Search published articles

Showing 14 results for Modeling

S. Sanaye, M. Dehghandokht,
Volume 1, Issue 3 (5-2011)

Thermal modeling of an automotive cabin was performed in this paper to predict the inside cabin air temperature. To implement this task, thermal and ventilation loads were estimated and the mass and energy balance conservation equations for dry air and water vapor with considering a new parameter (air circulation ratio) as well as the balance equations of internal components of a cabin were derived and solved simultaneously. The performance of the proposed thermal modeling of a cabin was compared with the data collected from hot room experimental tests. These tests were run for various design parameters such as evaporating cooling load and cabin size (air volume inside cabin). The comparison of experimental and numerical results showed a good agreement. Parametric analysis with three parameters namely, vehicle speed, number of passengers, and A/C air mass flow rate was performed to investigate the effects of these parameters on cabin air temperature.
S. Sanaye, M. Dehghandokht,
Volume 2, Issue 2 (4-2012)

In this paper, mini-channel type evaporator which is new in mobile air conditioning (MAC) or automotive air conditioning (AAC) systems is thermally modeled. The performance of mini-channel evaporator is also compared with the laminated evaporator which is being currently used in automotive industries. The mini-channel evaporator was constructed of two rows of parallel flow mini-channel tubes with inlet and outlet headers. The numerical results of modeling the laminated and mini-channel evaporators validated with the corresponding experimental data which was obtained from experiments performed on mobile air conditioning system in calorimeter test bench. The comparison of modeling results of two evaporators showed good agreement with experimental data. The performance of laminated and mini-channel evaporators were also compared under various operating conditions. The mini-channel evaporator had higher cooling capacity (7.2%) and higher refrigerant pressure drop (45%) in comparison with the corresponding values in laminated evaporator assuming the same external geometry. The outlet air temperature and enthalpy of minichannel evaporator was also lower, 11% and 8% respectively, than that for laminated evaporator. This cause to reduce the time period as well as power/fuel consumption for reaching the comfortable cabin temperature.
M. A. Saeedi, R. Kazemi, M. Rafat, A. H. Pasdar,
Volume 2, Issue 2 (4-2012)

In this paper, a complete model of an electro hydraulic driven dry clutch along with its performance evaluation has elucidated. Through precision modeling, a complete nonlinear physical and full order sketch of clutch has drawn. Ultimate nonlinearities existent in the system prohibits it from being controlled by conventional linear control algorithms and to compensate the behavior of the system mainly during gearshift procedure, a nonlinear control program has been developed and tested. A unique approach to estimating clamp force has been adopted which makes the system comparable to a real world and full-physical one. Based on this type of modeling, the control approach is a true and feasible, ready-to-implement program which is based only on reality. The clutch model has been validated against experiments and great agreement has been attained since, every fine point has been taken into account and nothing is out of representation unless it is not crucial to system performance. The nonlinear control program does the control task very well and administrates the system in the desired trajectory.
A. Ghaffari, A. Khodayari, S. Arvin, F. Alimardani,
Volume 2, Issue 4 (10-2012)

The lane change maneuver is among the most popular driving behaviors. It is also the basic element of important maneuvers like overtaking maneuver. Therefore, it is chosen as the focus of this study and novel multi-input multi-output adaptive neuro-fuzzy inference system models (MANFIS) are proposed for this behavior. These models are able to simulate and predict the future behavior of a Driver-Vehicle-Unit in the lane change maneuver for various time delays. To design these models, the lane change maneuvers are extracted from the real traffic datasets. But, before extracting these maneuvers, several conditions are defined which assure the extraction of only those lane change maneuvers that have a smooth and uniform trajectory. Using the field data, the outputs of the MANFIS models are validated and compared with the real traffic data. In addition, the result of these models is compared with the result of other trajectory models. This comparison provides a better chance to analyze the performance of these models. The simulation results show that these models have a very close compatibility with the field data and reflect the situation of the traffic flow in a more realistic way.
H. Pashazadeh, A. Masoumi, J. Teimournezhad,
Volume 3, Issue 1 (3-2013)

The objective of this study was to develop a numerical model for the prediction of temperature distribution, effective plastic strain distribution, and especially material flow in friction stir welding of copper plates. The DEFORM-3D software was used by incorporating a lagrangian incremental formulation. Threedimensional results of the material flow pattern which were extracted using the point tracking are in good agreement with the experiment. It was shown that the main part of material flow occurs near the top surface. Material near the top surface at the behind of tool stretches from retreating side towards advancing side which leads to non-symmetrical shape of the stir zone. The stir zone shape in FSW of copper alloys, which was predicted by simulation, does not lean completely towards any sides of welding line.
A. Ghaffari, A. Khodayari, F. Alimardani, H. Sadati,
Volume 3, Issue 2 (6-2013)

Overtaking a slow lead vehicle is a complex maneuver because of the variety of overtaking conditions and driver behavior. In this study, two novel prediction models for overtaking behavior are proposed. These models are derived based on multi-input multi-output adaptive neuro-fuzzy inference system (MANFIS). They are validated at microscopic level and are able to simulate and predict the future behavior of the overtaking vehicle in real traffic flow. In these models, the kinematic features of Driver-Vehicle-Units (DVUs) such as distance, velocity, and acceleration are used. Unlike the previous models, where some variables of the two involved vehicles are considered to be constant, in this paper, instantaneous values of the variables are considered. The first model predicts the future value of the longitudinal acceleration and the movement angle of the overtaking vehicle. The other model predicts the overtaking trajectory for the overtaking vehicle. The second model is designed for two different vehicle classes: motorcycles and autos. Also, the result of the trajectory prediction model is compared with the result of other models. This comparison provides a better chance to analyze the performance of this model. Using the field data, the outputs of the MANFIS models are validated and compared with the real traffic dataset. The simulation results show that these two MANFIS models have a very close compatibility with the field data and reflect the situation of the traffic flow in a more realistic way. These models can be used for all types of drivers and vehicles and also in other roads and are not limited to certain types of situations. The proposed models can be employed in ITS applications and the like.
M. Esfahanian, A. Mahmoodian, M. Amiri, M. Masih Tehrani, H. Nehzati, M. Hejabi, A. Manteghi,
Volume 3, Issue 4 (12-2013)

In the present study, a model of a large Lithium Polymer (Li-Po) battery for use in the simulation of Hybrid Electric Vehicles (HEVs) is developed. To attain this goal, an Equivalent Circuit (EC) consisting of a series resistor and two RC parallel networks is considered. The accuracy and the response time of the model for use in an HEV simulator are studied. The battery parameters identification and model validation tests are performed in low current with a good accuracy. Similar test process is implemented in high current for another cell and the simulation is verified with experimental results. The validation tests confirm the accuracy of the model for use in HEV simulator. Finally, the battery model is used to model a Vehicle, Fuel and Environment Research Institute (VFERI) hybrid electric city bus using ADVISOR software and its compatibility with other components of the vehicle simulator are demonstrated in a drive cycle test.
Gh.h Payeganeh, M. Esfahanian, S. Pakdel Bonab,
Volume 4, Issue 2 (6-2014)

In the present paper, the idea of braking energy regeneration and reusing that energy during acceleration for a refuse truck is comprehended. According to their driving cycle, the refuse trucks have a good potential for braking energy regeneration. On the other hand, hydraulic hybrid is a powertrain with high power density which is appropriate for energy regeneration. In the primary stage of this issue, the hydraulic hybrid propulsion system is designed with intention of regenerating the maximum possible kinetic energy during the refuse truck braking mode. At this stage, a non-fuzzy rule-based control strategy is applied to manage the energy flow in the hybrid powertrain. After that, the powertrain of the Axor 1828 truck and the elements of the hydraulic powertrain are modeled in MATLAB/Simulink. The modeling is performed considering the efficiencies of the powertrain elements. In the last part of the paper, a fuzzy control strategy is designed and modeled to improve the fuel consumption of the truck with hybrid powertrain. In order to see the usefulness of the designed hybrid powertrain, several simulations are organized on the vehicle model in Simulink. The driving cycle for refuse truck in Tehran is used for performing the simulations. The results state indicated that using the hydraulic hybrid powertrain decreased the fuel consumption of the refuse truck by 7 percent. In addition, this amount of reduction was improved by implementing the fuzzy control strategy. The decrease in fuel consumption was due to the regenerating of the braking energy up to 50 percent.
A. Khodayari,
Volume 5, Issue 2 (6-2015)

Due to the increasing demand for traveling in public transportation systems and increasing traffic of vehicles, nowadays vehicles are getting to be intelligent to increase safety, reduce the probability of accident and also financial costs. Therefore, today, most vehicles are equipped with multiple safety control and vehicle navigation systems. In the process of developing such systems, simulation has become a cost-effective chance for the fast evolution of computational modeling techniques. The most popular microscopic traffic flow model is car following models which are increasingly being used by transportation experts to evaluate new Intelligent Transportation System (ITS) applications. The control of car following is essential to its safety and its operational efficiency. This paper presents a car-following control system that was developed using a fuzzy model predictive control (FMPC). This system was used to simulate and predict the future behavior of a Driver-Vehicle-Unit (DVU) and was developed based on a new idea to calculate and estimate the instantaneous reaction of a DVU. At the end, for experimental evaluation, the FMPC system was used along with a human driver in a driving simulator. The results showed that the FMPC has better performance in keeping the safe distance in comparison with real data of human drivers behaviors. The proposed model can be recruited in driver assistant devices, safe distance keeping observers, collision prevention systems and other ITS applications.
A.h. Kakaee, B. Mashhadi, M. Ghajar,
Volume 6, Issue 1 (3-2016)

Nowadays, due to increasing the complexity of IC engines, calibration task becomes more severe and the need to use surrogate models for investigating of the engine behavior arises. Accordingly, many black box modeling approaches have been used in this context among which network based models are of the most powerful approaches thanks to their flexible structures. In this paper four network based modeling methods are used and compared to model the behavior of an IC engine: neural networks model (NN), group method of data handling model (GMDH), a hybrid NN and GMDH model (NN-GMDH), and a GMDH model whose structure is determined by genetic algorithm (Genetic-GMDH). The inputs are engine speed, throttle angle, and intake valve opening and closing timing, and the output is the engine brake torque. Results show that NN has the best prediction capability and Genetic-GMDH model has the most flexible and simplest structure and relatively good prediction ability.


M. Mohseni Kabir, M. Izanloo, Ab. Khalkhali,
Volume 7, Issue 2 (6-2017)

Automotive design engineers face the challenging problem of developing products in highly competitive markets. In this regard, using conceptual models in the first step of automotive development seems so necessary. In this paper, to make a body in white conceptual model, an engineering approach is developed for the replacement of beam-like structures, joints, and panels in a vehicle model. The proposed replacement methodology is based on the reduced beam, joint, and panel modeling approach, which involves a geometric analysis of beam member cross-sections and a static analysis of joints. In order to validate the proposed approach, an industrial case-study is presented. Two static load cases are defined to compare the original and the concept model by evaluating the stiffness of the full vehicle under torsion and bending in accordance with the standards used by automotive original equipment manufacturer (OEM) companies. The results show high accuracy of the concept models in comparison with the original model in bending and torsional stiffness prediction.
S.s. Hosseini, J. Marzbanrad,
Volume 7, Issue 4 (12-2017)

Car design incorporates many engineering sciences where today, have led to the use of advanced technologies in automobiles to provide more satisfaction and comfort for the passengers, increase the quality of vehicles, efficiency and more pleasure than previous cars. These issues can be categorized into two groups in general. In the first group, the effects and performance of components involved in vehicle vibrations are considered, and in the second group, attention is paid to the importance of joints and junctions of these components. Heretofore, in order to minimize vehicle NVH (noise, vibration and harshness), an exuberance of efforts have been done to raise the passengers comfort. In the meantime, it should be noted that the engine mounts play a considerable and serious role in reducing vibration exchanged between the engine and chassis. In designing the engine mounts, the most important concern is to balance the two opposite criteria that come into the car as a result of different vibration inputs (road and motor). Generally, vehicle engine mounts are used by three types of targets (motor bearing weight, motor vibration absorption, motor overloading, acceleration or braking). With the development of the automotive industry, the tendency towards the use of more efficient engine mount categories, has been prepared.
This article describes a concise functional overview of the engine mount in automobiles; it illustrates operating frequency range, relationship of the P and boundary diagram of engine mounts with other car collections, torque roll axis, positioning public types of the car’s engine mounts; and it also compares their operations. Afterwards, the structure and the basic functional of hydraulic engine mount are described as the most common engine mount categories. Finally, advantages and disadvantages of various types engine mounts with capability of use in the vehicle (including elastomeric, hydraulic (with inertia track or/and decouplier or/and bell plate (plunger), semi-active (switchable) and active hydraulic engine mount) are compared with each other.
Vahid Tavoosi, Dr Javad Marzban Rad, Dr Ramazan Mirzaei,
Volume 8, Issue 2 (6-2018)

Vertical dynamics modeling and simulation of a six-wheel unmanned military vehicle (MULE) studied in this paper. The Common Mobility Platform (CMP) chassis provided mobility, built around an advanced propulsion and articulated suspension system gave the vehicle ability to negotiate complex terrain, obstacles, and gaps that a dismounted squad would encounter. Aiming at modeling of vehicle vertical dynamics, basic and geometrical parameters defined and degrees-of-freedom specified on a compromise between accuracy and complexity of two models. Equations of motion provided on two linear and nonlinear 5-degree-of-freedom models using two different modeling methods. There is good agreement between time responses of two presented models. The main differences of two models observed in articulated suspension degrees-of-freedom while the vehicle subjected to high frequency maneuvers that cause severe oscillations on wheels and arms in comparison to vehicle body due to lower mass and inertia properties. The linear model can be used to design a controller and the nonlinear to predict vehicle motion more accurately. Sensitivity analysis of the influential parameters is also presented to specify effects of different parameters. Results of this study may be used to design articulated suspension and making next frequency analyses.
Morteza Mollajafari, Javad Marzbanrad, Pooriya Sanaei,
Volume 12, Issue 4 (12-2022)

The braking system has always been considered one of the most significant vehicle subsystems since it plays a key role in safety issues. To design such a complex system, modeling can be a helpful tool for designers to save time and costs. In this paper, the hydraulic braking system of a B-Class vehicle was modeled by simulating the relationship between brake components such as pedals, boosters, main cylinders, and wheel cylinders, with the vehicle dynamics by using the existing models of the tire and their dynamic relationships. The performed modeling was compared with the results of a concerning vehicle's direct movement. The results of this comparison showed that our modeling is very close to the experimental data. The braking distance parameter was selected to examine the effects of each braking component on the vehicle dynamics. The results of investigating the effect of different parameters of the braking system on the dynamic behavior of the vehicle indicated that the main cylinder diameter, the diameter of the front and rear wheels’ brake cylinders, the effective diameter of the front disk, and the diameter of the rear drum are the most effective design parameters in vehicle's braking system and optimal results are obtained by applying changes to these parameters.

Page 1 from 1     

© 2022 All Rights Reserved | Automotive Science and Engineering

Designed & Developed by : Yektaweb