M.h. Shojaeefard, R. Talebitooti, S. Yarmohammadisatri, M. Torabi,
Volume 3, Issue 1 (3-2013)
Abstract
In this paper, a method based on binary-coded genetic algorithm is proposed to explore an optimization method, for obtaining an optimal elliptical tank. This optimization method enhances the rollover threshold of a tank vehicle, especially under partial filling conditions. Minimizing the overturning moment imposed on the vehicle due to c.g. height of the liquid load, lateral acceleration and cargo load shift are properly applied. In the process, the width and height of tanker are assumed as constant parameters. Additionally, considering the constant cross-sectional area, an optimum elliptical tanker of each filling condition is presented to provide more roll stability. Moreover, the magnitudes of lateral and vertical translation of the cargo within the proposed optimal cross section under a constant lateral acceleration field are compared with those of conventional elliptical tank to demonstrate the performance potentials of the optimal shapes. Comparing the vehicle rollover threshold of proposed optimal tank with that of currently used elliptical and circular tank reveals that the optimal tank is improved approximately 18% higher than conventional one.