Volume 10, Issue 2 (June 2012)                   IJCE 2012, 10(2): 93-99 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mahin Roosta R, Alizadeh A. Simulation of collapse settlement in rockfill material due to saturation. IJCE 2012; 10 (2) :93-99
URL: http://ijce.iust.ac.ir/article-1-521-en.html
Abstract:   (15638 Views)

In the first impounding of rockfill dams, additional settlements occur in upstream side in saturated rockfills due to collapse
phenomenon even high rainy seasons can cause additional deformation in the dumped rockfills. Unfortunately these
displacements are not taken into account in the conventional numerical models which are currently used to predict embankment
dam behavior during impounding. In this paper to estimate these displacements, strain hardening-strain softening model in Flac
is modified based on the laboratory tests, in which same impounding process in such dams is considered. Main feature of the
model is reproduction of nonlinear behavior of rockfill material via mobilized shear strength parameters and using collapse
coefficient to display induced settlement due to inundation. This mobilization of shear strength parameters associated with some
functions for dilatancy behavior of rockfill are used in a finite difference code for both dry and wet condition of material. Collapse
coefficient is defined as a stress dependent function to show stress release in the material owing to saturation. To demonstrate
how the model works, simulation of some large scale triaxial tests of rockfill material in Gotvand embankment dam is presented
and results are compared with those from laboratory tests, which are in good agreement. The technique could be used with any
suitable constitutive law in other coarse-grained material to identify collapse settlements due to saturation

Full-Text [PDF 579 kb]   (5499 Downloads)    
Type of Study: Research Paper | Subject: Soil Mechanics Classic

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb