of the results

obtained from the present investigation, the

following conclusions can be extracted:

1. The variation of VDS is nonlinearly

affected by the soil relative density (Dr), soil

reinforcement (N) and embedment depth of

pipe (H/D).

2. All of the three parameters (Dr, N, H/D),

have the influential effect on the VDS,

significantly. An increase of each can be

decreased the value of VDS.

3. The comparison of VDS from the

experimental data and those obtained from

the ANNs and regression model show a good

consistency and satisfactory accuracy, as

90% predicted data have less than 7% and

21.5% error with ANNs and regression

model, respectively. It is obvious that the

ANNs and regression model have a good

fitting to experimental data but the

predictions obtained from ANNs are better

than those obtained from regression approach

and it can be used to predict the value of

VDS.

4. The reinforcement of soil for the high

value of embedment depth of pipe (H/D>3.5)

and high degree of compaction (Dr>75%) on

reduction of VDS is not effective, thus it is

not recommended using reinforced sand for

high value of H/D and Dr. 

5. The value of soil relative density (Dr), soil

reinforcement (N) and embedment depth of

pipe (H/D) have a large influence on the

value of VDS and increasing of each

parameters (H/D, Dr and N) can be decreased

the value of VDS. It states that the cost

optimization is necessary to determine the

economic value of each parameter.
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