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Abstract 

The main aim of this paper is to find the optimum shape of arch dams subjected to multiple natural frequency constraints 

by using an efficient methodology. The optimization is carried out by charged system search algorithm and its enhanced 

version. Computing the natural frequencies by Finite Element Analysis (FEA) during the optimization process is time 

consuming. In order to reduce the computational burden, Back Propagation (BP) neural network is trained and utilized to 

predict the arch dam natural frequencies. It is demonstrated that the optimum design obtained by the Enhanced Charged 

System Search using the BP network is the best compared with the results of other algorithms. The numerical results show the 

computational advantageous of the proposed methodology. 

Keywords: Arch dam, Finite element, Frequency constraint, Enhanced charged system search, Optimum shape design, Neural 

network. 

 

1. Introduction 

It is obvious that an appropriate shape design has a 

great influence on the economy and safety of an arch dam. 

Also, the natural frequencies are important parameters 

affecting the dynamic behavior of the arch dams. By 

imposing some constraints on the natural frequencies, the 

dynamic behavior of arch dam may be improved and the 

eventual resonance phenomenon during earthquake can be 

also eliminated. On the other hand, arch dams are 

supposed to be designer as economical as possible. Thus a 

frequency constraint cost optimization process should be 

performed to obtain these two aims simultaneously. 

Traditionally, shape design of an arch dam is based on 

the experience of the designer, the model tests and trial 

and error procedures. To obtain a better shape, the 

designer should select several alternative schemes with 

various patterns and modify them to obtain a number of 

feasible shapes. The best shape satisfying the demands of 

design specifications is selected as the final shape. 

The shape of the dam obtained in this way is feasible 

but not necessarily optimum or even good. Moreover, the 

time required for design is rather long. 

To overcome these difficulties, the process can easily 

and reliably be performed by employing optimization 

techniques [1]. 
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In the recent decades, some progress has been made in 

optimum design of arch dams. Almost all of them have 

used conventional methods for analysis approximation and 

optimization [2-6]. The main disadvantage of these 

methods is the need for calculating the function derivatives 

and may also trap into local optima. Meta-heuristic 

algorithms are computationally efficient in comparison to 

the gradient based methods. 

As a newly developed meta-heuristic algorithm, the 

charged system search (CSS) is introduced by Kaveh and 

Talatahari for design of structural problems [7]. Here, this 

method utilizes the governing laws of Coulomb and Gauss 

from electrostatics and the Newtonian laws of mechanics. 

Inspired by these laws, a model is created to formulate the 

structural optimization method. This algorithm and its 

enhanced form [8] are utilized to find optimal shape of 

arch dams with constrained natural frequencies [9-11]. The 

cost of the arch dam including concrete volume and the 

casting areas is considered as the objective function. The 

design variables are geometric parameters of the arch dam. 

In order to implement a practical design optimization, 

many constraints such as stress, displacement, stability 

requirement, and frequency constraints are considered. In 

the present study, in order to simplify the optimization 

operation, only frequency and some geometrical 

constraints are considered. 

The stochastic nature of the meta-heuristic search 

techniques makes the convergence of the process slow. 

Therefore, complete optimization of arch dams for 

frequency constraints requires considerable computational 

effort. In order to accelerate the optimization process and 

reduce the computational time, the natural frequencies of 

Structural 
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arch dams are predicted using properly trained Back 

Propagation (BP) neural network instead of direct 

evaluation. Many successful applications of neural 

networks are reported in literature [12-14]. The numerical 

results demonstrate the computational merits of the 

proposed methodology for optimum shape design of arch 

dams. 

2. Geometrical Model of a Double-Curvature 

Arch Dam 

The first stage of shape optimization of arch dams is to 

select an appropriate geometrical model. The model 

should be consistent with the stress state of arch dams and 

simple to facilitate construction. It is also important to 

construct the model on design variables with physical 

meaning. In this study, a geometric model for double-

curvature arch dams that is based on practical 

requirements is presented. To define the geometrical 

model of an arch dam, the shape of a central vertical 

section is determined first, and then the shape of horizontal 

sections at various elevations is specified. 

2.1. Shape of the central vertical section 

For the central vertical section of a double-curvature 

arch dam, one polynomial of nth order can be used to 

determine the curve of the upstream boundary and another 

polynomial can be utilized to determine the thickness. In 

this study, for the curve of the upstream face a polynomial 

of second order is considered as [2, 3]: 

 

    2 / (2  ) y z b z sz sz h   
 

(1) 

 

 
Fig. 1 (a) Central vertical section of an arch dam              (b) Horizontal section of a parabolic arch dam 

 

As shown in Fig. 1(a), h and s are the height of the 

dam and the slope at crest, respectively. The point where 

the slope of the upstream face equals to zero is z h  in 

which 0 1   is a constant.  

By dividing the height of the dam into n segments 

containing n+1 levels, the thickness of the central vertical 

section can be expressed as: 

 

 
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  (2) 

 

in which tci is the thickness of the central vertical 

section at the ith level. Also, in the above relation Li(z) is a 

Lagrange interpolation function associated with the ith 

level and can be defined as: 
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where zi denotes the z coordinate of the ith level in the 

central vertical section. 

 

2.2. Shape of the horizontal section 

As shown in Fig. 1(b), for a symmetrical canyon and 

arch thickening from crown to abutment, the shape of the 

horizontal section of a parabolic arch dam is determined 

by the following two parabolic surfaces [3]: 

At the upstream face of dam: 

 

  21
, ( )   

2 ( )
u

u

y x z x b z
r z

   (4) 

 

At the downstream face of dam: 

 

   21
, ( )   

2 ( )
d c

d

y x z x b z t z
r z

    (5) 

 

where ru and rd are radii of curvature corresponding to 

upstream and downstream curves, respectively, and 

functions of nth order with respect to z can be used for 

these radii: 
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(7) 

 

where rui and rdi are the values of ru and rd at the ith level, 

respectively. 

3. Finite Element Model of Arch Dam 

In the present study, a finite element model based on 

modal analysis of double-curvature arch dam is presented. 

The arch dam is treated as a three dimensional linear 

structure. A twenty-node isoparametric solid element is 

used to mesh of the arch dam body. It is assumed that the 

reservoir is empty and dam foundation is rigid to avoid the 

extra complexities that would otherwise arise. These 

assumptions do not affect the proposed methodology for 

optimal design of arch dams. The material properties of 

the dam are given in Table 1 and the finite element model 

of a parabolic arch dam is depicted in Fig. 2.  

 

 
Fig. 2 The finite element model of the parabolic arch dam 

 

Table 1 The material properties of dam 

Characteristic Material property 

Elasticity modulus of concrete 27580 MPa 

Poison’s ratio of concrete 0.2 

Mass density of concrete 2483 kg/m
3
 

 

The Block Lanczos eigenvalue solver is given in 

ANSYS [15] which uses the Lanczos algorithm. This 

method is useful for large-scale structures and typically, is 

applicable to the type of problems solved using the 

subspace eigenvalue method and is as accurate as the 

subspace method, but has a faster convergence rate. 

3.1. Verification of the finite element model 

In order to validate the finite element model of the arch 

dam, Morrow Point arch dam (263km southwest of 

Denver, Colorado) is investigated (Fig. 3). The dam 

structure is 141.7m high, with a crest length of 221m. The 

thin arch structure ranges in thickness from 3.7m at the 

crest to 15.9m at the base. 

The material properties of the dam are given in Table 

1. Other properties of the dam can be found in Ref. [16]. 

The first three natural frequencies of the mode of Morrow 

Point dam is determined from modal analysis of arch dam 

and the results is compared to those reported in the 

literature [12, 17]. It should be noted that the natural 

frequencies related to half of the dam are reported in the 

literature [12]. In order to perform an exact analysis, it is 

necessary to consider the complete dam. The natural 

frequencies from the literature and the finite element 

model are given in Table 2. It can be observed that a good 

conformity has been achieved between the result of 

present work and that reported in the literature. 

 

 
Fig. 3 Finite element model of the Morrow Point dam 
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Table 2 Comparison of the natural frequencies (Hz) from the literature with the finite-element model 

 Empty reservoir 

mode Tan and Chopra [17] Salajegheh et al. [12] Present work 

1 4.27 4.29 4.30 

2 ― ― 4.58 

3 ― 6.71 6.67 

 

4. Arch Dam Optimization 

4.1. Mathematical model and optimization variables 

In the optimization process, the goal is to minimize the 

cost of arch dam while satisfying multiple constraints on 

natural frequencies. The optimization problem can be 

stated mathematically as follows: 

 

 

 

1 2     Find : 

To minimize :

    Subj

[ , , , ]

0 ,  1,o ,ect t :

n

i

l u
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w X

g X i m

X X X

 

  

 

 (8) 

 

where X is the vector containing the design variables with 

n unknowns, w(X) represents the objective function that 

should be minimized, and gj is the jth constraint from m 

inequality constraints. Also, in the above equation 
lX  and 

uX  denote the lower and upper bounds of the design 

variable vector, respectively. 

4.2. Design variables 

The most effective parameters for creating the arch-

dam geometry were mentioned in Section 2. These 

parameters can be adopted as design variables: 

 

 1 . . . 1 1 . . . 1 1 . . . 1                              T

c cn u un d dnX s t t r r r r     (9) 

 

in which the 
TX  vector may have 3 5n  components 

involving shape parameters of the arch dam. 

4.3. Design constraints 

Design constraints are divided into some groups 

including the behavior, geometric and stability constraints. 

The behavior constraints are limits on natural frequencies 

that may be defined as follows: 
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(10) 

 

where 
 

kfr , 
l

kfr  and 
u

kfr  are the kth natural frequency, 

lower and upper bounds on kth natural frequency, 

respectively. Also, frn  is the number of natural 

frequencies that may be considered. The most important 

geometric constrains are those that prevent from 

intersection of upstream and downstream face as: 

 

 
 

     1 0   ,    1, , 1di
di ui gi

ui

r
r r g X i n

r
         (11) 

 

where 
dir  and 

uir  are radii of curvatures at the down and 

upstream faces of the dam in ith position in z direction. 

The geometric constraint that is applied for facile 

construction is defined as: 

 

 
   

    1 0all c

all

s
s s g X

s
      (12) 

 

where s is the slope of overhang at the upstream face of 

dam and 
alls  is its allowable value. Also 

alls  is taken as 

0.3 [2]. 

The constraints ensuring the sliding stability of the dam 

may be expressed as: 
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(13) 

 

where i  is the central angle of arch dam and usually 

90 130i   [18]. 

4.4. Objective function 

In the present work, the cost of arch dam body is 

considered as objective function that may be expressed as: 

 

     v aw X p v X p a X   (14) 

 

in which  v X  and  a X  are the volume of concrete 

and the areas of casting in dam. The unit price of concrete 

and casting are chosen as 
vp =$33.34 and 

ap =$6.67, 

respectively. 

the volume of concrete can be determined by 

integrating of dam surfaces as: 
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   
 

, ( , )  d u

Area

v X y x z y x z dx dz ∬  (15) 

 

in which Area  is an area produced by projecting of 

dam on xz  plane. 

The areas of casting can be approximately calculated 

by summing of the areas of upstream and downstream 

faces as follows [19]: 

 

     
2 2 2 2   

1   1  u u d d

u d

Area Area

dy dy dy dy
a X a X a X dx dz dx dz
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       

      
       
      

∬ ∬
 (16) 

 

where 
ua  and 

da  are the casting areas of upstream and 

downstream faces, respectively. In order to evaluate the 

mentioned parameters a computer program is coded using 

MATLAB [20] based on numerical integration.  

Actually minimizing  w X  will lead to minimizing 

 Mer X , the merit function. Thus, an exterior penalty 

function, 
penalty ( )w X , is employed to form the merit 

function, as follows: 

 

     ( )penaltyMer X w X w X   (17) 

 

where penalty ( )w X  is the penalty function resulting from 

the violations of the constraints corresponding to the 

response of the structure. By considering some natural 

frequency constraints, the penalty function is defined as 

[9]: 
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(18) 

 

jfr  is the jth natural frequency of the structure and 

*

jfr  is its upper bound. 
kfr  is the kth natural frequency of 

the structure and 
*

kfr  is its lower bound. Also, q is the 

number of frequency constraints. If the ith constraint is 

satisfied 
iv  will be taken as zero, if not it will be taken as: 

 

*
1 i

i

i

fr
v

fr


  

 
 (19) 

 

The parameters 
1  and 

2  are selected considering 

the exploration and the exploitation rate of the search 

space. 

 

5. Enhanced Charged System Search 

5.1. Review of the Charged System Search algorithm 

Charged System Search (CSS) algorithm, proposed 

recently by Kaveh and Talatahari [7], is based on 

electrostatics and Newtonian mechanics laws. The CSS 

algorithm contains a number of agents which are called 

charged particles (CPs). In the shape optimization of arch 

dams, Xj is the position of the jth CP containing a number 

of design variables (i.e. Xj={xi, j}) as mentioned in section 

4. Each CP is considered as a charged sphere which exerts 

an electric force on other CPs according to the Coulomb 

and Gauss laws. The resultant forces and the laws of 

motion determine the new location of the CPs [21]. The 

pseudo-code for the CSS algorithm can be summarized as 

follows: 

Step 1. Initialization. Initialize CSS algorithm 

parameters. Initialize an array of charged particles (CPs) 

with random positions, as follows: 

 
(0)

, ,min ,max ,minrand.( - )    ,    1,2,...,i j i i ix x x x i n    (20) 

 

where 
(0)

,i jx  determines the initial value of the ith variable 

for the jth CP; ,minix  and ,maxix  are the minimum and the 

maximum allowable values for the ith variable; rand is a 

random number in the interval [0,1]; and n is the number 

of variables. The initial velocities of the CPs are taken as 

zero, 

 
(0)

, 0 , 1,2,...,i jv i n   (21) 

 

It seems that a CP with good results must exert a 

stronger force than the bad ones, so the amount of the 

charge will be defined considering the objective function 

value, fit(i). Each CP has a charge of magnitude (q) 

defined considering the quality of its solution as: 

 

( )
1,2,...,i

fit i fitworst
q i N

fitbest fitworst


 


 (22) 

 

where fitbest and fitworst are the best and the worst fitness 

of all the particles; fit(i) represents the fitness of agent i; 

and N is the total number of CPs. The separation distance 

ijr  between two charged particles is defined as: 

 

X X

(X X ) / 2 X

i j

ij

i j best

r





  
 (23) 

 

where Xi and Xj are the positions of the ith and jth CPs, 

respectively; Xbest is the position of the best current CP, 

and   is a small positive number to avoid singularities. 

Step 2. CM creation. A number of the best CPs and the 

values of their corresponding fitness functions are saved in 

the Charged Memory (CM). 
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Step 3. The probability of moving determination. 

Determine the probability of moving each CP toward the 

others considering the following probability function: 

 

( )
1 ( ) ( )

( ) ( )

0 otherwise

ij

fit i fitbest
rand fit j fit i

fit j fit ip


    




 
(24) 

 

Step 4. Determination of the forces on CPs. The force 

vector is calculated for each CP as 

 

1 2 1 23 2
,

1 2

1,2,...,

F . . (X X ) 1, 0

0, 1

i i
j j ij ij ij i j ij

i i j ij

ij

j N
q q

q r i i ar p i i r a
a r

i i r a



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       
 

   


 

(25) 

 

where Fj is the resultant force affecting the jth CP and ijar  

indicates the kind of force and is defined as 

 

1 0.8

1
ij

rand
ar

else

 
 



 (26) 

 

where rand represents a random number  

Step 5. Solution construction. The new position and 

velocity of each CP will be obtained by using the 

following equations: 

 

2

, 1 2 , ,

F
X . . . . .V . X

j

j new j a j v j old j old

j

rand k t rand k t
m

      
(27) 

, ,

,

X X
V

j new j old

j new
t





 

(28) 

 

where randj1 and randj2 are two random numbers 

uniformly distributed in the range (1,0); mj is the mass of 

the CPs, which is equal to qj in this paper. The mass 

concept may be useful for developing a multi-objective 

CSS. Δt is the time step, and it is set to 1. ka is the 

acceleration coefficient; kv is the velocity coefficient to 

control the influence of the previous velocity. In this paper 

kv and ka are taken as: 

 

max max0.5(1 iter / iter ) , 0.5(1 iter / iter )v ak k     (29) 

 

where iter is the iteration number and itermax is the 

maximum number of iterations.  

Step 6. CP position correction. If each CP exits from 

the allowable search space, correct its position using the 

HS-based handling as described in Refs. [7, 22].  

Step 7. CM updating. If the fitness function of some 

new CP vectors are better than the worst ones in the CM, 

include the better vectors in the CM and exclude the worst 

ones from the CM. 

Step 8. Controlling the terminating criterion. Steps 3-7 

are repeated until a terminating criterion is satisfied. 

5.2. An enhanced charged system search algorithm 

In the standard CSS algorithm, when the calculations of 

the amount of forces are completed for all CPs, the new 

locations of agents are determined. Also CM updating is 

fulfilled after moving all CPs to their new locations. All 

these conform to discrete time concept. In the optimization 

problems, this is known as iteration. On the contrary, in the 

enhanced CSS, time changes continuously and after creating 

just one solution, all updating processes are performed. 

Using this enhanced CSS, the new position of each agent 

can affect the moving process of the subsequent CPs while 

in the standard CSS unless an iteration is completed, the 

new positions are not utilized. All other aspects of the 

enhanced CSS are similar to the original one [9]. Fig. 4 

shows the flowchart of the Enhanced CSS algorithm. 

 

 
Fig. 4 The flowcharfor the Enhanced CSS algorithm 
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6. Neural Network 

Optimum design of arch dams for constrained 

frequencies is a time consuming process because a huge 

number of eigenproblems should be solved. In order to 

reduce the computational effort, neural network is used to 

predict the required natural frequencies during the 

optimization process. 

Neural network training is the first stage of the 

presented methodology. In this case, a number of arch 

dams based on their geometric parameters are randomly 

selected and their natural frequencies are evaluated by 

conventional finite element analysis using ANSYS. 

Considering the geometric parameters of the generated 

dams as the inputs and their corresponding natural 

frequencies as the targets, the neural network is trained 

using MATLAB. In the second stage, the optimization task 

is achieved by CSS and Enhanced CSS algorithms. In 

these cases, the necessary natural frequencies of the dams 

are predicted by the trained neural networks and during the 

optimization processes the modal analysis of the dams is 

not required. This makes the methodology more efficient. 

6.1. BP neural network 

Standard BP [23] is a gradient descent optimization 

algorithm, which adjusts the weights in the steepest 

descent direction, according to the following equation:  

 
BP BP

k+1 k k kW W G   (30) 

 

where 
1

BP

kW 
 and 

kG  are the weight and the current 

gradient matrices, respectively, and 
k  is the learning 

rate. Levenberg–Marquardt (LM) algorithm was designed 

to approach second-order training speed without having to 

compute the Hessian matrix [24]. In the LM algorithm, the 

weights updating is achieved as follows:  

 
1
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

      (31) 

 

where J  is the Jacobian matrix that contains first 

derivatives of the network errors with respect to the 

weights, and E  is a vector of network errors. Also,   is a 

correction factor. The value of   is decreased after each 

successful step and is increased only when a tentative step 

would increase the performance function [24]. 

7. Implementation of Arch Dam Optimization 

In the process of optimization, natural frequencies of 

generated dams are evaluated by ANSYS or trained BP 

network. Thus, with the mentioned conditions, 

optimization is implemented using four different methods 

listed in the following: 

(a) CSS using accurate analysis employing a finite 

element analysis. 

(b) Enhanced CSS utilizing accurate analysis using a 

finite element analysis. 

(c) CSS using approximate analysis utilizing the 

trained BP network. 

(d) Enhanced CSS using approximate analysis 

employing the trained BP network. 

8. Numerical Results 

In order to assess the effectiveness of the proposed 

methodology, the shape optimization of an arch dam with 

a height of 180m is examined. The widths of the valley in 

its bottom and top levels are 40m and 220m, respectively, 

as shown in Fig. 5. The dam is modeled by 11 shape 

design variables as: 

 

 1 2 3 1 2 3 1 2 3

T

c c c u u u d d dX s t t t r r r r r r  (32) 

 

For this example, tc1, tc2, tc3 and ru1, ru2, ru3 and rd1, rd2, 

rd3 are values of tc , ru and rd at z1=0, z2=0.55h and z3=h, 

respectively. The lower and upper bounds of design 

variables can be determined using empirical design 

methods as:  
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(33) 

 

Also, multiple natural frequency constraints are 

considered as: 

 

1 3 43Hz 6Hz 7Hzfr fr fr    (34) 

 

In this example, the main steps for the optimization of 

arch dams under frequency constraints by CSS algorithm 

can be summarized as follows: 

Step 1: Initialization. Initialize CSS algorithm 

parameters. The number of CPs is set to 20. Using Eq. 

(33), initialize all CPs with random positions. With these 

initialized positions, calculate the separation distances 

between each two CPs. The initial velocities of the CPs are 

considered as zero. 

Step 2: CM creation. Evaluate the values of the fitness 

function for the CPs, compare with each other and sort 

increasingly. Store 5 numbers of the first CPs and their 

values of corresponding fitness functions in the CM. 

Step 3: The probability of moving determination. 

Determine the probability of moving each CP toward the 

others. 

Step 4: Determination of the forces on CPs. Calculate 

the resultant force vector for each CP. In this paper, 

magnitude of CPs’ radius is set to unity. 

Step 5: Solution construction. Move each CP to the 

new position and find the new velocities. The maximum 

number of iterations is set to 100. 

Step 6: CP position correction. If each CP exits from 

the allowable search space, correct its position using the 

HS-based handling as described in Ref. [7, 22]. The value 

of PAR is taken as 0.1. 
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Step 7: CM updating. Evaluate and compare the values 

of the objective function for the new CPs, and sort them 

increasingly. If some new CP vectors are better than the 

worst ones in the CM, include the better vectors in the CM 

and exclude the worst ones from the CM. 

Step 8: Controlling the terminating criterion. Stop 

repeating steps (3) to (7) after 100 iterations. 

In the above steps, the natural frequencies of dams can 

be predicted by the trained BP network instead of 

evaluating by ANSYS. Therefore for training BP network 

the following steps are required: 

(a) Some arch dams considering their geometric 

parameters are selected randomly. 

(b) Natural frequencies of the selected dams are 

evaluated by ANSYS. 

(c) By using the geometric parameters of the generated 

dams as the inputs and the corresponding natural 

frequencies as the targets, the BP network is trained. 

For BP network testing, the errors between the exact 

and approximate frequencies are calculated using the 

following equation: 

 

100
ap ex

ex

fr fr
error

fr


   (35) 

 

where apfr  and exfr  represent the approximate and exact 

frequencies, respectively. 

The optimization process is performed by a Core
TM

 2 

Duo 2.66 GHz computer and the time of all computations 

is evaluated in clock time. 

 

 
Fig. 5 The valley dimensions of the arch dam 

8.1. Neural network training and testing 

For neural network training, inputs and outputs are the 

design variables of the arch dams and their corresponding 

natural frequencies, respectively. Here, 350 training pairs 

are randomly generated and 250 and 100 samples are used 

for training and testing the network, respectively. The total 

time spent to data generation phase is equal to 33 min. 

Using the mentioned data, BP neural network is trained. 

The time spent to train the BP is 0.2 min, and the numbers 

of hidden layer neurons in BP network is considered as 10. 

It should be noted that the number of BP neurons is 

determined by trial and error. In this case, the number of 

BP neurons is changed and the testing errors are 

monitored. The best results are observed in the case of 10 

hidden layer neurons. So, the size of network is 11-10-3. 

Training results are provided in Table 3. It is observed that 

the BP network possesses appropriate generalization and 

can be employed in the optimization process.  

 
Table 3 Maximum and mean errors of BP network in testing 

mode 

 Network 
Errors (%) 

Ave. 
fr1 fr3 fr4 

Mean 

errors (%) 
BP 0.708 0.797 0.601 0.702 

Maximum 

errors (%) 
BP 5.466 5.731 3.275 4.824 

8.2. Optimization results 

Optimum solutions obtained by the various methods 

are provided in Table 4. As can be observed from this 

table, the solutions found by the Enhanced CSS are more 

economical, and the best solution is attained by Enhanced 

CSS using BP network. It is observed that the overall time 

of the optimization by neural network is 0.3 times of 

optimization by EA. This demonstrates that the overall 

time of optimization can be significantly reduced using 

neural network. 

 

 
Table 4 Optimum designs of the arch dam obtained by the various methods 

Design variables 

Optimum design 

CSS  Enhanced CSS 

Exact BP  Exact BP 

s (m/m) 0.217 0.297  0.211 0.296 

β (m/m) 1.000 0.997  1.000 0.979 

tc1 (m) 8.321 7.611  7.143 11.899 

tc2 (m) 8.000 8.000  8.000 8.000 

tc3 (m) 12.001 12.000  12.000 12.000 
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ru1 (m) 140.746 151.126  149.648 150.809 

ru2 (m) 61.153 62.730  61.153 61.104 

ru3 (m) 22.879 20.377  22.491 21.825 

rd1 (m) 54.835 50.299  54.835 60.508 

rd2 (m) 40.005 44.383  40.005 42.298 

rd3 (m) 22.842 20.084  22.478 21.796 

Cost ($10
6
) 15.035 14.908  14.978 14.878 

Value of violated constraints (%) 0 0  0 0 

Required iterations 100 100  100 100 

Optimization time (min) 185 22.7  188 24 

Data generation time (min) ― 33  ― 33 

Training time (min) ― 0.2  ― 0.2 

Overall computing time (min) 185 55.9  188 57.2 

 

Table 5 represents the natural frequencies of optimum dams obtained by various methods mentioned in Table 4. 

 
Table 5 Natural frequencies of optimum dams obtained by various methods in Table 4 

Natural Frequency 
CSS  Enhanced CSS 

Exact BP  Exact BP 

fr1 (Hz) 5.02 5.13  5.04 4.81 

fr3 (Hz) 6.01 6.01  6.01 6.28 

fr4 (Hz) 7.00 7.00  7.00 7.00 

 

Table 6 shows the central angles of optimum dams 

obtained by various methods mentioned in Table 4.  

 

Table 6. The central angles of optimum dams obtained 

by various methods in Table 4 

Central angle 
CSS  Enhanced CSS 

Exact BP  Exact BP 

φ1 (deg) 97.98 90.28  91.33 90.5 

φ2 (deg) 129.8 125.8  129.8 129.9 

φ3 (deg) 112.2 129.1  114 118.4 

 

Fig. 6 shows the convergence curves obtained by 4 

different methods. 

 

 
Fig. 6 The convergence curves obtained by the various methods 

The errors of approximate frequencies of optimum 

designs predicted by BP network are compared to their 

corresponding accurate ones (obtained from finite 

elements analysis) in Table 7. It can be observed that the 

accuracy of approximate frequencies obtained by BP 

network is reasonably high. 

 
Table 7 Error percentage of approximate frequencies of optimum 

dams 

Frequency No. 
CSS Enhanced CSS 

BP BP 

1 0.98 1.05 

3 0.83 0.48 

4 1.16 2.94 

Ave. 0.99 1.49 

9. Concluding Remarks 

Shape optimization of arch dams for constrained 

frequencies is performed in this paper. For this purpose, a 

finite element model based on modal analysis of arch dam 

is presented. The results of this model are compared to 

those of reported in literature and its performance is 

verified. In order to optimize the arch dam a combination 

of the new meta-heuristics algorithms and neural network 

is utilized. The meta-heuristics algorithms used in this 

investigation are CSS and Enhanced CSS. In order to 

reduce the computational cost of the optimization process 

the natural frequencies of the arch dams are evaluated 

using properly trained back propagation (BP) neural 

network instead of their exact modal analysis. 
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It should be noted that the solutions found by EA is 

more accurate than those obtained by utilizing the neural 

networks, but the time spent in the case of using neural 

networks is about 0.3 of the time required for optimization 

using EA, while the computational errors appeared due to 

approximation, are negligible. It is demonstrated that the 

optimum design obtained by Enhanced Charged System 

Search using the BP network is the best compared to the 

other results. The numerical results demonstrate the 

efficiency and computational merits of the proposed 

methodologies for shape optimization of arch dams. 
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