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The escalating proliferation of electric vehicles (EVs) as a pivotal 

solution to address energy consumption and air pollution challenges 

within the transportation sector necessitates a comprehensive 

understanding of the factors influencing their performance and driving 

range. Among these factors, driving patterns exert a direct and significant 

impact on energy consumption and battery state. This study aims to 

quantify the influence of diverse driving cycles on the performance of an 

electric vehicle, specifically the Audi e-tron 50.   Utilizing Simcenter 

Amesim software, a longitudinal vehicle dynamics model, coupled with 

an equivalent circuit model (ECM) for the lithium-ion battery, was 

developed for simulation purposes. The vehicle's performance was 

evaluated under five distinct driving cycles, including global standards 

(WLTC, NEDC, HWFET) and two real-world driving cycles recorded in 

Tehran (Route1, Route2). Key parameters such as state of charge (SoC), 

depth of discharge (DoD), battery temperature, and estimated driving 

range were analyzed. The results revealed a significant impact of driving 

cycles on all investigated parameters. Driving cycles characterized by 

higher speeds and accelerations (e.g., WLTC and HWFET) led to 

increased specific energy consumption, accelerated temperature rise, and 

a notable reduction in estimated driving range (with the lowest range 

observed in WLTC). Conversely, milder urban driving cycles 

(particularly Route1) resulted in improved energy efficiency, minimal 

thermal stress, and the highest estimated driving range. These findings 

underscore the critical importance of considering real-world and 

localized driving patterns for accurate performance evaluation, range 

estimation, and the development of optimized energy management 

strategies in electric vehicles. 
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1. Introduction  
Considering the critical value and scarcity of 

energy resources, optimal consumption 

management is essential[1]. One of the 

greatest challenges associated with  energy 

consumption is the increasing emission of 

greenhouse gases (GHGs), which has 

intensified with population growth and 

industrial activities [2,3]. The transportation 

industry, accounting for approximately 21% 

of global energy consumption, has a 

significant share in this challenge [4]. 
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Therefore, reducing reliance on internal 

combustion engines (ICEs) due to their low 

efficiency is considered a key solution for 

decreasing energy consumption and 

pollution. Although a major portion of the 

world's energy is still supplied by non-

renewable sources such as oil, coal, and 

natural gas, strategies such as reducing 

vehicle weight, increasing energy efficiency, 

improving fuel quality, developing new 

technologies, and strengthening sustainable 

public transportation can contribute to the 

realization of a clean transportation system 

[5]. Among these, all-electric transportation 

systems have garnered special attention at 

both public and industrial levels. However, 

challenges such as the limited driving range 

of electric vehicles (EVs) further emphasize 

the importance of developing and evaluating 

optimal control strategies. These strategies 

are designed with the aim of reducing 

energy consumption, increasing efficiency, 

and consequently reducing greenhouse gas 

emissions. Therefore, continuous review and 

improvement of these solutions is a 

fundamental step towards achieving 

sustainable and environmentally friendly 

transportation. The global trend in research 

in recent years has leaned towards the 

development of vehicles with alternative and 

renewable fuels instead of internal 

combustion engines. In this direction, 

electric vehicles (EVs) are recognized as the 

flagbearers of clean transportation because, 

unlike their gasoline and diesel counterparts, 

they do not emit any direct pollutants (such 

as sulfur, carbon, or nitrogen compounds) 

during operation [6,7]. The appeal of electric 

vehicles is not limited to their cleanliness; 

high energy efficiency, better controllability, 

and the ability to provide the required torque 

without a gearbox are other prominent 

technical advantages that paint a bright 

future for them in the transportation industry 

[8]. Nevertheless, significant challenges also 

exist in the path to the long-term 

sustainability and efficiency of electric 

vehicles, which are mainly attributed to their 

vital component, the battery pack [9]. 

Optimal battery design and performance are 

determining factors not only in the driving 

range and power of the vehicle but also in its 

economic aspects and lifespan [10]. Among 

these, lithium-ion batteries (LIBs), due to 

their excellent characteristics such as high 

energy density, lightweight, long cycle life, 

low self-discharge rate, and suitable 

charging speed, have become the gold 

standard for energy storage in modern 

electric vehicles and play a fundamental role 

in improving the overall efficiency of these 

vehicles. Consequently, with the increasing 

demand for EVs, a large portion of research 

is focused on optimizing their performance, 

especially in the field of energy management 

and increasing battery lifespan [11].  High 

performance and long lifespan are two key 

factors for customer satisfaction in all 

modern vehicles. In the field of electric 

vehicles (EVs), these two factors are heavily 

influenced by the battery's condition. For 

this reason, the accurate estimation of the 

battery's "State of Charge" (SoC) and "State 

of Health" (SoH) has garnered widespread 

attention in scientific and industrial circles 

worldwide. These two vital parameters play 

a decisive role in the efficiency, driving 

range, and overall durability of electric 

vehicle batteries, highlighting the necessity 

for their precise evaluation. Accurate 

monitoring of SoC and SoH not only 

optimizes the daily performance of the 

vehicle but also provides essential 

information for long-term decisions such as 

battery replacement scheduling and 

maintenance programs. Ultimately, these 

metrics are crucial for the optimal use of 

battery energy, enhancing overall vehicle 

performance, and ensuring the economic and 

environmental sustainability of electric 

transportation [12]. 
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1.2  State of Charge (SoC): The Electric 

Vehicle's Fuel Gauge 

The State of Charge (SoC) is a key indicator 

that shows electric vehicle (EV) users the 

amount of energy remaining in the battery, 

functioning similarly to a fuel gauge in 

traditional vehicles[13]. Accurate knowledge 

of the SoC is essential for important 

decisions such as planning for recharging 

and estimating the distance that can be 

traveled with the current charge. 

Furthermore, correct SoC assessment helps 

to optimize the utilization of the battery's 

capacity and contributes to increasing the 

battery's lifespan by preventing 

overcharging or deep discharge. Real-time 

SoC information allows drivers to plan their 

trips more efficiently, manage their energy 

consumption patterns, and minimize the risk 

of sudden charge depletion. Therefore, 

accurate SoC monitoring is vital for 

enhancing reliability and improving the user 

experience in electric vehicles [14,15].  

Despite significant advancements in electric 

vehicle (EV) technology, challenges remain, 

particularly in the areas of optimizing 

battery charging and managing energy 

consumption during driving. Of course, 

previous studies (such as Hamza et al.) [16] 

have confirmed that electric vehicles possess 

inherent advantages over internal 

combustion engine vehicles regarding 

energy efficiency and emission reduction. 

However, developing intelligent energy 

management strategies is essential to fully 

realize this potential. Recent research by Du 

et al. and Rezaei et al. [17,18] has shown 

that such strategies can significantly reduce 

energy consumption and extend battery 

lifespan. The success of these systems 

hinges on their ability to make optimal and 

dynamic decisions based on instantaneous 

driving conditions and accurately predict 

driver behavior. In this regard, the 

importance of using real-world driving data 

is highlighted, as demonstrated by the study 

of Zhang et al. (2021) [19]; leveraging 

driving cycles extracted from real data 

significantly improves the performance of 

machine learning algorithms in predicting 

future driving conditions. In addition to 

energy management, a review of previous 

studies indicates that the cost of diagnostic 

systems and the phenomena of wear and tear 

of components (especially the battery) are 

also significant challenges for electric 

vehicles.  

Given the increasing global demand for 

personal vehicles and the environmental 

consequences of fossil fuel consumption and 

greenhouse gas emissions, the transition to 

cleaner transportation systems, including 

electric vehicles (EVs), is of paramount 

importance. The transportation sector 

contributes significantly to greenhouse gas 

emissions. Although EVs offer a promising 

solution for reducing emissions and possess 

technical advantages like high energy 

efficiency, their performance is heavily 

influenced by crucial factors such as battery 

health and driving patterns. 

 Previous studies have highlighted the 

importance of using real-world driving data 

to assess EV performance and develop 

energy management strategies. However, 

limited research has specifically investigated 

the simultaneous impact of these factors 

under the distinct traffic patterns of 

megacities like Tehran. Therefore, this 

research aims to comprehensively examine 

the effect of different driving patterns 

(including global standard cycles and real-

world Tehran cycles) on the propulsive 
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performance, energy consumption, battery 

State of Charge (SoC), battery temperature, 

and Depth of Discharge (DoD) of EVs under 

actual Tehran driving conditions. 

This study focuses on the Audi e-tron 50 to 

provide a deeper understanding of the key 

factors affecting the efficiency and 

sustainability of electric vehicles. It utilizes 

longitudinal dynamic simulation in 

Simcenter Amesim software and an 

equivalent circuit model for the lithium-ion 

battery. The results of this research are 

expected to contribute to the development of 

energy consumption optimization and 

battery management strategies tailored to 

real-world driving conditions. 

 

2. Modeling 

This study focuses on the simulation and 

analysis of the dynamic performance of an 

electric vehicle (EV) utilizing Amesim 

software.  

The vehicle's performance was initially 

assessed based on the Worldwide 

Harmonized Light Vehicles Test Cycle 

(WLTC). Subsequently, these results were 

compared with those obtained from the New 

European Driving Cycle (NEDC) to achieve 

a better understanding of the vehicle's 

behavior under various urban conditions. 

These standard driving cycles were selected 

due to their more accurate reflection of real-

world traffic and road conditions. The 

technical specifications and key parameters 

of the reference EV are presented in Table 1. 

 

3. Longitudinal Dynamics 

This section is dedicated to evaluating the 

power and energy requirements of the 

vehicle's powertrain based on the physical 

principles governing motion. Accordingly, 

the analysis focuses on the dominant 

resistive forces, namely aerodynamic drag, 

rolling resistance, and grade resistance. 

Table 1: Specifications of the Audi e-tron 50 Vehicle 

Unit Value Parameter 

Mm 4901/1935/1616 
Vehicle dimensions 

(L/W/H) 

Kg 2445 Mass 

N.m 540 
Maximum Motor 

Torque 

kW 230 
Maximum motor 

Power 

 0.28 Vehicle aero drag 

m2 2.65 Vehicle front area 

 

It should be noted that within this study, 

consideration is limited to longitudinal 

forces acting on the vehicle, although 

numerous forces are present under real-

world conditions.  Among these, FR 

represents the rolling resistance force, while 

FJ, FD, and Fs denote the resistive forces due 

to acceleration (inertia), aerodynamic drag, 

and road slope, respectively. These forces 

play a fundamental role in calculations 

related to the vehicle's energy and power 

requirements and are, therefore, of great 

importance in the optimal design of the 

powertrain system for electric vehicles 

[20,21]. 

(1) s+ F D+ F J+ F R= F TF 

(2) )αCos( × Mg R= C RF 

(3)  
dv

dt
= M  JF 

(4) 1

2
𝐶𝐷𝜌𝐴(𝑉𝑟𝑒𝑙+𝑉𝑎𝑖𝑟)2=  DF 

(5) )α= Mg sin( SF 

(6)   max× V T= F RP 
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(7) × t = C × V R= P BatteryE 

Several factors influence the amount of 

resistive force acting on a vehicle while in 

motion, among the most important of which 

are the vehicle's mass (M) and the rolling 

resistance coefficient (CR). Additionally, the 

drag coefficient (CD) and air density (ρ) 

directly affect the aerodynamic drag force, 

and the vehicle's frontal area (A) is also a 

key factor in calculating this force. 

Furthermore, the vehicle's instantaneous 

speed (Vrel) and its maximum achievable 

speed (Vmax) determine the amount of 

power required to overcome these resistive 

forces. To supply this power, the energy 

stored in the battery pack (EBattery) must be 

sufficient to provide the vehicle's required 

power (PR) for a specific duration (t). 

Finally, the battery capacity (C), measured 

in Ampere-hours (A.h), and the battery pack 

voltage (V) also influence the total amount 

of storable energy and, consequently, the 

vehicle's driving range. 

 

4. Battery 

The 2022 Audi e-tron 50 quattro[22], with 

its 71.2 kWh configuration, offers an 

engineered and optimized structure for 

electric performance. Equipped with a 

lithium-ion battery and a usable capacity of 

64.7 kWh, this vehicle can achieve a range 

of 336 kilometers (according to the WLTP 

standard). The battery pack consists of 324 

cells organized into several modules 

(108s3p). These modules are designed to 

enhance safety, thermal management, and 

repairability, and they help maintain a 

voltage of 400 volts. This modular structure 

increases energy density and optimizes 

battery cooling under various conditions. An 

equivalent circuit model has been used for 

battery modeling in this research. 

 

Table 2. Battery Pack Specifications [22] 

Parameters Value Unit 

Pack Capacity 71.2 kWh 

Pack power 230 kW 

Pack Voltage 400 V 

Cell Capacity 60.537 Ah 

Total mass of cell 580 kg 

Number of cells in Parallel 3 - 

Number of Cells in Series 108 - 

 

4.1 Modeling Battery Dynamic Behavior 

Using an Equivalent Circuit Model (ECM) 

Equivalent Circuit Models (ECMs) [23] are 

employed to describe and predict the 

dynamic behavior of batteries, particularly at 

the battery pack level. By combining 

lumped elements like resistors and 

capacitors, these models can simulate 

battery performance under various operating 

conditions, including different discharge 

rates, temperatures, and states of charge 

(SoC). The main advantages of using ECMs 

lie in their simplicity, ease of 

implementation, and the relatively small 

number of adjustable parameters required, 

making them a common choice in many 

studies and simulations [24]. Despite their 

simplicity, these models can represent the 

dynamic behavior and governing equations 

of the battery with reasonable accuracy. The 

ability of ECMs to predict performance 

makes them highly valuable for the optimal 

design of battery packs in specific 

applications, such as electric vehicles (EVs) 

or power tools. Various types of ECM 

structures can be utilized. In modeling 

battery packs, it is often assumed that all the 

constituent cells of the pack are identical. 

This assumption allows the combined 

effects of the cells, along with additional  

 [
 D

O
I:

 1
0.

22
06

8/
as

e.
20

25
.7

07
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.iu

st
.a

c.
ir

 o
n 

20
26

-0
1-

29
 ]

 

                             5 / 15

http://dx.doi.org/10.22068/ase.2025.707
https://www.iust.ac.ir/ijae/article-1-707-fa.html


                                                                                                                                                Ansari Laleh et al. 

Automotive Science and Engineering (ASE) 4801 
 

resistances arising from internal connections 

and other components, to be represented by 

a single equivalent circuit (as shown in 

Figure 1). 

In Figure 1, the additional resistance (Radd) 

depends on the number of series and parallel 

cells and the cell parameters. To calculate 

the State of Charge (SoC), the following 

relationship is used [25]: 

(8) 𝑑𝑆𝑂𝐶

𝑑𝑡
= 100 ×

𝐼

𝑄′
× 𝜂farad 

where Q' is the available battery capacity in 

Ampere-hours. Additionally, to calculate the 

overall voltage drop, the additional 

resistances are taken into account: 

(9 ) 𝛥𝑈add = −𝐼 × 𝑅add 

Other voltage drops, including hysteresis 

drop (ΔUhyst), ohmic drop (ΔUohm), charge 

transfer drop  (ΔUct), and diffusion drop 

ΔUdiff, are expressed by the following 

relationships, respectively: 

(10) 𝛥𝑈hyst = 𝑂𝐶𝑉eq − 𝑂𝐶𝑉 

(11) 𝛥𝑈ohm = −𝐼 × 𝑅ohm 

(12) 𝛥𝑈ct = −𝐼 × 𝑅ct 

(13) 

𝛥𝑈diff
total = ∑ 𝛥

𝑁RC

𝑖=1

𝑈diff[𝑖] 

Therefore, the total voltage drop is 

calculated as follows: 

(14 ) 𝛥𝑈total = 𝛥𝑈add + 𝛥𝑈hyst + 𝛥𝑈ohm

+ 𝛥𝑈ct + 𝛥𝑈diff
total 

This equivalent circuit model contributes to 

the accurate analysis and prediction of 

battery pack performance under various 

operating conditions. 

4. Driving Cycle 

A driving cycle is defined as a speed-time 

profile representing a characteristic driving 

pattern within a specific environment, such 

as urban or highway conditions. These 

cycles serve as fundamental tools for 

analyzing and evaluating vehicle 

performance, particularly for electric 

vehicles (EVs), under diverse operational 

conditions[26]. Driving patterns and their 

corresponding cycles exhibit significant 

variability across different regions due to 

disparities in factors, including road 

infrastructure, route types, vehicle fleet 

composition, traffic conditions, driving 

culture, socio-geographical characteristics, 

and urban scale. This inherent diversity 

underscores the importance of selecting or 

developing appropriate driving cycles that 

accurately represent real-world conditions 

for vehicle performance studies, particularly 

for the design and evaluation of energy 

management strategies. Consequently, to 

gain a more precise understanding of electric 

vehicle performance, simulations are 

commonly employed to evaluate the 

vehicle's dynamic behavior under standard 

or locally developed driving cycles [27]. In 

the present study, to achieve a 

comprehensive evaluation, the performance 

 

Figure 1: Schematic of the Battery Equivalent 

Circuit 
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of the subject electric vehicle is analyzed 

and compared using a suite of international 

standard driving cycles—including the 

Worldwide Harmonized Light Vehicles Test 

Cycle (WLTC), the New European Driving 

Cycle (NEDC), and the Highway Fuel 

Economy Test cycle (HWFET)—alongside 

several specific driving cycles derived for 

the Tehran metropolis. This approach 

facilitates the examination of the vehicle's 

behavior across a broader spectrum of 

driving patterns and conditions. 

4. Model Validation 

 Figure 1 presents four bar charts that offer a 

comprehensive comparison between the 

simulated values of the developed model and 

the declared values for four key performance 

criteria of an electric vehicle. This comparison 

aims to validate the accuracy of the simulation 

model in predicting the dynamic behavior and 

energy consumption of the vehicle, based on 

official and standard information. As observed 

in the charts, for the driving range criterion in 

the WLTC cycle, the simulated range (340 km) 

shows a very minor difference of only 4 km 

compared to the declared range (336 km) under 

low energy conditions of the WLTC test. This 

indicates the model's excellent accuracy in 

predicting the vehicle's real driving range 

 

Figure 2: WLTC 

 

Figure 3: NEDC 

 

Figure 4: EPA Highway Fuel Economy Cycle 

HWFET 

 

Figure 5: Route 1 

 

Figure 6: Route 2 
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under a standard cycle, significantly 

enhancing the model's credibility in 

evaluating energy consumption and driving 

range. Regarding maximum speed, the 

simulation model predicted a maximum 

speed of 193.9 km/h, while the declared 

value is 190 km/h. This relatively small 

difference (approximately 3.9 km/h) still 

demonstrates a strong correlation between the 

model and reality. Possible reasons for this 

discrepancy could include minor differences 

in aerodynamic coefficients or rolling 

resistance used in the simulation compared to 

actual measurement conditions. In terms of 

charging time (0% to 80% with a 120 kW DC 

charger), the simulated charging time is 32 

minutes, and the declared charging time for 

the same conditions is 30 minutes. This small 

difference, which is less than 7%, indicates 

that the model is capable of adequately 

simulating the battery charging process and 

its thermal management during fast DC 

charging. Minor discrepancies may arise 

from more precise charging curves, initial 

battery temperature, or the efficiency of the 

charging system under real conditions. 

Finally, for 0-100 km/h acceleration, the 

simulated time is 7.2 seconds, and the 

declared time is 6.8 seconds. This difference 

is also relatively small (0.4 seconds) and 

demonstrates the model's ability to simulate 

vehicle dynamics and powertrain 

performance, where factors such as exact 

vehicle mass, road friction, or the 

instantaneous response of the motor and 

gearbox could play a role in this minor 

difference. Overall, the comparison between 

the simulation results and the declared data 

demonstrates a very good agreement of the 

developed model. The high accuracy in 

predicting driving range, along with a strong 

correlation in predicting maximum speed, 

charging time, and acceleration, strongly 

confirms the model's validity for use in 

future studies, parameter optimization, and 

evaluating various performance scenarios of 

electric vehicles. This validation is an 

important step towards trusting the results 

obtained from modeling and simulation in 

the design and analysis process of electric 

vehicles. 

 

Figure 7: Comparison of four key electric vehicle performance metrics with simulated results versus declared 

values. 
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 Given that the simulated electric vehicle is 

fully electric and the battery pack acts as its 

sole energy source, the overall performance 

of this vehicle is directly related to the actual 

state of the battery. Furthermore, how 

electric vehicles consume energy in real-

world driving conditions is also a 

determining factor. The simulation results 

are presented in detail below. 

Figure 8  illustrates the evolution of the 

battery's State of Charge (SoC) over time for 

the five driving cycles under investigation 

(WLTC, NEDC, HWFET, Route1, and 

Route2). The vertical axis represents the 

SoC percentage, and the horizontal axis 

represents time in seconds. All cycles start 

from the same initial charge level, 

approximately 90%. The general trend of the 

graph shows a decrease in SoC over time for 

all profiles, which is due to the energy 

consumed by the battery to supply the power 

required by the vehicle's powertrain during 

the driving cycle. The main difference lies in 

the decrease in the rate of SoC and the final 

SoC value at the end of each cycle, which is 

directly dependent on the power demand of 

that cycle. Specifically, the HWFET cycle 

(highway driving simulator), characterized 

by high speeds and relatively strong 

accelerations, has the highest average power 

demand in its short duration; therefore, we 

observe the fastest rate of SoC decrease in 

this profile, reaching approximately 86.25% 

in about 800 seconds. Conversely, the 

Route1 cycle (one of the Tehran driving 

cycles), which likely involves lower speeds, 

gentler accelerations, and more stops, has 

the lowest average power demand; this 

results in the slowest rate of SoC decrease 

and consequently the highest final SoC level 

(87.6%) among the longer duration cycles.  

The WLTC cycle consumes the most energy 

overall, as it covers a wide range of driving 

conditions, including phases with high 

speeds and acceleration, particularly towards 

the end of the cycle, resulting in the lowest 

final state of charge (SoC) level of 83.8%. 

The negative slope of the WLTC curve 

becomes steeper after about 1000 seconds, 

especially after 1500 seconds, which is due 

to entering driving phases with higher power 

demand in the later stages of this standard 

cycle. The NEDC and Route2 cycles 

(another Tehran driving cycle), due to 

having speed and acceleration profiles with 

moderate power demand, exhibit 

intermediate rates of SoC decrease and final 

SoC values (approximately 87.34% and 

86.78%, respectively) compared to the other 

cycles. Therefore, the differences observed 

in the graph are directly attributable to the 

differences in the instantaneous and average 

energy and power required to follow each of 

these driving patterns. 

 

Figure 9: Comparison of battery DoD over time 

under five different driving cycles 

 

Figure 8: Comparison of battery SoC over time 

under five different driving cycles. 
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Figure 9 displays the changes in the battery's 

Depth of Discharge (DoD) over time for five 

different driving profiles. These profiles 

include the standard driving cycles WLTC 

and NEDC, the highway driving cycle 

HWFET that simulates driving conditions 

on highways and open roads, and two 

defined routes related to driving cycles in 

the city of Tehran (Route 1 and Route 2). As 

observed, all tests commence from a similar 

starting point with a 10% Depth of 

Discharge. Over time, the DoD increases for 

all profiles, but the rate of this increase and 

its final value vary depending on the type of 

driving profile. The HWFET (highway) 

profile exhibits the fastest rate of DoD 

increase in a shorter time frame (up to 

approximately 765 seconds), reaching about 

13.74%, which indicates higher energy 

consumption per unit of time for this type of 

driving condition. In contrast, the Route1 

profile (one of the Tehran driving cycles) 

has the lowest slope of DoD increase and 

reaches the lowest DoD value among the 

longer duration profiles (12.4%) at the end 

of the observed time frame (approximately 

1910 seconds), suggesting the gentlest 

energy consumption pattern in that specific 

traffic condition. The WLTC cycle, which 

covers the most extended duration, 

ultimately reaches the highest DoD, over 

16.2 %, and the slope of the DoD increase 

becomes steeper, especially after 1000 

seconds. The NEDC and Route 2 profiles 

(the other Tehran driving cycle) show 

moderate consumption patterns, ending at 

approximately 1180 and 1600 seconds, with 

final DoD values of 12.65% and 13.21%, 

respectively. These results clearly 

demonstrate that the driving pattern, whether 

it is a global standard, real urban traffic 

conditions like Tehran, or highway driving, 

has a direct impact on the rate and amount 

of battery energy discharge, and different 

cycles can lead to varying levels of stress on 

the battery. 

 

Figure 10: Comparison of battery temperature 

changes over time under five different driving 

cycles. 

Figure 10 illustrates the battery temperature 

profile over time for the five different 

driving cycles (WLTC, NEDC, HWFET, 

Route1, and Route2) that were previously 

analyzed in terms of depth of discharge. 

Observations indicate that the initial battery 

temperature at the start of all cycles was the 

same, approximately 25 ℃. However, the 

rate of temperature increase over time varies 

for each cycle, indicating the influence of 

the driving pattern on heat generation within 

the battery. The HWFET cycle (highway 

driving simulator), which exhibited a high 

discharge rate, shows the fastest rate of 

temperature increase in its short duration (up 

to about 765 seconds), reaching a 

temperature of 29.45 ℃. This confirms the 

correlation between high power demand and 

greater heat generation. The WLTC cycle, 

although initially having a gentler 

temperature increase compared to HWFET, 

eventually reaches the highest final 

temperature, close to 34.7 ℃, over the 

longest duration (1800 seconds). The rate of 

temperature increase in this cycle notably 

increases, especially after the 1000-second 

mark, which aligns with the increased 

discharge rate observed in the previous 

chart. Conversely, the Route1 cycle (related 

to driving in Tehran), which showed the 

lowest depth of discharge, also has the 

lowest slope of temperature increase,  
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reaching a temperature of 29 ℃ at the end of 

the time frame, indicating the least thermal 

stress among the cycles. The NEDC and 

Route 2 cycles (another Tehran driving 

cycle) exhibit intermediate thermal 

behavior, reaching final temperatures of 

28.6 and 29.3 ℃, respectively. These results 

emphasize that the characteristics of the 

driving cycle not only affect the amount of 

energy consumption but also significantly 

influence the thermal profile and 

temperature management of the battery. 

The bar chart in Figure 11 compares two key 

parameters for the five studied driving 

cycles: WLTC, NEDC, HWFET, Route1, 

and Route2. The orange bars represent the 

defined or recorded length of each cycle; for 

example, the WLTC cycle, at 23.410 

kilometers, covers the longest distance 

among these cycles, while the NEDC, at 11 

kilometers, is the shortest. The green bars 

represent the estimated driving range of the 

vehicle, typically calculated based on the 

specific energy consumption (usually in 

Watt-hour per kilometer - Wh/Km) 

measured during each test cycle. Analyzing 

these bars in comparison to the distance bars 

highlights a crucial point: the energy 

efficiency and the estimated range are 

significantly affected by the attributes of the 

driving cycle. Cycles such as WLTC and 

HWFET, which have high-speed phases and 

frequent, strong accelerations, lead to 

increased specific energy consumption 

(Wh/Km). This is due to the higher power 

required to overcome resistive forces 

(aerodynamic and inertia) at high speeds and 

accelerations, as well as the lower efficiency 

of the powertrain system under these 

conditions. For this reason, despite the 

longer distance of the WLTC cycle, the 

resulting estimated range (340 kilometers) is 

the lowest among the cycles. The HWFET 

cycle, due to its highway nature and high 

speeds, also has relatively high energy 

consumption, resulting in a medium to low 

estimated range (398 kilometers). 

Conversely, cycles like Route1 and, to some 

extent, NEDC, which represent gentler 

driving patterns with lower average speeds 

and smoother accelerations, lead to reduced 

specific energy consumption and improved 

energy efficiency. Under these conditions, 

less energy is consumed per kilometer 

traveled. The primary reason for the higher 

estimated range in these cycles, particularly 

Route 1, which has an estimated range of 

about 477 kilometers, and NEDC, with an 

estimated range of approximately 373 

kilometers, is improved energy efficiency, 

even though the NEDC test cycle distance is 

relatively short. In contrast, Route 2, which 

features intermediate energy consumption 

and efficiency characteristics, offers a more 

moderate estimated range of 431 kilometers. 

This chart clearly illustrates that driving 

patterns significantly impact both 

instantaneous and average energy efficiency, 

which in turn plays a crucial role in 

determining the final achievable driving 

range of an electric vehicle. 

4. Conclusion 

This research aimed to evaluate the 

longitudinal dynamic performance and 

energy consumption of an electric vehicle 

 

Figure 11: Comparison of Estimated Driving 

Range of Electric Vehicle Under Five Different 

Driving Cycles. 
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(Audi e-tron 50) under the influence of 

various driving cycles, using simulation in 

Simcenter Amesim software and employing 

an equivalent circuit model for the lithium-

ion battery. The analysis of the simulation 

results on global standard cycles (WLTC, 

NEDC, HWFET) and real-world driving 

cycles recorded in the city of Tehran 

(Route1, Route2) demonstrates the 

significant impact of the driving pattern on 

key vehicle performance parameters. 

The main findings of this study are as 

follows: 

1. Energy Consumption and State of 

Charge (SoC/DoD): Driving 

patterns with high speeds and 

frequent accelerations, such as the 

HWFET highway cycle and parts of 

the WLTC cycle, lead to the highest 

instantaneous energy consumption 

rates and, consequently, the fastest 

decrease in SoC and increase in 

Depth of Discharge (DoD). In 

contrast, gentler urban driving cycles 

like Route1, due to lower speeds and 

smoother accelerations, exhibit the 

lowest energy consumption and, as a 

result, the slowest battery discharge 

rate. These differences emphasize 

the importance of adapting energy 

management strategies to real-world 

driving conditions. 

2. Battery Temperature: The battery 

temperature profile is directly related 

to the energy consumption pattern. 

Cycles with high power demand 

(such as HWFET and WLTC) cause 

a faster increase and reaching higher 

temperatures in the battery pack, 

which can affect battery health and 

lifespan. Milder cycles like Route1 

impose the least thermal stress on the 

battery. 

3. Estimated Range: The results 

clearly show that the vehicle's 

achievable range is highly influenced 

by the energy efficiency in each 

driving cycle. More aggressive 

cycles (WLTC and HWFET), due to 

higher specific energy consumption 

(Wh/km), lead to a reduction in the 

estimated range, with the WLTC 

cycle yielding the lowest estimated 

range (340 kilometers) despite its 

longer distance. Conversely, urban 

cycles like Route1, by providing the 

best energy efficiency, enabled the 

highest estimated range (477 

kilometers). This finding highlights 

the importance of using local and 

real-world driving cycles for a more 

accurate assessment of the range of 

electric vehicles. 

Overall, this study demonstrated that the 

characteristics of the driving cycle, whether 

standard or real-world, play a decisive role 

in the energy consumption, state of charge, 

battery thermal management, and final 

driving range of an electric vehicle. The 

results emphasize that considering real 

driving patterns and local operating 

conditions is essential for accurately 

evaluating the performance and optimizing 

the energy management systems of electric 

vehicles. Although the initial research 

objectives included investigating the impact 

of different battery State of Health (SoH) 

levels, the analysis of the results presented 
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in this section primarily focused on 

comparing driving cycles. It is 

recommended that future research 

comprehensively investigate the combined 

effect of driving cycles and different SoH 

levels on performance and energy 

consumption. 
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