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Abstract 

 Robust control design of vehicles addresses the effect of uncertainties on the vehicle’s performance. In present 

study, the robust optimal multi-objective controller design on a non-linear full vehicle dynamic model with 8-

degrees of freedom having parameter with probabilistic uncertainty considering two simultaneous conflicting 

objective functions has been made to prevent the rollover. The objective functions that have been simultaneously 

considered in this work are, namely, mean of control effort (MCE) and variance of control effort (VCE).The 

nonlinear control scheme based on sliding mode has been investigated so that applied braking torques on the four 

wheels are adopted as actuators. It is tried to achieve optimum and robust design against uncertainties existing in 

reality with including probabilistic analysis through a Monte Carlo simulation (MCS) approach in multi-

objective optimization using the genetic algorithms. Finally, the comparison between the results of deterministic 

and probabilistic design has been presented. The comparison of the obtained robust results with those of 

deterministic approach shows the superiority robustness of probabilistic method. 
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1. . Introduction 

The rollover of vehicle has attracted increasing 

attention in the field of ground transportation safety 

problem. During the last decades, The growing 

popularity of utilizing Sport Utility Vehicles (SUVs) 

with higher center of gravity than that of passenger 

vehicles is responsible for a more precise 

investigation in manufacturing regulations aimed at 

reducing rollover fatalities because of high cost of 

production and manufacturing, together with their 

higher rollover tendency. According to the published 

reports by National Highway Traffic Safety 

Administration (NHTSA), the most important portion 

of fatal injuries of road accidents was caused by 

vehicle rollover [1]. In 2002, it was reported that 

approximately 11 million of land transportation 

passengers in roads and highways have been exposed 

to an accident, in which 3% of these have been caused 

by vehicles rollover. Moreover, 33% of the number of 

passengers lost their lives due to the occurrence of 

rollover, which is considerable in comparison with 

other types of accidents [1].  

In this way, a large number of different strategies 

for vehicle rollover mitigation have been proposed in 

the literature. Abe et al. used experimental validation 

of side-slip estimation to show the effects of side-slip 

control by direct yaw moment on improving vehicle 

motion stabilities. They showed that side-slip control 

by direct yaw control (DYC) can stabilize vehicle 

motion much better than 4-wheel steering (4WS) 

because vehicle loses its stability due to deterioration 

of rear tire characteristics [2]. Bouton et al proposed a 

rollover risk indicator dedicated to off-road vehicles, 

taking into account the environment properties and 

more particularly the grip condition and its variation. 

Their controller is based on the prediction of the 

lateral load transfer relying on 3-DOF vehicles model 

including sliding effects and performances of this 

indicator are demonstrated using the multi-body 

dynamic simulation software Adams [3]. Different 

investigations were carried out in order to design 

rollover controller by considering parameter 

variations and tried to present robust controller which 

can overcome uncertainty in vehicle model [4-6]. 

Yim used a 2-DOF vehicle model for designing a 

controller that uses active anti-roll bar and electronic 

stability program (ESP) with longitudinal speed 
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control for preventing rollover based on linear 

quadratic static output feedback [7].  

Accordingly, prevention of vehicle rollover is so 

crucial in designing more effective active safe control 

systems. There are many theoretical evidence based 

on linear and single-track models with low degree of 

freedom that are widely utilized in the literature [4, 7-

11]. However, these models are based on some 

assumptions and approximations which have unlikely 

no credit during the extreme maneuvers where the 

non-linear conditions, tire properties and dynamical 

conditions of the vehicle should be considered. Also, 

load transfer and roll dynamics behavior which is 

done during these conditions can't be modeled by the 

single track model. With respect to the mentioned 

reasons and in order to resolve the above limitations, 

the modeling has been made as non-linear and two-

track.  

In this paper, multi-objective Pareto genetic 

algorithms, with a diversity ε-elimination algorithm is 

used in conjunction with MCS in order to Pareto 

optimization of controller for rollover prevention an 

uncertain 8-degree of freedom vehicle dynamic model 

subjected to probabilistic variations of the total mass 

of vehicle. Considering the non-linearity of 

characteristics and parameters related to the vehicle 

dynamics as well as the uncertainties in the reality, a 

non-linear controller with increased robustness should 

be designed for this aim. The obtained results 

demonstrate that compromise can be readily 

accomplished using graphical representations of 

trade-offs between the conflicting objectives of the 

statistical measures of mean and variance of the 

control effort. At the end, obtained results 

demonstrate that the strategy is significantly capable 

of preventing vehicle rollover during extreme 

fishhook maneuver and also are compared with those 

obtained from the determinate design approach. 

2.  Stochastic Robust Analysis 

In real engineering practice, there exist varieties of 

typical sources of uncertainty that have to be 

compensated through a robust design approach. Two 

categorical types of uncertainty, namely, structured 

uncertainty and unstructured uncertainty are generally 

used in classification. The structured uncertainty 

concerns about the model uncertainty due to unknown 

values of parameters in a known structure. In 

conventional optimum system design, uncertainties 

are not addressed and the optimization process is 

accomplished deterministically. In fact, it has been 

shown that optimization without considering 

uncertainty generally leads to non-optimal and 

potentially high risk solution [12]. Generally, there 

exist two approaches addressing the stochastic 

robustness issue, namely, robust design optimization 

(RDO) and reliability-based design optimization 

(RBDO) [13]. Monte Carlo simulation (MCS) has 

also been used to verify the results of other methods 

in RDO or RBDO problems when sufficient number 

of sampling is adopted [14-15]. Monte Carlo 

simulation (MCS) is a direct and simple numerical 

method but can be computationally expensive. Let X 

be a random variable, then the prevailing model for 

uncertainties in stochastic randomness is the 

probability density function (PDF), )(xf X  or 

equivalently by the cumulative distribution function 

(CDF), )(xFX , where the subscript X refers to the 

random variable. This can be given by: 

     




x

XX dxxfxXxF Pr

          (1) 

In which  .Pr  denotes the probability that an event 

( xX  ) will occur. Some statistical moments such as 

the first and the second moment, generally known as 

mean value (also referred to as expected value) 

denoted by  XE  and variance denoted by  X2 , 

respectively, are of the most important ones. They can 

also be computed by: 
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In the case of discrete sampling, these equations 

can be readily represented as: 
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Where ix
is the ith sample and  N is the total 

number of samples. In the case of robust control 

design of this work, the mean and the variance of the 

control effort are computed by MCS approach using 

equations (4) and (5), respectively. The statistical 

measures of both mean and variance depend on the 

number of samples in the region of the space of 

uncertain parameters. Evidently, such estimations 

approach to the actual value in the limit as N  

[16-17]. However, there have been many research 
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activities on sampling techniques to reduce the 

number of samples keeping a high level of accuracy. 

Alternatively, the quasi-MCS has now been 

 

   
 

(a)        (b) 

 
Fig1. Vehicle dynamic model. (a) Top view (b) Behind view 

 

Fig2. Fixed fishhook maneuver 

 

 

 

Increasingly accepted as a better sampling 

technique which is also known as  Hamersley 

Sequence Sampling (HSS) [18]. In a multi-objective 

optimization of a RDO problem presented in this 

paper, the conflicting robust metrics of mean and 

variance of control effort should be minimized 

simultaneously.  

3.  System dynamics 
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3.1. Vehicle dynamic model

In order to describe a schematic modeling of a 

nonlinear two-track full vehicle dynamic model 

including roll dynamics and the model in vertical 

plane, Fig. 1 is displayed. The suspension system is 

modeled as a torsional spring and damper acting 

around the roll axis, in which    and    express roll 

damping coefficient and roll stiffness coefficient, 

respectively. The resulting model has eight degrees of 

freedom, namely rotational speed of the wheels, 

translational motion along the x and y axis, as well as 

rotational motion around the x axis (roll) and the z 

axis (yaw). The governing equations of angular and 

translational motion of the vehicle model are as 

follows [19]: 
 ̈

 
                            ̇   ̇
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In which m, h,    ,    ,    and      denote the 

vehicle mass, the height of the center of gravity above 

the roll axis, total longitudinal force, total lateral 

force, total moment and the moment of inertia about 

the each axis, respectively. And also the governing 

equations for motions of the wheel [20-21] are given 

by: 

   
  
   

  
    ̇

           (10) 

   
  
   

  
    ̇
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      ̇
            (12) 

   
     

      ̇
           (13) 

Where r,    ,       
  
   
  
   
     

    ,   and     
outline the wheel radius, the total moment of inertia 

of the wheel, the braking torque which must be 

determined from the control law (control inputs), the 

angular velocity of wheel and the longitudinal tire 

force, correspondingly. Henceforth, the superscripts 

and the subscripts rr, rl, fr and fl indicate the rear 

right, rear left,  front right and front left, respectively.  

3.2. Nonlinear tire force model 

In order to simulate the nonlinear behavior of the 

tire Magic Formula [19] and [22] is employed to 

calculate the tire longitudinal and lateral forces 

considering combine slip, i.e. simultaneous 

occurrence of lateral and longitudinal slips. 

Longitudinal force    is generated by the longitudinal 

slip κ, and the lateral force    is generated by the 

lateral slip α. The general form of the Magic Formula 

[19] and [22] that holds for given values of vertical 

load, slip components and camber angle is given by: 

                                               (14) 

Where z is the input variable longitudinal slip κ or 

the lateral slip α, y is the output variable Fx, Fy or 

possibly Mz, B is the stiffness factor, C is the shape 

factor, D is the peak value and E is the curvature 

factor. 

4. Control system design 

In this section, a nonlinear multiple-input 

multiple-output (MIMO) control system based on 

sliding mode [23-24] is presented to prevent vehicle 

rollover. Vehicle rollover must be prevented by 

minimum mean and variance of braking torque as the 

control effort. To achieve these aims, according to the 

conflict of these objective functions, multi-objective 

uniform-diversity genetic algorithm method called 

MUGA [17] and [25] is utilized. 

 

 

From Eqs. (6)- (13), the state-space representation 

of the vehicle dynamic model can be expressed as 

follows: 

Where  

                                   
      is the 

vehicle states vector which are:     : roll angle, 

 ̇                                                               (15) 
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    ̇: roll angular velocity,     : yaw angle, 

    ̇: yaw angular velocity,     : longitudinal 

velocity,     : lateral velocity,     
  : angular 

velocity of the fl wheel,      
  : angular velocity 

of the fr wheel,     
  : angular velocity of the rl 

wheel,       
  : angular velocity of the rr wheel. 

     
  
   
  
   
     

         is the vector of the 

system control inputs. b is matrices with appropriate 

dimension. According to the SMC theory, the 

switching surface S is defined as: 

   ̃   ∫ ̃                                                (16) 

Where 

                                         
    

is SMC gain. The error between the actual value and 

the desired value can be written as: 

 

 ̃      
            (17) 

 

Where                             
    the 

control states vector and also the desired states vector 

is defined as   
    . The switching control law tries 

to reach the system's states on the sliding surface and 

a control law could be formulated that would 

keep  ̇  .  The time derivative of S is given by: 

 

According to Eq. (15), by substituting  ̃̇    ̃  
   into Eq. (18) yields: 

Hence, the control law is obtained as follows: 

         ̃  
     ̃                                    (20) 

5. Pareto robust optimization of controller for 

the vehicle dynamic model with 

probabilistically uncertain parameter 

In this section, multi-objective Genetic Algorithm 

(GA) with a diversity ε-elimination algorithm is used 

for robust pareto optimal sliding mode controller 

design for rollover prevention of 8-degrees of 

freedom vehicle dynamic model with probabilistic 

uncertainty. This robust optimal design consists of 

finding the vector of design variables 

1 2 3 4 5 6 7[ , , , , , , ]T T T T T T Tk k k k k k k
 so that two 

conflicting objective functions, namely, mean of the 

control effort (MCE) and variance of the control 

effort (VCE) are minimized simultaneously. 

It should be noted that the control effort 

(summation of four applied braking torques on the 

four wheels) as follows: 

 

   ∑   
 
               (21) 

          ∫  
  
       ∫  

  
      

∫  
            ∫  

     . 
It should be considered that the statistical 

moments of the control effort (CE) of equation (21) 

are computed using equations (4) and (5) via the MCS 

approach. Evidently, this is an optimization robust 

problem with two cost functions and seven decision 

variables. The range of input variables is set to

[0,1000]( 1 7)Tik i  
. Also, the input values of 

fixed parameters of the vehicle model are presented at 

Table 1. In the simulation of this study, the steering 

input is fixed fishhook maneuver with the maximum 

angle of 221º, as displayed in Figure 2 [26]. The 

initial speed of vehicle is set to 80 km/h. 

The uncertain parameter of the vehicle dynamic 

model that has been selected is m (the vehicle mass). 

The uncertainties of mentioned parameter are 

assumed according to the Gaussian probabilistic 

distribution function within the limits of ±10 percent 

of its corresponding nominal value. 

The multi-objective uniform-diversity genetic 

algorithm (MUGA) is now used for Pareto robust 

optimization of SMC for the vehicle rollover 

prevention. In order to robustly design of sliding 

mode controller for rollover prevention of a full 

vehicle dynamic model from the multi-objective point 

of view, a population of 80 individuals with a 

crossover probability of 0.95 and mutation probability 

of 0.1 has been used in 240 generation for which no 

future improvement has been achieved. The robust 

optimization process is accomplished by 15 Monte 

Carlo evaluations for each candidate individual 

during the evolutionary process. 

 

 

 
Table 1. .The numerical values of pertinent parameters of the vehicle model 

R 0.36m m 1609 kg 

H 0.51m Iw 0.9 kg m
2
 

A 1.05m Ixx 377 kg m
2
 

 ̇  ̃̇    ̃                                                                                                                                                                                                                            

 ̇    ̃        ̃                                                                                                                                                                                            
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b 1.569m Iyy 1765 kg m
2
 

   60000 N.m/rad Izz 1765 kg m
2
 

   1000  N.m.s/rad l 0.882 m 

 

 

 

 
 

Fig3. Pareto front of objectives MCE and VCE by hybrid use of MUGA and MCS 

 

Fig4. Roll angle of the of vehicle model corresponding to the trade-off point B of the Pareto front shown in Fig. 3. 

 

Table 2. The objective functions and their associated design variables for the optimum points B 
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Mean of control 

effort 

Variance of 

control effort 
                            

22237 63052 302.08 146.62 106.23 359.47 332.64 356.07 264.27 

Table 3. Statistical metrics of the objective functions associated with design variables point G (deterministic design) and trade-off design 

point B (robust design) computed by MCS (10000 samples) 

 

Fig5. Lateral acceleration of the of vehicle model corresponding to the trade-off point B of the Pareto front shown in Fig. 3.

Accordingly, a trade-off design point (point B) is 

suggested with respect to the conflicting objectives 

have been obtained, as demonstrated in Fig. 3 in the 

plane of objective functions as the Pareto front. The 

values of objective functions and their associated 

design variables of point B are shown in Table 2. 

Figure 4 and Figure 5 depict the vehicle roll angle and 

the vehicle lateral acceleration with and without 

controller, respectively. The time response of vehicle 

roll angle demonstrate that rollover occurs after 

approximately 4.7 seconds as the controller is 

deactivated, just after the maximum value of the 

second steering action is attained. With careful 

observation, the time response of vehicle lateral 

acceleration also demonstrates that the maximum 

lateral acceleration reduces around 22 percentages 

compared to deactivated controller case. Fig. 6 shows 

the controller inputs of the trade-off design point B 

under the fishhook maneuver. It should be noted that 

the highest value of obtained braking torque is lower 

than that of Ref [4] and [21]. The trajectories of the 

vehicle corresponding to the trade-off robust design 

Summation of values for 4 control inputs Statistical metrics Design Points 

22237 Mean of control effort 

Design point B  

(robust design) 

63052 Variance of control effort 

138871 Mean of control effort 

Design point G  

(deterministic design) 

6421063 Variance of control effort 
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point B during the fishhook maneuver with and 

without control are shown in Figure 7. It can be seen 

that the vehicle follows the desired fishhook 

trajectory when the controller is active. Moreover, the 

Pareto fronts and controller inputs of the best 

individual in term of the control effort designed 

deterministically (design point G) are, 

correspondingly, shown in Figs. 8 and 9. It is very 

evident that the control effort corresponding to the 

controller designed deterministically (design point G) 

is superior to that of the robust point obtained 

probabilistically (design point B) in this study. 

However, in order to compare the robustness behavior 

of the obtained optimum robust controller design 

(point B) of this robust study with that of the design 

(point G) obtained in deterministic design, two 

identical MCSs with 10000 sample generations are 

performed for each design. The values of means and 

variances of the control effort corresponding to each 

individual are computed using equations (4) and (5) 

are given in Table 3. Clearly, the superiority of the 

robust performance of the design point B to that of 

design point G can be observed from this table. Both 

the values of mean and, more importantly, the 

variance of the control effort of design point B are 

outstandingly less than those of the design point G. 

Such robustness can also be observed in Figure 10 

where the cumulative distribution functions (CDF) of 

the statistical performances of both design points B 

and G obtained by MCSs are shown. It is also very 

evident from this figure that the probability of high 

control effort (for example CE value with more than 

37296) of design point B is only 10 (1-0.9=0.1) 

percent whilst such value of the probability for the 

design point G of the certain design stands for values 

of CE more than 192074

 

Fig6. Control input of the optimal point B of the Pareto front shown in Fig. 3.

Fig7. Vehicle trajectories corresponding to the optimum design point B of the Pareto front shown in Fig. 3 during the fixed fishhook 

maneuver. 
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Fig8. The obtained Pareto front using the MUGA for deterministic optimal controller design. 

 

Fig9. Control input of the optimal point G of the Pareto front shown in Fig. 8. 

 

Fig10. CDFs of the optimum robust point B and of deterministic optimum design point G by MCS (10000 samples).
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6. Conclusion 

A multi-objective uniform-diversity genetic 

algorithm (MUGA) was successfully used to 

optimally robust sliding mode controller (SMC) 

design for vehicle rollover prevention. The objective 

functions that conflict with each other were 

appropriately selected as the mean of control effort 

(MCE) and variance of control effort (VCE). The 

multi-objective optimization of the robust mechanism 

led to the discovering some important trade-offs 

among those objective functions. The robustness of 

the design point obtained by such hybrid application 

of MUGA and MCS to the optimal controller design 

has been appropriately shown using the statistical 

metrics of mean and variance. The framework of such 

hybrid application of multi-objective GAs and MCS 

of this work for the Pareto optimum robust approach 

using some non-commensurable statistic objective 

functions is very promising and can be generally used 

in the optimal controller design with probabilistic 

uncertainty in order to vehicle rollover prevention. 
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