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The rising demand for sustainable transportation has intensified research on
Fuel Cell Hybrid Electric Vehicles (FCHEVs). Integrating fuel cells with
lithium-ion batteries provides a pathway to enhance energy efficiency and
driving performance, but ensuring the durability of both components under
real operating conditions remains a critical challenge. This work proposes
an integrated framework to improve FCHEV performance and lifetime
through combined modeling, degradation analysis, and optimized energy
management. Dynamic vehicle simulations were conducted using the
ADVISOR platform under both the Urban Dynamometer Driving Schedule
(UDDS) and a real-world cycle based on Tehran traffic data. Degradation
models were implemented to capture platinum dissolution in the Proton
Exchange Membrane Fuel Cell (PEMFC) and capacity loss in the lithium-
ion battery, incorporating the effects of state of charge, temperature, and
current rate. An energy management strategy was developed using a Fuzzy
Logic Controller (FLC) for fuel cell-battery power distribution, which was
further refined with a Genetic Algorithm (GA). The optimization objectives
included reducing hydrogen consumption and extending component
lifetimes. The GA-optimized FLC extended PEMFC lifetime by 50.6%
Tehran and 12.9% UDDS and reduced battery capacity fade by 10% and
4.9%, respectively. While direct hydrogen consumption increased in
Tehran due to more aggressive regenerative-energy routing to the battery,
the Equivalent Fuel Consumption (EFC) decreased from 971.32 — 937.21
¢/100 km (Tehran) and 794.41 — 782.24 g/100 km (UDDS), reflecting a
net efficiency gain once SOC restoration is accounted for.

1. Introduction

With the rising demand for clean and efficient
transportation, fuel cell hybrid electric vehicles
(FCHEVs) integrated with battery energy
storage systems have become a promising
solution. These vehicles aim to reduce fuel
consumption and enhance performance,
thereby playing a vital role in decreasing
reliance on fossil fuels. A significant challenge
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in FCHEV design and optimization lies in
extending the lifespan of the fuel cell and the
battery, which are heavily influenced by
driving patterns and traffic conditions.

Recent research has concentrated on
optimizing power distribution and vehicle
design. For example, genetic algorithms have
effectively optimized power management
strategies, resulting in prolonged battery and
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fuel cell life, reduced hydrogen consumption,
and lower overall ownership costs[1].
Investigations into  battery  degradation
demonstrate that refined energy management
strategies can significantly improve vehicle
performance while minimizing costs[2]. Due
to the high expense and limited durability of
fuel cells and batteries, advanced energy
management is essential to extend their
operational life and reduce costs. Moreover,
online optimization techniques have been
developed to mitigate degradation under real-
world driving scenarios[3]. Predictive models
for Dbattery lifespan and energy loss
minimization have been proposed,
contributing to fuel savings and improved
battery longevity[4]. Artificial intelligence
approaches, such as self-discharge (SD) based
models, have enhanced the accuracy of battery
performance and remaining useful life
predictions[5]. Additionally, hybrid control
methods combining fuzzy logic and switching
techniques have been explored to bolster fuel
cell durability and optimize fuel consumption
in FCHEVs[6]. A prior work formulated the
joint optimization of power management and
component sizing in plug-in hybrid fuel
cell/lithium-ion  battery vehicles as a
constrained multi-objective problem (MOP)
[7], seeking to minimize fuel use and cost
subject to performance limits. To solve this, a
particle swarm optimization algorithm based
on Pareto dominance (PMOPSO) was
developed, successfully generating a set of
optimal design and energy management
solutions.

As transportation depends heavily on fossil
fuels, energy management in PEMFC based
plug-in  hybrid sedans has  gained
prominence[8]. A two-stage control strategy
was introduced to reduce hydrogen
consumption and safeguard fuel cell health,
achieving a balanced trade-off between fuel
economy and durability, as validated through
Matlab/Simulink  simulations.  Enhancing
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lithium-ion battery longevity is fundamental to
sustainable electric mobility. Degradation
processes involve interdependent
electrochemical, thermal, and mechanical
mechanisms  influenced by
composition, operational parameters, and
system architecture. Load reduction strategies
are practical to prolong battery life, though
optimal implementation and effects remain

material

under investigation. Reviews categorize these
strategies into dynamic and static methods[9].
Estimating battery capacity loss and remaining
life online, particularly under real driving
conditions, remains challenging but crucial for
effective vehicle energy management. A
method employing genetic algorithms for
component sizing based on empirical driving
data was applied to a hybrid vehicle,
demonstrating  practical  capacity  loss
estimation and a clear correlation between
battery degradation and driving
conditions[10].

In addition to control-oriented approaches, the
component sizing of hybrid energy-storage
systems plays a crucial role in determining
overall durability and efficiency. The ratio
between fuel-cell power and battery capacity
directly affects the average current density,
temperature rise, and depth of discharge—
parameters that accelerate degradation if not
properly balanced. Studies on optimum sizing
and energy-management co-design[11], have
shown that carefully selected power-energy
ratios can substantially extend battery life
while maintaining high system -efficiency.
Building on these insights, the present research
concentrates on the control dimension of
durability—developing a GA-optimized fuzzy
logic controller for a fixed but realistic
FC/battery configuration—as a foundation for
future integration with size-optimization
frameworks.

Despite these advances, few studies integrate
battery degradation modeling with energy
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management under real-world traffic
conditions in a way that is both
computationally efficient and practically
applicable. To address this gap, the present
study proposes a durability-driven energy
management strategy that jointly considers
fuel cell aging and battery degradation. By
integrating physical degradation models into a
fuzzy-logic-based control system, and further
optimizing the controller with a genetic
algorithm, the approach aims to extend system
lifetime while also reducing hydrogen
consumption. The proposed framework is
validated through simulations on two driving
cycles: the standardized UDDS cycle and a
real-world traffic cycle developed for Tehran.
The results demonstrate measurable gains in
durability, energy efficiency, and stability of
state of charge, suggesting that this method
provides a practical pathway for improving the
reliability of FCHEVs in real-world use.

2. Analysis of Fuel Cell Hybrid Electric
Vehicle Performance Based on Driving
Cycles

A driving cycle is a time-based speed profile
that simulates typical driving behavior in a
specific city or region. It is shaped by the road
network, traffic conditions, driving culture,
and geographic characteristics. Driving cycles
are fundamental in assessing vehicle
performance, with particular importance for
modeling and managing energy in fuel-cell
hybrid electric vehicles To really understand
and improve energy systems, it’s important to
test them under the right driving conditions. In
this study, among the driving cycles examined,
the UDDS is depicted in Figure 1, which
reflects common city driving, and (Figure 2)
the Tehran traffic cycle, built from real traffic
data and local driving habits. Looking at how
fuel-cell hybrid cars perform in both cases
gives a clearer picture of their energy use and
points to better ways of making them more
efficient.

Using the ADVISOR environment, a dynamic
model of the fuel cell hybrid vehicle was
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formulated. To ensure the results reflect a
range of driving conditions, several cycles
were included in the simulations: UDDS, the
European cycle, and a Tehran-specific cycle
based on local traffic data. The main technical
details of the vehicle are listed in Table 1,
covering the battery pack, fuel cell stack,
electric motor, and transmission. All of these
parts were brought together in the simulation
so their interactions could be studied. In this
setup, the fuel cell works as the main power
source, the battery stores extra energy, and the
motor turns that energy into movement. The
electronic control unit (ECU) keeps everything
coordinated to get the best performance out of
the system. Figure 3 shows how these
subsystems work together and highlights the
way they contribute to improving the vehicle’s
efficiency.
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Figure 1: UDDS drive cycle
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Figure 2: TEHRAN drive cycle
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Figure 3: Basic structure of a fuel cell hybrid
vehicle

Table 1: Fuel cell hybrid vehicle specifications

Components Quality Value Unite

Drag
coefficient 0.318

(Cp)

Front view 2
area (Ay) 21 m
Vehicle
specifications Effect
coefficient
of rotating 1.078 i
objects (8)
vehicle
Weight 1531 Ke
Nominal 37 Ah
capacit
Battery[12] pacty
Voltage 350 v
Maximum 70 Kw
Fuel cell power
Active area 320 cm?
Maximum 75 Kw
power
Motor Maximum 6000 rpm
speed
Maximum 280 Nm
torque

3. Modeling of electrochemical surface
degradation (ECSA) and voltage drop in
fuel cells

Electrochemical surface area degradation and
voltage loss are two major issues that strongly
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affect both the performance and lifespan of
fuel cells. ECSA degradation is mainly caused
by the dissolution of platinum, which is a key
factor in the durability and efficiency of fuel
cell catalysts. In this study [13,14],
platinum dissolution model proposed by
Robin, Gerard, and their team is used. The
model explains the process in three steps: first,
platinum atoms detach from the crystal lattice;
second, these atoms undergo oxidation; and
finally, the oxidized atoms are removed from
the catalyst surface.

The overall energy of this process is obtained
by adding together the energy contributions
from each stage, calculated through density
functional theory (DFT). The free energy of
oxidation (AGelec = —2aFAy) is derived from
transition state theory (TST) and reflects the
influence of the local electrochemical
potential. The free energy of desorption
(AGdes) is determined using an empirical
correlation. Finally, the kinetic rate of
platinum dissolution (v, ) is expressed by an
equation that describes how the radius of
platinum nanoparticles changes with time.

This comprehensive modeling approach
provides a mechanistic understanding of
catalyst degradation phenomena, offering
valuable insights for enhancing the durability
and performance of fuel cell systems.

_AG (-AGs+2aFAx+BEg:)
Vgiss = ke RT = ke RT (1)
dr; M
pt pt
—_— = —V,; _— 2
dt diss Ppt ( )

In fuel cells, voltage loss mainly arises from
the oxidation of the platinum catalyst. In this
reaction, platinum combines with oxygen to
form platinum oxide (PtO), which reduces the
catalyst’s activity and, in turn, negatively
affects the overall performance of the system.
A linear model is developed to accurately
predict cell voltage degradation over time,
correlating the platinum oxide voltage (V)
with the catalyst's aging duration [15].
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tho(t) = tho,O + tho,lt 3)

An exponential model is also used to estimate
the reduction in crossover current density

(iloss ) [16]

iloss (t) = iloss ,0 exp(iloss,lt) (4)
An exponential model is used to describe the
changes in resistance over time [17]:

R(t) = Ro exp(Ryt) )
Additionally, the concentration decreases

exponentially and is described by two
parameters related to aging [18]:

me = m, exp(myt) (6)
ne = n, exp(nyt) (7
The estimation of reversible voltage is also
performed using the following equation [19]:
Erep = 1.229 — 0.85 * 1073(T — 298.15) +
4309+ 1073T | In(Py) + 3 In(Po) | (8)

Finally, the total fuel cell voltage is calculated
by combining the above relationships as
follows:

V= Erev - (VPtO,o + VPtO,lt) -
RT In (i(t)+iloss ,0 exp(iloss ,1t)) _

2aqF lo,a

RT ln (i(t)+iloss ,O.exp (iloss’lt)> - l(t) (RO :

4a.F loc
ex p(Ryt) —mq - ex p(myt)[exp(i(t) - ng -
exp(nqt)) — 1] 9

This equation expresses how aging parameters

affect the decline in fuel cell voltage and
efficiency. The model incorporates seven time-
dependent aging parameters (Vpro <0ty ‘ljoss ¢
a. ‘R ¢« n « m), which progressively diminish
during  operation, reflecting  catalyst
degradation, membrane resistance growth, and
electrochemical surface area loss. Two
fundamental constants (F, R) remain invariant,
while four adjustable parameters (T E, , iq
and i,,) enable operational optimization to
mitigate performance decay. The charge
transfer coefficient (a) requires careful
calibration, as its value critically affects
activation losses and catalyst kinetics [17]. For

Morteza Montazeri-Gh et al.
implementation guidance, consult
methodologies combining empirical aging
models  with  parameter identification
techniques, such as polarization curve fitting
or adaptive Kalman filters.

Figure 4 makes it clear that as current density

increases, the fuel cell’s voltage steadily drops.
This happens because of resistance inside the
cell and limits in the reaction itself. Over the
first 300 hours, the drop becomes more
noticeable and lines up with a reduction in
Electrochemical Surface Area. As the ECSA
shrinks, the electrode has fewer active sites,
which means the catalyst works less
effectively. At first, higher current density
boosts output power, but after reaching a peak,
the losses take over and power starts to fall.
With time, as the ECSA keeps declining, the
maximum power the cell can produce also
goes down. By 300 hours, when the ECSA
falls to 0.7766, the power output at higher
current densities drops sharply, showing just
how much the catalyst has degraded and how
efficiency suffers as a result.

3.1. Environmental Effects and Parameter Drift

Environmental and aging effects were
considered in the modeling phase through
parameterized maps representing temperature-
dependent and time-dependent degradation of
both PEMFC and Li-ion  battery.
The PEMFC model includes gradual voltage
reduction and resistance increase over time,
while the battery model captures capacity fade
and power loss with depth of discharge.
These maps emulate realistic drift behavior
under  varying  operating  conditions.
However, the control system assumes these
effects are known and bounded, without
applying adaptive rule updates during
operation. Although the present fuzzy logic
controller (FLC) assumes mnominal operating
conditions, temperature and ambient variations can
gradually shift component characteristics such as
stack voltage efficiency, battery internal resistance,
and available power limits. To capture these
dependencies, the degradation sub-models used in
this  study include temperature-dependent
coefficients for both PEMFC voltage decay and Li-

Automotive Science and Engineering (ASE) 4875
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Figure 4: Polarization curve and relative power curve under certain time and ECSA

ion capacity fade. However, the controller itself
currently does not update its rule base online. In
future work, adaptive extensions could be
implemented by incorporating state-of-power
(SOP) or state-of-health (SOH) observers to track
parameter drift in real time and by scheduling FLC
membership  functions according to cell
temperature and estimated SOP. A hybrid Model
Predictive Control (MPC)-FLC structure, as
demonstrated in [20], could further improve
constraint handling and responsiveness under
fluctuating thermal or traffic conditions.

4. Cycle Aging Prediction Model for
Lithium-Ion Batteries

In this study, the battery is represented by an
equivalent electrical circuit, which allows its
dynamic behavior and operating
characteristics to be captured more accurately.
The model takes the battery’s power demand
as an input, estimated from the SOC and
internal resistance. With this setup, battery
performance can be predicted more reliably
across different conditions. In many laboratory
studies, battery cycle life is tested using
standardized or synthetic profiles. While
useful, these profiles don’t always match how
batteries are actually used, so the results may
not fully reflect real-world behavior. For
example, the aging model in reference [21] is
based on experimental data but does not
account for the role of SOC. This is important
because SOC strongly influences both
performance and lifetime. Other factors, such
as depth of discharge (DOD) and charging
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patterns, also shape how quickly capacity
fades and how long the battery can last.

How a battery ages in practice depends on
more than just its design—it is also strongly
influenced by factors such as temperature,
charging rate, and everyday usage patterns. If
a model is based only on controlled laboratory
tests and leaves out the effect of state of
charge, it cannot fully reflect real operating
conditions. To make predictions more
meaningful, models need to capture the
influence of SOC together with these
environmental and operational factors. With
this integration, aging models provide a truer
picture of battery behavior and allow for more
reliable assessments of long-term
performance.

Reference [22] employed a square wave
current profile to describe capacity
degradation. A battery aging model was
developed for systems similar to those in fuel
cell hybrid electric vehicles, specifically
targeting charging scenarios at low SOC
conditions. The model incorporated the
temperature dependence of capacity fade using
the Arrhenius equation; however, its validation
was limited, as it did not cover a broad range
of temperatures. In the referenced[23] study,
aging tests were performed using a standard
load profile that systematically varied
temperature, DOD, and current rates (C-rates)
to analyze their individual effects on capacity
fade. While the analysis provided insights into
how each parameter influences battery
degradation, it did not yield a unified aging
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model that simultaneously accounts for the
combined effects of all these factors. As a
result, the model lacks the comprehensiveness
needed to accurately predict battery aging
under  real-world FCHEV  operating
conditions, where multiple stressors interact
dynamically.

This research uses a damage accumulation
model calibrated with historical battery data
from a hybrid electric vehicle (HEV) to predict
battery cycle life. This model incorporates
dependencies on SOC, temperature, and
current rate. The damage accumulation models
proposed in references [24,25],[21] describe
the effects of aging factors such as current rate
(Ic), temperature (q), and SOC based on
accumulated damage during operational
conditions expressed in ampere-hours or total
cycle count.

Q055> representing normalized capacity loss,
is utilized here to assess battery degradation
dynamics.

Q (0)-Q A
Qloss (p, A) — batt patt(D,4) (10)
Qpatt(0)

The aging factor vector p (comprising Ic, Tc,
SOC) defines the operating conditions,
where Qpq:+(0) and Qpqe: (p, A) symbolize the
initial and degraded capacities, respectively.
The capacity degradation model is expressed
as:

Quoss(0, AR) = Ofunc (p). A% (11)

The term ofyu (p) denotes a nonlinear
mapping of the aging factors (Ic, Tc, SOC),
formulated as follows:

Orunc(@) = (a.SOC + B).exp (%) (12)
Here, a and B define the dependence on SOC,
n models the dependence on Ic, the activation
energy (Ea) has a value of 31,500 [J/mol], 0
represents the battery temperature [°C] , and R
is the universal gas constant.

This study proposes a two-step approach to
identify the parameters of the proposed
capacity degradation model.

Morteza Montazeri-Gh et al.

Step One: This stage involves identifying the
parameters z and of,,, from  experimental
data. For further model refinement, the average
value of z is taken as 0.57.

Step Two: In this stage, the parameter 1 is set
to 152.2. The severity factor function
parameters, specifically a and B, are identified
based on the experimental data presented in
Table 2.

These steps are designed to enhance the
accuracy of the capacity degradation model
and align it more closely with experimental
observations. The ultimate goal is to improve
the predictive capability of the battery’s
performance under real-world operating
conditions.

Table 2: Optimal values of o and  [26]

a(S0C) B(SOC)
SOC <45% 2896.6 7411.2
SOC= 45% 2694.5 6022.2

Since a 20% capacity loss is commonly
considered the end of life (EOL) for batteries
in automotive applications, a value of Q55 =
20% 1s assigned in equation (11). Then, the
total discharged capacity Ao (I, T;) and the
corresponding number of cycles until EOL can
be calculated as follows:

1

20 z
Arotal e, Te) = [m] (13)
NI, T,) = Aealleld (14)

Cpat

Using these equations, the cumulative
discharged capacity and cycle count to end-of-
life can be quantified. The residual battery
capacity is subsequently derived as:

t
fto |[I(T)|dT
2%3600N(I;,Tc)Chat

Q(t) = Q(ty) — (15)

The degradation rate of battery capacity is
obtained by differentiating equation (16):

0() = - — (16)

ZN(I:::T::)Cbat
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From equation (16), the state of health (SOH)
degradation rate is derived, as illustrated in
Figure 5. These relationships help us analyze
the impact of current and environmental
conditions on battery capacity and its overall
health status.

0.6

0.4

Degradation rate of SOH (1/s)

02r

C-rate

Figure 5: Battery health level decay rate as a
function of current intensity

5. Energy management strategy in hybrid
fuel cell vehicles

A fuzzy logic—based controller plays a central
role in optimizing energy management for
hybrid fuel cell vehicles. By enabling real-time
decision-making, it regulates power flow
between the fuel cell and supplementary
energy storage units, thereby improving
system efficiency and extending component
durability. The controller evaluates two
primary inputs battery SOC and instantaneous
power demand to determine the appropriate

q B PL PM B PHH

power distribution strategy. In this study, five
membership functions were designed for each
input variable SOC and power demand—while
seven membership functions were defined for
the output variable. Figure 6 depicts the fuzzy
membership  functions  alongside  the
corresponding fuzzy inference surface. The
fuzzy control rules, summarized in Table 3, are

grounded on the following principles:

e Under conditions of elevated power
demand and diminished SOC, the fuel
cell delivers the required power to
sustain vehicle operation.

e When power requirements diminish
and SOC levels rise, the battery
becomes

the primary source for

meeting the vehicle's energy demands.

This rule-based fuzzy logic approach
offers robustness and adaptability to
varying driving conditions, ensuring
smooth power transitions and efficient

energy utilization. Through expert-driven
and membership
functions, the controller achieves efficient

minimizes  fuel  cell
and extends the hybrid
system's operational lifespan.

fuzzy logic rules

load-sharing,
degradation,

Figure 6: Input and output membership functions and fuzzy level for FCHEV

4878 Automotive Science and Engineering (ASE)


http://dx.doi.org/10.22068/ase.2025.719
https://www.iust.ac.ir/ijae/article-1-719-fa.html

[ Downloaded from www.iust.ac.ir on 2026-01-29 ]

[ DOI: 10.22068/ase.2025.719 ]

Table 3: Rules based on fuzzy controllers

Preq
~soc  PLL PL PM PH PHH
L L3 L4 L5 L6 L6
ML L2 L3 L4 L5 L6
M L1 L2 L3 L4 L5
MH Lo L1 L2 L3 L4
H LO LO L1 L2 L3

6. Optimizing energy management strategy
with genetic algorithm

The fuzzy controller is optimized using a
Genetic  Algorithm (GA) to enhance
performance. The GA adjusts the membership
functions and fuzzy rules through selection,
crossover, and mutation processes, conducting
an extensive search across the parameter space
to determine optimal values. As shown in
Figure 7, the fuzzy logic EMS is optimized via
a genetic algorithm that calculates fuel
consumption and estimates fuel cell and
battery longevity under the target driving
conditions. A cost function is defined and
executed at each iteration to achieve effective
optimization, updating the fuzzy controller’s
parameters to minimize this cost[27].

The optimization leads to improved energy
management, increased efficiency, reduced
operational costs, and extended durability of
the fuel cell system.

Fuel C

(‘j"—"r‘ = —

SOH(battery,FC) 5““ I‘ B
socC =

A F—:’f o™

I Drive cycle

A, A,

Cost Function Preq |
» FUZZY-LOGIC

LI S )
[
[

| Optimized
|Pnrumelers
| * |

Figure 7: Schematic of fuzzy logic optimization
using GA algorithms
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The optimization of the fuzzy controller in
this study pursues two key objectives:

1. Fuel
Reduction: Minimizing hydrogen
consumption in the fuel cell enhances
efficiency and reduces operational

Consumption

Ccosts.

2. Extension of Battery and System
Lifespan: Implementing  intelligent
energy management strategies to
reduce operational stress on critical
components, including the fuel cells
and Dbatteries, increases system
durability.

To ensure the simultaneous fulfillment of these
critical requirements, the objective function is
defined as follows:

min] = wy, My, + WeRson + WpatBson  (17)

The term Bggy represents the  battery
degradation, where My, denotes the hydrogen
consumption rate and Rggy indicates the cost
of fuel cell degradation due to the collapse of
the ECSA, assuming a 75% loss at the end-of-
life of the fuel cell stack. Additionally, wy,,
wre, and wy, represent the weights of the
hydrogen consumption rate, the cost of fuel
cell and battery degradation, respectively. The
objective function simultaneously reduces fuel
consumption and increases system lifespan,
prioritizing battery SOC as a critical
constraint. This enables the controller to
optimize performance and durability via
adaptive, constraint-focused strategies. The GA
optimization required approximately 28s per
tuning run on an 8-core workstation; deployments
use only the tuned rule base, so online control
remains lightweight.

6.1. Constraints

The battery's SOC must be rigorously
constrained during energy management
optimization to prevent deep discharge and
overcharging, which degrade battery health

Automotive Science and Engineering (ASE) 4879
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and reduce overall system performance.
Optimal system performance requires
maintaining the battery's state of charge within
a specified operational window as follows:

SOC,pin < SOC(t) < SOCpmax (18)

To safeguard battery health, SOC,,;, is fixed at 0.4
to prevent excessive discharge, and SOCy, 4, 18
restricted to 0.8 to minimize electrochemical strain
and degradation. Additionally, to prevent
sudden fluctuations and reduce battery stress,
the rate of change of SOC must be controlled:

SOCy41—-SOC

k+C]l.t k (19)
This constraint guarantees that variations in the
SOC happen smoothly and are controlled,
minimizing stress on the battery. Figures 8 and
9 below illustrate the outcomes of the genetic
algorithm optimization applied to the fuzzy
controller, evaluated across the UDDS and
Tehran driving cycles.

ASOCpay =

The GA optimization was carried out offline
during the design phase to determine the
optimal fuzzy rule parameters. Although the
optimization process 1s computationally
demanding, it is executed only once prior to
implementation. During dynamic simulation,
the optimized FLC operated smoothly and
stably without noticeable computational lag,
confirming the practicality of the proposed
GA-FLC framework for future embedded
applications.

6.2. Robustness Verification under Noisy
Driving Conditions

To further evaluate robustness, a modified
driving cycle was generated by introducing
slight slope variations and stochastic noise into
the vehicle power-demand profile. The
optimized GA-FLC controller maintained
stable operation and consistent convergence
behavior under these fluctuating conditions,

confirming reliable optimization performance.

4880 Automotive Science and Engineering (ASE)

Although the GA parameters (population = 40,
generations = 20) were kept fixed, five
independent runs using different random seeds
showed less than 4% variation in the final
fitness value and maintained at least five
distinct fuzzy rule sets at convergence. This
demonstrates that the controller exhibits stable
convergence, adequate population diversity,

and resilience against noisy driving scenarios.

7. Results

Simulations of the fuel cell hybrid vehicle's
dynamic behavior under UDDS and Tehran
driving cycles were conducted to validate the
GA-optimized energy management strategy,
specifically examining its influence on fuel
cell power output and battery SOC to prolong
component durability.

As illustrated in Figure 10, GA-based
optimization significantly reduces power
fluctuations in the fuel cell, resulting in
smoother and more stable operation. In
contrast, the non-optimized system exhibits
rapid and pronounced power variations,
increasing electrochemical and thermal
stresses. A more uniform load distribution
achieved through optimization is essential for
enhancing fuel cell durability. Similarly,
Figure 11 demonstrates that the GA-optimized
strategy maintains a higher battery SOC with
more  controlled  discharge  behavior.
Minimizing deep discharges and improving
SOC recovery, the battery experiences reduced
degradation, improving overall system
stability.

Figure 12 further reveals that although the
optimized system experiences more frequent
power fluctuations during the initial phases of

operation, the amplitude of these fluctuations

is significantly lower, leading to smoother
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transitions. Conversely, the non-optimized
system undergoes sharp and abrupt power
changes, particularly during the early and mid
stages of the cycle, imposing severe
electrochemical, thermal, and mechanical

stresses on the fuel cell.

These stresses accelerate structural
degradation. In contrast, the optimized system
achieves a more gradual and consistent power
output profile, promoting enhanced stability.
In Figure 13, the battery SOC rises, indicating
energy input from the fuel cell or regenerative
braking mechanisms. After reaching a peak of
approximately 0.76, the SOC gradually
decreases as the battery delivers energy. The

SOC returns close to its initial value, by the
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Morteza Montazeri-Gh et al.

end of the driving cycle, evidencing effective
energy management and balanced charge
maintenance.

The results from the Tehran driving cycle
highlight that GA-based optimization can
significantly mitigate damaging stresses and
improve the durability of key vehicle
components by achieving smoother fuel cell
loading and optimized battery SOC
management. Critically, enhancing fuel cell
lifespan depends on minimizing the frequency
of load fluctuations and controlling the
intensity, amplitude, and slope of load
variations throughout vehicle operation.

Figure 9: Schematic of fuzzy logic optimization using GA algorithms TEHRAN drive cycle
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Figure 13: battery state of charge (TEHRAN
drive cycle)

Simulation results under various driving
cycles, including UDDS and Tehran,
demonstrated the superiority of the optimized
approach compared to baseline strategies.
According to the data presented in Table 4,
employing a GA for optimizing the fuzzy
controller significantly reduced fluctuations in
the fuel cell output power—one of the main
contributors to the accelerated degradation of
this costly component. This reduction directly
translated into an extended estimated system
lifespan, with improvements of approximately
50.6% and 12.9% observed under the Tehran
and UDDS driving cycles, respectively.
Furthermore, a detailed battery aging analysis
revealed that the optimized strategy
substantially decreased the lithium-ion battery
capacity fade rate, ensuring its long-term
health. Overall, GA-based optimization
increased the system's longevity, reduced
battery degradation, enhanced the state of
charge stability, and improved overall energy
management efficiency. In the proposed
control strategy, regenerative braking was also
considered during the simulation. The
recovered braking energy was fully routed to
the Li-ion battery through the energy
management controller, enabling partial
recovery of kinetic energy that would
otherwise be dissipated as heat. Consequently,
hydrogen  consumption  decreased by
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approximately 7.8%, while the battery
experienced a modest 3.4% increase in
charge—discharge cycling depth.  This
represents a trade-off between enhanced
overall energy efficiency and slightly higher
battery utilization under regenerative-braking
conditions. The same degradation model can
be readily re-parameterized for other battery
chemistries—such as LFP or NMC—by
adjusting the activation-energy and depth-of-
discharge exponents, ensuring that the
proposed GA-FLC strategy remains applicable
across diverse hybrid configurations. As
shown in Table 4, the equivalent fuel needed
to restore the final SOC to its initial level in the
non-optimized case is roughly equal to the
optimized fuel use for reaching the same
charge state. The equivalent fuel is estimated
by converting the net battery energy difference
(between final and initial SOC) into an equal
amount of hydrogen, using the fuel cell’s
average efficiency and hydrogen’s lower
heating value. This highlights the importance
of balancing fuel use and battery performance
to improve efficiency and extend fuel cell life.

Table 4: Optimized and non-optimized results
under driving cycles

TEH UDDS
Result None-opt  GA None-opt  GA
Hydrogen 779.37 937.21 745.68 782.24
Consumption
(g/100km)
Lifetime(h) 1412 2127 1943 2195
Capacity loss 0.009 0.0081 0.0081  0.0077
Battery (%)

SOCip, 0.7 0.7 0.7 0.7
SOCfinal 0.634 0.7 0.685 0.7
Hydrogen 97132 93721 794.41 782.24

Equivalent

Consumption

(g/100km)

Morteza Montazeri-Gh et al.

8. Conclusions

This research aimed to address the critical
challenge of enhancing the durability of fuel
cells and batteries in FCHEVs under realistic
operating conditions. A significant step was
taken by presenting a comprehensive
framework that included detailed dynamic
modeling of the vehicle, analysis of the
degradation mechanisms of key components
(specifically platinum dissolution in PEMFCs
and the impact of SOC, current rate, and
temperature on Lithium-ion battery aging), and
optimization of the energy management
strategy—implementing degradation models
based on physical principles and experimental
data allowed for accurate assessment of the
state of health and prediction of the lifespan of
these components.

The developed fuzzy logic controller-based
energy management strategy, optimized using
a Genetic Algorithm, demonstrated high
reliability in allocating power between the fuel
cell and battery across diverse driving cycles,
including the standard UDDS cycle and the
realistic Tehran traffic cycle. Simulation
results proved the effectiveness of the
optimized approach in reducing fuel cell power
fluctuations, a significant factor in accelerating
its degradation. Furthermore, this strategy led
to a considerable improvement in the estimated
lifespan of the overall hybrid system; we
observed an approximate increase of 50.6%
and 12.9% in lifespan for the Tehran and
UDDS cycles, respectively, compared to the
baseline strategy. The notable reduction in the
Lithium-ion battery capacity fade rate per
cycle traversal (e.g., a decrease from 0.009%

to 0.0081% for the Tehran cycle) highlights

another advantage of this method in preserving

Automotive Science and Engineering (ASE) 4883


http://dx.doi.org/10.22068/ase.2025.719
https://www.iust.ac.ir/ijae/article-1-719-fa.html

[ Downloaded from www.iust.ac.ir on 2026-01-29 ]

[ DOI: 10.22068/ase.2025.719 ]

Durability-Driven Energy Management for Fuel Cell Hybrid EVs: Multi-Scenario Optimization Across Different

Traffic and Driving Cycles

battery health and postponing its end-of-life
point. In addition to improved durability, the
optimized strategy reduced equivalent fuel
consumption while maintaining the battery's
state of charge within the optimal operating
range, indicating higher efficiency of the
energy management system. In conclusion,
this study showed that integrating accurate
component degradation models with advanced
energy management optimization offers a
powerful approach to designing FCHEVs with
higher durability and efficiency. The findings
of this research contribute to a better
understanding of degradation dynamics under
real-world driving conditions and provide
practical solutions for extending the lifespan
and reducing the operational costs of FCHEVs,
thereby paving the way for broader adoption of
these clean and sustainable vehicles in the
future. Future work will focus on
implementing the GA-FLC controller in a
hardware-in-the-loop (HIL) setup using
Speedgoat and real PEMFC-battery modules.
This experiment will enable evaluation of real-
time adaptability under stochastic thermal and
traffic variations. The proposed GA-FLC
strategy achieved simultaneous improvements
in durability and efficiency under standardized
and real-world cycles. Future research will
incorporate  adaptive scheduling  of
membership functions based on temperature
and traffic variability, along with probabilistic
validation over diverse urban driving datasets,
to reinforce robustness and real-time

applicability.
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List of symbols (Optional)

I, Avrage current rate

E, Activation energy

Ect Gibbs-Thomson energy (J/mol)

Erep reversible voltage (V)

F Faraday constant (c/mol)

TC Avrage current rate

i current density (A/ cm?)

ijogs decrease in crossover current density
(A/cm?)

iloss,0 intital loss current density (A/ cm?)

Iloss 1 decay rate of loss current density(1/h)

ioa Exchange current density at the anode
(A/ cm?)

io,c Exchange current density at the cathode
(A/ em?)

k direct reaction constant (mol/m?2. s)

Mp¢ molar mass (kg/mol)

m; concentration loss (V)

my, Initial parameter of m; (V)

my Aging parameter of m; (1/h)

ng concentration loss (cm*A)

ny Initial parameter of n; (cm?A)

ny Aging parameter of n; (1/h)

PtoO platinum oxide

Qioss Normalized capacity loss (%)

Qpat battery capacity (Ah)

R gas constant (J/K.kg)

R ohmic resistance (ohm.cm?)

Ry initial resistance (ohm/ cm?)

R, growth rate of resistance (1/h)

ot radius of platinum (m)
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T,0 Temperature (K)

foss decrease in crossover current density
(A/cm?)

Ronm ohmic resistance (ohm. cm?)

m; concentration loss (V)

ng concentration loss (cm?/A)

% Voltage (V)

Voev open circuit voltage (V)

Voo decrease platinum voltage (V)

Voo Aging parameter of Vi, (1/h)

Voto,o Initial parameter of Vp¢, (V)

z Power low exponent

Greek symbols

o, B Model parameters

oy reaction transfer coefficient (-)

B transfer coefficients (-)

AGg free energy of platinum extraction (J)

AGelec free energy of oxidation (J)

AGges free energy of desorption (J)

ASOC Rate of change of state of charge

Ay local potential (V)

Ypt surface energy of platinum (J/m?)

Ppt density (kg/m?)

Ofunc Severity factor function

Vgiss kinetic dissolution rate of platinum (m/s)
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