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Abstract: Although some 3D slope stability algorithms have been proposed in recent three decades, still role
of pore pressures in three dimensional slope stability analyses and considering the effects of pore water
pressure in 3D slope stability studies needs to be investigated. In this paper, a limit analysis formulation for
investigation of role of the pore water pressure in three dimensional slope stability problems is presented. A
rigid-block translational collapse mechanism is used, with energy dissipation taking place along planar
velocity discontinuities. Results are compared with those obtained by others. It was found that water pressure
causes the three-dimensional effects to be more significant, especially in gentle slopes. This may be related to
the larger volume of the failure mass in gentle slopes resulting in more end effects. Dimensionless stability
factors for three dimensional slope stability analyses are presented - including the 3D effect of the pore water
pressure — for different values of the slope angle in cohesive and noncohesive soils.

Keywords: limit analysis, slopes, stability, three-dimensional, upper bound, pore water pressure.

1. Introduction

Stability problems of slopes are commonly
encountered in geotechnical engineering projects.
Solutions of such problems may be based on the
slip-line method, the limit-equilibrium method or
limit analysis.

Although the limit-equilibrium method has
gained a wide acceptance due to its simplicity,
limit analysis takes advantage of the upper and
lower bound theorems of plasticity theory and
bound the rigorous solution of a stability problem
from below and above.

The Effects of pore water pressure have been
studied by Michalowski (1995) and Kim et al
(1999) in 2D slope stability problems based on
limit analysis method. In the study by
Michalowski, pore water pressures, calculated
using the pore-water pressure ratio ru, were
regarded as external forces, and rigid body
rotation along a log-spiral failure surface was
used.

On the other hand, Kim et al (1999) used finite
elements method to obtain the lower and upper
bound solutions for slope stability problems.

Although some 3D slope stability algorithms
have been proposed in recent decades, there are
few researches considering the effects of pore
water pressure in 3D slope stability studies (Chen
and Chameau (1982) and Leshchinsky and
Mullet (1988)). These methods are mainly based
on limit equilibrium concepts.

In the framework of the limit state methods, the
objective of this paper is to study the role of pore
water pressures in three-dimensional slope
stability problems using the upper-bound limit
analysis method. The formulation on which the
present research is based is an extension of the
analysis method proposed by Farzaneh and
Askari (2003).

2. Limit analysis method

The theorems of limit analysis (upper and lower
bound) constitute a powerful tool to solve
problems in which limit loads are to be found.
The following assumptions are made in limit
analysis method:

-The material is perfectly plastic
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- The limit state can be described by a yield
function f{o;; )=0 , which is convex in the stress
space oj;

- The material obeys the associated flow rule:

er = 1 Y00 (1)

! 80',,.

where:

é% = plastic strain rate tensor of the soil

o = stress tensor

A = a non-negative multiplier, which is positive
when plastic deformations, occurs

Equation 1 is usually referred to as the normality
rule.

Limit analysis takes advantage of the upper- and
lower-bound theorems of plasticity theory to
bound the rigorous solution to a stability problem
from below and above. Limit analysis solutions
are rigorous in the sense that the stress field
associated with a lower-bound solution is in
equilibrium with imposed loads at every point of
the soil mass, while the velocity field associated
with an upper-bound solution is compatible with
imposed displacements. In simple terms, under
lower-bound loadings, collapse is not in progress,
but it may be imminent if the lower bound
coincides with the exact collapse loading. Under
upper bound loadings, collapse is either already
underway or imminent if the upper bound
coincides with the exact collapse loading. The
range in which the true solution lies can be
narrowed down by finding the highest possible
lower-bound solution and the lowest possible
upper-bound solution.

Theorems of limit analysis can be extended to
analyze the stability problems in soil mechanics
by modeling the soil as a perfectly plastic
material obeying the associated flow rule.

The consequence of applying the normality
condition to a frictional soil with an internal
friction angle of ¢ will be a necessary occurrence
of a volume expansion with an angle of dilatation
v =¢ during the plastic flow. In a large number of
stability problems in soil mechanics such as slope
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stability, lateral earth pressure and bearing
capacity problems, deformation conditions are
not so restrictive and the soil deformation
properties do not affect the collapse load largely
(Davis-1968, Farzaneh and Askari-2003).
Therefore, the adoption of the limit analysis
approach and the associated flow rule in soils
appears to be reasonably justified.

The approach used in this paper is based on the
upper-bound theorem and can be used to find the
safety factor of a slope. The form of the safety
factor according to the definition given by Bishop
(1955):

c tang )

c, tan 9,

m

where ¢ and ¢ are the real cohesion and internal
friction angle of the material, and c,, and ¢,, are
the required magnitude of these parameters
needed to maintain the equilibrium. Using
Equation 2 in the upper bound formulation of the
problem, one can obtain the safety factor instead
of the limit load.

3. Formulation

The formulation used in this paper was originally
proposed by Michalowski (1989) and improved
by Farzaneh and Askari (2003) without
consideration of pore water pressures. The
formulation is a rigorous method, and lacks any
simplifying assumption that may disturb the
upper bound theorem. The approach used for the
incorporation of the pore water pressures in this
paper is the total weight approach in which the
saturated weight of the soil is considered together
with the pore water pressures along the contours
of the soil mass.

Figures 1 and 2 show the failure mechanism used
in this analysis. It consists of rigid translational
blocks separated by planar velocity discontinuity
surfaces. One or more surfaces can be used in
each side of the blocks. Number of blocks and
lateral surfaces of each block in the example
shown in Figure 1 are four and three respectively.
Analytical geometry relations used to compute
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the areas and volumes of the blocks are similar to
ones used by Farzaneh and Askari (2003). Using
the hodograph shown in Figure 2(b), the
velocities V; of blocks (k = 0, 1... n-1; n is the
number of blocks) and the velocity jumps
between adjacent blocks [V], can be derived
(Appendix A). Having the velocities of all blocks,
as well as their volumes and surface areas, one
can write the energy balance equation in the
following form:

W, +W,=D) 3)

where Wy is the rate of work of block weights and
W, is the rate of work due to pore water pressure,
regarded as an external force, and D is the energy
dissipation rate in all the velocity discontinuities.
Denoting the weight of block k as G, Wy can be
written as:

0129

(b)

Fig. 2 Collapse mechanism (a) cross-section in yoz plane; (b) hodograph

where n is the number of blocks, V,; is the
velocity of block k,¢ is the internal friction angle
of the soil and ¢, is the angle of the base of block
k with horizon, as shown in Figure 2(a).

Having w, on each surface discontinuity
(described in Appendix B), the rate of energy due
to pore water pressure in the collapse mechanism
(W) can be calculated as:

W, :—sin(p(i(Vk( judS))+§([V]k( uds)y) ()
k=1 S k=1

[S]k

where S, refers to the base and lateral surfaces of
the block k, [S], is the interface surface between
blocks k and k+1, V, is the velocity of block &,
[V]; is the relative velocity between blocks k and
k+1 and u is the pore water pressure distribution.

. n ) In the algorithm provided, pore water pressure

W, = Z GV, sin(a, —¢) (4)  distribution at the failure surfaces can be defined
k=1
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by any arbitrary function wu=u(x,y,z). In this
paper, the function u(x,y,z) has been introduced as
follows:

1. by introducing a piezo surface (#=y,,. z,, where
¥,, 1s the unit weight of water and z,, is the depth
of the point below the piezo surface);

2. by considering a constant pore water pressure
coefficient (u= r,.y.z, where y is the total unit
weight of the soil and z is the depth of the point
below the soil surface).

Using the piezo surface or r,, the value of pore
water pressure at any point is determined.
Integration of this function on any surface gives
the pore water force on that surface.

fudS in Equation 5 is calculated by the
Sk

following procedure:

- Surface S, is subdivided into triangles S;;, Si,,
ves St

- Pore water pressure in a number of points on
each triangle (S;) is determined as uy,
Ugizs- - Ugiy,- The number and location of these
points can be chosen arbitrary depending on the
precision needed. The procedure is explained
briefly in the Appendix C.

Considering the average value of uy;;, uy,...,Uyy,
as u;; the pore water force on surface S; is
calculated as:

uds = u,s, ©6)
i=1

Sk

The same procedure is used to calculate the
integral | udsS.

[S1k

The rate of energy dissipation per unit area of a
velocity discontinuity surface for the Coulomb
material can be written as cVcos¢ where V is the
magnitude of the velocity jump vector. In the
mechanism considered, the energy is dissipated
along the block bases, sides and interfaces. With
a reference to this assumption, the energy
dissipation rate in the entire mechanism becomes
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n—1

D= ccos(p(zn:Ska + [S1,IV1) (N
k=1 k=1

Introducing ¢, and ¢, from Equation 2 into
Equations 4, 5 and 7 and using Equation 3, the
following expression for the safety factor is
obtained:

¢, cos9, (Y SV, + Y [S1,IV],)
= =)

= n n n-1
Y.GV,sin(e, ~@,)=sin g, (Y. (V,( [ud$))+ Y V], ( [uds))
k=1 k=1 5

k=1 [S]

®)

F in Equation (8) is implicit, because ¢,, is equal
to tan’!f(tan ¢)/F] in the right hand side of this
Equation. It should be noted that the time for
calculation of F by Eq. 8 is less than a minute.

The numerical technique used in the paper to find
the set of ¢, 1, and ¢, (Fig. 1) corresponding to
the least upper-bound safety factor is the same as
the procedure used by by Farzaneh and Askari
(2003). In summary this technique is based on a
simple two-step algorithm where in the first step,
angles oy, m; and §; are changed respectively
twice by step Aa(-Aa and +Ao) and the value of
the safety factor is calculated after each change.
If the variation causes a better result, the value of
the respective angle is changed accordingly by
—Aa or +Aco. The calculations are continued until
the results of two subsequent loops are the same.
Step Aa is decreased in computations from 5° to
0.1°. In the second step, the procedure is followed
by changing the values of the angles oy, 1, and
{; simultanously, which is more convenient for
solution of restricted (constrained) problems.

Using this optimization algorithm, the present
method results have been compared with those of
other investigators (such as Leschinsky (1992),
Ugai (1985), Giger and Krizik (1976), Azzouz
and Baligh (1975)). Almost in all cases, there
was a good agreement between the results.

In the following sections, the computational
results in two and three dimensional cases are
discussed and compared with the other solutions.
Then, typical numerical results are presented to
demonstrate the importance of pore water
pressure in 3D cases. Finally, dimensionless
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stability factors are presented for three different
slope angles.

4. Comparison in 2-D Cases

For slopes, it is convenient to present the results
of calculations in terms of the stability factor
yh /c rather than the factor of safety. The stability
factors calculated by present method for
homogeneous slopes are compared with those
obtained by Michalowski (1995) in Figure 3.

Calculations were performed assuming a collapse
mechanism including 5 blocks. As mentioned
above, The value of stability factor was sought in
a minimization scheme considering angles oy, 1
and ¢ (Figures 1 and 2) and one of the lengths
AG or EF as variable (Farzaneh & Askari, 2003).
The pore pressure is expressed in terms of the
coefficient r, (defined as u/yh in section 3).

Figure 3 represents the stability factor as a
function of slope angle () for r, equal to 0.25
and 0.5. The results for ¢ =100, 20° and 30° are
presented on three separate diagrams and
calculations were performed for B changing in
150 intervals. The results of both methods shown
in Figure 3 follow each other very closely.

The influence of pore pressure is apparent by a
reduction in stability factor yh/c with an increase
in r,. The adverse effect of the pore pressure
increases by increasing of internal friction
angle ¢.

Kim et al (1999) obtained lower and upper
bounds of the stability factors for simple slopes
(Figure 4) in terms of effective stresses. In this
analysis, three-nodded linear triangular finite
elements were used to construct both statically
admissible stress fields for lower-bound analysis
and kinematically admissible velocity fields for
upper-bound analysis.

Slopes with various inclinations were assumed
on impervious firm bases with different depth
factors. The soil strength parameters — the
effective cohesion ¢’ and the effective internal

friction angle ¢'— were assumed to be constant
throughout the slope. Three values of friction
angle (¢'=5, 15 and 25°) were assumed. To assess
the effects of pore water pressure for various
locations of the piezo surface, a number of
situations were considered.

Kim et al (1999) checked the accuracy of
Bishop’s simplified method for slope stability
analysis by comparing Bishop’s solution (Bishop
1955) with lower- and upper-bound solutions.
They also compared their results with factors of
safety obtained from Janbu’s stability charts
(Janbu 1968) for a 45° slope. In Table 1 the
results of the present study are compared with the
results obtained by Kim et al for a 45° slope with
D=2, H=10m, ¢'=20kN/m?2, y =18kN/m3 and for
¢'=10° and 15°. The results are also compared
with the factors of safety obtained from Janbu’s
stability charts (for ¢'=15°) and simplified
Bishop’s solution, presented in the paper of Kim
et al.

The results obtained by Kim et al are about 1%
less (and accordingly better) than results obtained
in the present analysis. As expected, factor of
safety in all of the methods decreases as the water
table rises. It is also observed that Janbu’s
stability chart gives conservative results in these
cases, and Bishop’s results are between those of
lower and upper bounds. In general, good
agreement is obtained between the present and
the other solutions.

5. Comparison in 3-D Cases

Although the effect of pore water pressure has
been considered in many 2D analyses, only few
3D solutions of this problem are available.

A general method of three dimensional slope
stability analysis was proposed by Chen and
Chameau (1982) using the limit equilibrium
concept. The failure mass shown in Figure 5 was
assumed symmetrical and divided into vertical
columns. The inter-slice forces have the same
inclination throughout the mass, and the inter-
column shear forces were parallel to the base of
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Fig. 3 Comparison of 2D stability factors of present analysis with those obtained by Michalowski (1995) for different slope
angles; (a) ¢ =10° (b)¢ =20° (c) ¢ =30°

DH

Fig. 4 Geometry of slope used in analysis by Kim et al (1999)

Faradjollah Askari, Orang Farzaneh

15


https://www.iust.ac.ir/ijce/article-1-204-en.html

[ Downloaded from www.iust.ac.ir on 2025-07-19 ]

Table 1 Comparison of 2D factor of safety for various conditions of water table (45° slope with D=2, H=10m, ¢’=20kN/m?
and y =18kN/m3 for ¢'=10° and 15° .

Safety factor, F
Kim et al Kim et al
9 Hy(m) Janbu’s Present
(lower- (upper- Bishop
Chart study
bound) bound
2 0.96 1.05 0.99 _ 1.06
10° 4 0.89 1.00 0.96 _ 1.01
6 0.83 0.89 0.92 _ 0.96
2 1.10 1.23 1.17 1.08 1.22
15° 4 1.04 1.17 1.10 1.03 1.17
6 0.97 1.07 1.04 0.97 1.08

Single column

Fig 5 The failure mechanism in three dimensional method of slope stability proposed by Chen and Chameau (1982)

Table 2 Comparison of Ratio F3D/F2D with Chen and Chmeau (1982) for various Slope angles
(c=28.7 kPa, ¢ =1.5°, r,=0.5)

FSD/FZD
B
L/h Chen and Chameau
(degree) Present study
(1982)
16 1.29 1.21
3 21.8 1.25 1.19
33.7 1.14 1.14
16 1.14 1.13
5 21.8 1.12 1.12
33.7 1.07 1.08
16 1.1 1.1
7 21.8 1.07 1.07
33.7 1.04 1.05
16 International Journal of Civil Engineerng. Vol. 6, No. 1, March 2008
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Fig. 6 The failure mechanism in 3D slope stability analysis of Leshchinsky and Mullet (1988)

the column and function of their positions. Force
and moment equilibrium were satisfied for each
column as well as for the total mass weight. In
their paper, typical applications of this three
dimensional model to slopes with different
geometries and material properties were
described.

Results of the present analysis are compared with
Chen’s for one case in Table 2. In this case,
¢'=28.7 kPa, ¢'=1.5°, r,=0.5, L/h=3, 5 and 7 (L:
width of the mechanism) and =160, 21.8° and
33.7°. As can be seen, results of the two methods
are very similar. In both methods, the ratio
F;p/F,p decreases as [ increases.

Leshchinsky and Mullet (1988) proposed a 3D
slope stability procedure based on limit
equilibrium method. The failure mechanism in
their analysis, resulting from an analytical
(variational) extremization procedure, is a 3D
generalization of the log-spiral function. For this
mechanism, shown in Figure 6, the moment
limiting-equilibrium equation can be explicitly
assembled and solved for the factor of safety.

Leshchinsky and Mullet have employed the
following common nondimensional parameter:

’
C

A= v
Jitan @
where £ is the slope height.

€))
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Figure 7 shows a comparison between the results
of Leschinsky’s and present method. This
diagram is prepared for vertical cuts, where the
length of failure mechanism (L=2l) is known.
The vertical axis is the minimum three
dimensional safety factor with a given ru, divided
by minimum two dimensional safety factor
obtained with r,=0. It should be pointed out that
when r,=0 are considered, safety factors obtained
for two-dimensional cases are identical to those
of Taylor (1937). Figure 7 shows that prediction
by the present method compares favorably with
Leschinsky’s.

It must be mentioned that comparison of the
results of the algorithm with the real cases or with
those obtained from physical models tests was
not possible due to lack of data in the literature
for saturated soils.

6. Role of pore pressures in three dimensional
slope stability analyses

Subsurface water movement and associated
seepage pressures are the most frequent cause of
slope instability. Subsurface water seeping
toward the face or toe of a slope produces
destabilizing forces, which can be evaluated by
flow net. The piezometric heads, which occur
along the assumed failure surface, produce
outward forces that must be considered in the
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Fig.7 Comparison of results of Leschinsky and Mullet (1988) with present analysis
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Fig. 8 Ratio F3D/F2D for two different values of slope angle 8

International Journal of Civil Engineerng. Vol. 6, No. 1, March 2008


https://www.iust.ac.ir/ijce/article-1-204-en.html

[ Downloaded from www.iust.ac.ir on 2025-07-19 ]

stability analysis.

When compressible fill materials are used in
embankment construction, excess pore pressure
may develop and must be considered in the
stability analysis. Normally, field piezometric
measurements are required to evaluate this
condition. Where embankments are constructed
over compressible soils, the foundation pore
pressures must be considered in the stability
analysis. Artesian pressures beneath slopes can
have serious effects on the stability. Should such
pressures be found to exist, they must be used to
determine effective stresses and unit weights, and
the slope and foundation stability should be
evaluated by effective stress methods.

Most slope failure analyses are performed on a
two dimensional model even though the shape of
the slope failure in the field is truly three
dimensional. Although few 3D slope stability
algorithms have been proposed in recent three
decades, still role of pore pressures in three
dimensional slope stability analyses and
considering the effects of pore water pressure in
3D slope stability studies needs to be
investigated.

The main objective of this section is to develop
improved understanding of the applicability of an
existing 3-D slope stability method and to clarify
the influence of the water pressure parameters
that can significantly affect the 3-D factor of
safety. It will lead to improved understanding of
importance of including 3-D effects in 2-D
stability analyses.

In diagrams of Figures 8 and 9, typical
applications of the three-dimensional model to
slopes with different geometries and material
properties are investigated. In each diagram, the
horizontal axis is the ratio of the length of failure
mechanism to height of the slope (L /&), whereas
the vertical axis is the minimum three-
dimensional safety factor divided by minimum
two- dimensional safety factor (F3p / F,p).
Diagrams are prepared for r, = 0.1, 0.3 and 0.5.

In Figure 8, A is 0.2 and two slope angles 8 equal
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to 15° and 75° are studied. In Figure 9, A is
assumed to be 45° and two values of A equal to
0.1 and 0.5 are considered.

From these diagrams, the following results can be
obtained:

- When the length ratio L/h increases, the
problem is closer to plane strain condition and
the F;p/F,p ratio approaches unity (the line
F3;p/F,p=1 corresponds to the plane strain
condition and would be obtained for large values
of L/h).

- Water pressure causes the three-dimensional
effects to be more significant. It is seen that in all
cases, F'3p/F,p increases when r, increases.

- The steeper the slope, the less the F3D/F2D
ratio is (Fig. 8). This may be related to the fact
that the volume of the failure mass is larger in a
gentle slope and therefore more end-effects are
produced.

- The more cohesive the soil (or the more value
of A ), the more the F;p/F,p ratio is (Fig. 9).
Study of locations of the most critical circles in
this study confirmed the well-known fact that for
higher cohesion ¢ and lower internal friction
angle ¢, the critical circle tends to be deeper
producing more end-effects.

- Safety factors ratio (F3p/F,p) in cohesive soils
are higher in comparison with cohesionless soils,
but less sensitive to variations of r,,.

For clarification of effects of pore water
pressures in three dimensional slope stability
problems, safety factor for different slope
geometries was obtained. In Table 3, the
dimensionless stability factor (Fyh/c) for
A= (yh/c).tang = 0.2 and 1, r, =0, 0.15 and 0.3,
L/h= 1, 3 and 10 and g =300, 60° and 90° are
presented.

The above results can be obtained from Table 3
too. For example, consider a slope with L/h=10,
B =30°and A =0.2. Variations of L/h from 1 to 10
for the cases of r, =0 and 0.3 result in the
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Table 3 3D dimensionless stability factor (Fyh/c) for A= c¢/(yh.tan¢) = 0.2 and 1, r, =0, 0.15 and 0.3, L/h= 1, 3 and 10

20

A=01,p=45

Fsp /F2p
~

ru=0.1

—-——-r1ru=0.3] |

(2)

A=05p=45

Fsp /F2p

ru=0.1

———-ru=0.3] |

(b)

Fig. 9 Ratio F3D/F2D for two different values of A

and

B=30°, 60° and 90°

B A=0.2 =1
(degree) " L/h=1 L/h=3 L/h=10 L/h=1 L/h=13 L/h= 10
0 3185 | 2645 | 2495 | 2005 1470 | 13.02
30 0.15 29.48 23.81 22.32 18.61 14.01 12.37
0.3 27.18 21.06 19.66 17.84 13.32 11.69
0 18.75 14.10 13.32 11.38 8.94 8.11
60 0.15 17.48 12.90 11.83 10.99 8.59 7.79
03 1620 | 1096 | 1028 10.58 8.24 7.44
0 10.24 8.24 7.65 7.51 5.79 5.09
90 0.15 8.45 6.32 5.68 7.03 5.38 4.78
0.3 7.31 5.54 4.95 6.60 4.94 4.46
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reduction of the stability factor for about 22 and
28 percent respectively, showing that water
pressure effects are more significant in three-
dimensional cases.

It is also seen that the stability factors in cohesive
soils are less sensitive to variations of r,.
Variations of r, from 0 to 0.3 for A = 0.2 result in
the reduction of the stability factor for about 8
percent. However, variation of the stability factor
for A =1 is not significant, showing that the three-
dimensional water pressure effects are more
sensitive in cohesionless slopes.

7. Summary and conclusions

This paper was directed at introducing a
technique of three-dimensional slope stability
analysis based on limit analysis method, which
can consider the pore water pressure influence.
This method enables one to compute upper
bounds to stability factors of slopes subjected to
pore water pressures. Pore water effects are
incorporated in the analysis as external work
done by the pore water pressure.

Typical results of this method are compared with
other lower bound, upper bound and limit
equilibrium methods in two- and three-
dimensional cases. The results show good
agreement with the other methods.

The results of the present study can be
summarized as follows:

- Comparison of the results of the present study
with those of Michalowski (1995) indicates a
good agreement between the two methods.

- The influence of pore water pressure is apparent
by a reduction in stability factor yh/c with an
increase in r,,. This effect is more important when
the soil internal friction increases.

- The 2D results of the present study are in a good
agreement with those obtained by Kim et al
(1999), Janbu (1968) and Bishop (1955)
solutions.
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- Results of F;,/F,p from the present solution are
in good agreement with results of Chen and
Chameau (1982). Generally, the upper bound
from the present solution is lower when L/h
decreases.

- Prediction of F;3p,(r,=0.3)/F,p(r,=0) by the
present method compares favorably with
Leschinsky and Mullet (1988) results.

- Generally, pore water pressure causes the three
dimensional effects to be more significant. The
effects are more significant in gentle slopes.

- Pore water pressure causes the three-
dimensional effects to be more significant. It is
seen that in all cases, F;p/F,p increases when r,
increases.

- The steeper the slope, the less the F;p/F,p, ratio
is (Fig. 8). This may be related to the fact that the
volume of the failure mass is larger in a gentle
slope and therefore more end-effects are
produced.

- The more cohesive the soil (or the more value of
A ), the more the F3p/F,p ratio is (Fig. 9). Study
of locations of the most critical circles in this
study confirmed the well-known fact that for
higher cohesion c¢ and lower internal friction
angle ¢, the critical circle tends to be deeper
producing more end-effects.

- Safety factors ratio (F';p/F,p) in cohesive soils
are less sensitive to variation of r,,.
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Appendix

A) Velocity magnitudes

Figure 2(a) shows the cross-section of the
collapse mechanism in yoz plane (in the plane of
symmetry). Using the hodograph shown in Fig.
2(b), the velocities V; of blocks (k=0, 1...n-1; n
is the number of blocks) and the velocity jumps
between adjacent blocks [V], can be derived. It
should be noted that, according to associative
flow rule, velocity increment vectors across
velocity discontinuity surfaces are inclined to
those surfaces at the internal friction angle ¢.
Angles ¢ and 7, in Figure 2 are assumed to be
known. The velocity magnitude of the last block
is V,.; =(V,.p), Isin (a,-¢), where (V,_;), is the
vertical component of the last block. For other
blocks, when o4 =¢, ;, k =0...n-2

vy S0 +e.,=20) (A-D)
k k+1 sin(ﬂk+0!k—2¢)

sin(a,,, — ;) (A-2)

V] =V,
Ve =V sin(77, +a, —2¢)

In this case, the condition
n-1n,-0, >0 (A-3)

is necessary for the mechanism to be
kinematically admissible. If o >0y, ;, k=0... n-2
then

(A-4)

sin(7, + 0,,)

k sin(n, + &)

k+1
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V1 =V, Sil.l(ak _aHl*) (A'S)
sin(77, + ;)

and the necessary condition is

n.+ta,—2¢>0 (A-0)

B) Rate of work of pore water pressure

The rate of work of pore water pressure (1) on
the velocity discontinuity S is:

W, = [V,..(-uii, )dS (B-1)

where u is the magnitude of pore pressure on the
velocity discontinuity element dS from the
velocity discontinuity Sy, Vl- is the velocity jump
vector on dS and n; is the outward unit vector
normal to dS. On the other hand, the consequence
of applying the normality condition to a frictional
soil with an internal friction angle of ¢ is the
occurrence of a volume expansion with an angle

of dilatation y=¢ during the plastic flow.
Considering the magnitude of the vector 7,( to be
constant as V; on Surface S, , w, will be evaluated

as:

o = ﬂ\?k \(—u)\ﬁk |cos(90— g)dS = (~sin @)V, fuds (B-2)

Si
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F
Fig. a: Location of the points on triangles for calculation of pore water pressure forces

Having W, on each surface discontinuity, the rate
of energy due to pore water pressure in the
collapse mechanism (W,) can be calculated from
equation 5.

C) Approximate calculation of the integralg[udS
in Equation 5 k

As it is mentioned in the paper, surfaces which
pore water pressure are calculated on are
subdivided into triangles and pore water
pressures in a number of points on each triangle
are determined. The number of these points can
be chosen arbitrary depend on the precision
needed.

The user can choose location of these points.
Results presented in the paper are obtained (Fig
a) by considering points A, B, C and M (center of
the area) first. Then these points are increased
adding points D, E and F on the perimeter of the
triangle. Addition of the points on the perimeter
is continued until no better results are obtained.
Of course points can be added on the area of the
triangles too. However, because change of pore
water pressures is approximately linear over the
limited area of the triangles, it doesn’t basically
change the results obtained.
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