Showing 3 results for Energy Simulation
Saber Sabouri, Niloufar Alinasab,
Volume 31, Issue 4 (10-2021)
Abstract
Nowadays, due to rapid urbanization, People can’t participate in outdoor activities. On the other hand, environmental issues such as climate change and heat stress have caused thermal dissatisfaction for users. In this regard, studying outdoor environments becomes crucial. In the present historical context, lack of responsive urban layout consequences not only morphological problems but also causes thermal dissatisfaction during the passages. The present study aims to find the responsive layout pattern for providing an approximate outdoor thermal comfort based on local criteria and limitations in summer and winter; which requires the minimum intervention in the current context. In this regard, we intend to represent three basic street patterns (Linear, Grid, and Circular) as alternative designs and attempt to localize them with the current urban layout. For analyzing the prototypes, we used Envi-met Beta software to compare the average amount of climatic factors, orientation, and H/W ratio for the alternatives. In addition, the PMV factor (=Predicted Mean Vote Model) was used as a measurement index of outdoor thermal comfort. According to the outcomes, the Radial pattern with dominant NE-SW oriented passages prepares adequate solar energy in the winter. Also, it could balance the high radiation during the summer, whereby provides optimal thermal satisfaction in both hot and cold seasons.
Iman Mirshojaeian Hosseini, Fatemeh Mehdizadeh, Seyyed Mehdi Maddahi, Vahid Ghobadian,
Volume 31, Issue 4 (10-2021)
Abstract
Energy-efficient buildings reduce energy demand. The parameters of the building envelope, as an interface between the interior of the building and the outdoor environment, can greatly influence energy consumption. The main objective of this study is to optimize the parameters of buildings’ envelopes for reducing energy consumption while considering the common style of architectural design in cold-dry regions. The case study research methodology is used to investigate the effect of various openings characteristics on the energy performance of the building. This paper studied one of the stories of a high-rise residential building as the case study and component blocks were used for the rest of the stories. To find an energy-efficient model for the buildings’ façade, considering the effective parameters, numerous simulations were performed by the EnergyPlus as an energy simulation engine. The factors analyzed in this article included the type of glazing, the type of window frame, the window-to-wall ratio (WWR), and shading placement. The results show that a combination of Low-E glazing and Argon gas with a 5.98% reduction, a UPVC window frame with a 0.36% reduction, a WWR of 30% with a 1.57% increase, an overhang shading with 20cm thickness and 15cm depth with a 1.12% reduction in annual energy consumption can cause a total reduction of 2.45% in annual energy consumption compared to the initial model. These changes did not compromise the required lighting for the interior spaces while reducing the energy consumption of the building.
Sahar Rahimifar, Abbas Tarkashvand, Haniyeh Sanaieian,
Volume 33, Issue 2 (4-2023)
Abstract
In recent years, optimizing the energy consumption of buildings has become one of the important environmental and economic goals in sustainable architecture and urban planning. A group of factors affecting the energy consumption of buildings is their physical characteristics and form. In this regard, in the present research, the effect of volumetric porosity in high-rise buildings on their energy consumption has been investigated. The purpose of this research is to explain the correlation between the volumetric porosity of a building, as an independent variable, and its cooling and heating load, as a dependent variable, in a high-rise residential complex in Tehran. In this regard, first, a modular-generative model has been created in the Grasshopper plugin of Rhino software, which can create a porosity of 0 to 50% parametrically. Then, the cooling and heating load of each of the produced models in the city of Tehran and on the June 21 (summer solstice) and December 21 (winter solstice) were calculated using the Honeybee plugin, with standard settings. The data obtained from the simulation were entered into the SPSS software environment and the correlation test of the percentage of volume porosity and energy consumption was performed on the two aforementioned dates in Tehran. In order to validate the research method, this process was performed in 3 other climatic zones of Iran and the findings were compared with other studies in this field. The results of this research showed that the increase in porosity, assuming the number of modules is kept constant (the total volume of the building remains constant) and the site coverage ratio - as is common and inevitable in high-rise buildings - have a significant positive correlation with increased energy consumption in high-rise residential buildings in Tehran.