

Modal Testing (Lecture 21)

Dr. Hamid Ahmadian

School of Mechanical Engineering Iran University of Science and Technology ahmadian@iust.ac.ir

- Output error method
 - Eigen-sensitivity method
 - Inverse Eigensensitivity Method (6.3.7)
 - FRF-sensitivity method
 - Response Function Method (6.3.8)
- Bounds of errors in parameter estimation
- Homework 4

The updating is performed by minimizing the difference between the actual response and the predicted one.

$$\begin{cases} \Delta \omega_{1}^{2} \\ \Delta \omega_{2}^{2} \\ \vdots \\ \{\Delta \phi_{1}\} \\ \{\Delta \phi_{2}\} \\ \vdots \end{cases} = \begin{bmatrix} \frac{\partial \omega_{1}^{2}}{\partial p_{1}} & \frac{\partial \omega_{1}^{2}}{\partial p_{2}} & \frac{\partial \omega_{1}^{2}}{\partial p_{3}} & \cdots \\ \frac{\partial \omega_{2}^{2}}{\partial p_{1}} & \frac{\partial \omega_{2}^{2}}{\partial p_{2}} & \frac{\partial \omega_{2}^{2}}{\partial p_{3}} & \cdots \\ \vdots & \vdots & \vdots & \cdots \\ \frac{\partial \{\Delta \phi_{1}\}}{\partial p_{1}} & \frac{\partial \{\Delta \phi_{1}\}}{\partial p_{2}} & \frac{\partial \{\Delta \phi_{1}\}}{\partial p_{3}} & \cdots \\ \frac{\partial \{\Delta \phi_{2}\}}{\partial p_{1}} & \frac{\partial \{\Delta \phi_{2}\}}{\partial p_{2}} & \frac{\partial \{\Delta \phi_{2}\}}{\partial p_{3}} & \cdots \\ \frac{\partial \{\Delta \phi_{2}\}}{\partial p_{1}} & \frac{\partial \{\Delta \phi_{2}\}}{\partial p_{2}} & \frac{\partial \{\Delta \phi_{2}\}}{\partial p_{3}} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Derivation of Mathematical Models

$$\left(\!\left[K\right]\!-\omega_r^2\left[M\right]\!\right)\!\!\left\{\phi_r\right\}\!=\!\left\{0\right\}\!,$$

$$\frac{\partial}{\partial p} \left(\left[K \right] - \omega_r^2 \left[M \right] \right) \left\{ \phi_r \right\} = \{ 0 \},$$

$$\left(\begin{bmatrix} K \end{bmatrix} - \omega_r^2 \begin{bmatrix} M \end{bmatrix} \right) \frac{\partial \{\phi_r\}}{\partial p} + \left(\frac{\partial \begin{bmatrix} K \end{bmatrix}}{\partial p} - \frac{\partial \omega_r^2}{\partial p} \begin{bmatrix} M \end{bmatrix} - \omega_r^2 \frac{\partial \begin{bmatrix} M \end{bmatrix}}{\partial p} \right) \{\phi_r\} = \{0\},\$$

IUST ,Modal Testing Lab ,Dr H Ahmadian

Starting from:

$$\begin{pmatrix} [K] - \omega_r^2[M] \end{pmatrix} \frac{\partial \{\phi_r\}}{\partial p} + \left(\frac{\partial [K]}{\partial p} - \frac{\partial \omega_r^2}{\partial p} [M] - \omega_r^2 \frac{\partial [M]}{\partial p} \right) \{\phi_r\} = \{0\},$$
and taking $\frac{\partial \{\phi_r\}}{\partial p} = \sum_{\substack{j=1 \ j \neq r}}^N \gamma_{rj} \{\phi_j\}$

$$\Rightarrow \begin{pmatrix} [K] - \omega_r^2[M] \end{pmatrix} \sum_{\substack{j=1 \ j \neq r}}^N \gamma_{rj} \{\phi_j\} + \left(\frac{\partial [K]}{\partial p} - \frac{\partial \omega_r^2}{\partial p} [M] - \omega_r^2 \frac{\partial [M]}{\partial p} \right) \{\phi_r\} = \{0\}$$

$$([K] - \omega_r^2[M]) \sum_{\substack{j=1 \ j \neq r}}^N \gamma_{rj} \{\phi_j\} + \left(\frac{\partial [K]}{\partial p} - \frac{\partial \omega_r^2}{\partial p} [M] - \omega_r^2 \frac{\partial [M]}{\partial p}\right) \{\phi_r\} = \{0\}$$

$$\Rightarrow \{\phi_s\}^T \left([K] - \omega_r^2 [M] \right) \sum_{\substack{j=1\\j \neq r}}^N \gamma_{rj} \{\phi_j\} + \{\phi_s\}^T \left(\frac{\partial [K]}{\partial p} - \frac{\partial \omega_r^2}{\partial p} [M] - \omega_r^2 \frac{\partial [M]}{\partial p} \right) \{\phi_r\} = \{0\}$$

$$\Rightarrow \left(\omega_s^2 - \omega_r^2\right) \gamma_{rs} + \left\{\phi_s\right\}^T \left(\frac{\partial [K]}{\partial p} - \omega_r^2 \frac{\partial [M]}{\partial p}\right) \left\{\phi_r\right\} = \left\{0\right\}$$

Updating, Redesign, Reanalysis

 $rac{\partial \omega_1^2}{\partial p_2} \ rac{\partial \omega_2^2}{\partial \omega_2^2}$ $\partial \omega_1^2$ $\partial \omega_1^2$ ∂p_1 ∂p_3 $\Delta \omega$ $\partial \omega_2^2$ $\partial \omega_2^2$ Δp_{γ} ∂p_1

Derivation of Mathematical Models

In face-to-face contacts the behavior of the joint is governed mainly by normal stiffness and shear stiffness

The updating was performed using the *Design Sensitivity Module* available in MSC/NASTRAN 2001.

Derivation of Mathematical Models

IUST ,Modal Testing Lab ,Dr H Ahmadian

Uncertainty in car body modeling:

• The updating results:

No.	Measured	Updated	Error
11	537.3	531.2	-1.1
2	574.8	582.0	1.2
3	629.4	616.4	-2.0
4	664.4	668.3	0.5
5	672.2	669.6	-0.3
6	701.2	677.9	-3.3
7	734.4	734.6	0.02
8	821.4	813.6	-0.9
9	865.1	865.0	-0.01
10	946.4	908.7	-3.9

Derivation of Mathematical Models

וסטו ,ואטטע ו esting Lab ,Dr H Ahmadian

DELIVATION OF MATHEMATICAL MOURIS

IUST ,Modal Testing Lab ,Dr H Ahmadian

UPDATING RESULTS

Mode No.	Test (Hz)	FEM (Hz)	Error (%)	Updated	Error (%)
1	551	777	41	546	-0.9
2	612	635	3.75	622	1.63
Torsional mode	N/A	1161		1018	
Axial mode	N/A	1285		1079	
3	1119	1186	5.98	1125	0.53
4	1175	1163	-1.02	1177	0.17
5	1337	1415	5.83	1334	-0.22
6	1516	1643	8.37	1604	5.8
7	1645	1848	12.34	1687	2.55
8	1717	1761	2.56	1744	1.57

Derivation of Mathematical Models

FRF Sensitivities

$$[Z(\omega)] = [K] + i\omega[C] - \omega^{2}[M],$$

$$\Rightarrow ([A] + [B])^{-1} = [A]^{-1} - ([A] + [B])^{-1}[B][A]^{-1}$$

$$take[A] \Rightarrow [Z(\omega)]_{A}, \qquad [A+B] \Rightarrow [Z(\omega)]_{x}$$

$$then \Rightarrow [Z(\omega)]_{x}^{-1} = [Z(\omega)]_{A}^{-1} - [Z(\omega)]_{x}^{-1}([Z(\omega)]_{x} - [Z(\omega)]_{A})^{-1}[Z(\omega)]_{A}^{-1}$$

$$[\alpha(\omega)]_{x} - [\alpha(\omega)]_{A} = -[\alpha(\omega)]_{x}[\Delta Z(\omega)][\alpha(\omega)]_{A}$$
Derivation of Mathematical Models

$$UST, Modal Testing Lab, Dr H Ahmadian$$

 $\left[\alpha(\omega)\right]_{r} - \left[\alpha(\omega)\right]_{A} = -\left[\alpha(\omega)\right]_{r} \left[\Delta Z(\omega)\right] \left[\alpha(\omega)\right]_{A},$

 $\{\alpha_{x}(\omega) - \alpha_{A}(\omega)\}_{i}^{T} = \{\alpha_{x}(\omega)\}_{i}^{T} [\Delta Z(\omega)] [\alpha(\omega)]_{A}$

FRF Sensitivities

$$\frac{\partial [\alpha(\omega)]}{\partial p} = \frac{\partial ([Z(\omega)]^{-1})}{\partial p} = -[Z(\omega)]^{-1} \frac{\partial [Z(\omega)]}{\partial p} [Z(\omega)]^{-1}$$

$$\frac{\partial [\alpha(\omega)]}{\partial p} = -[\alpha(\omega)] \frac{\partial [Z(\omega)]}{\partial p} [\alpha(\omega)]$$

$$\frac{\partial [\alpha(\omega)]}{\partial p} = -[\alpha(\omega)] \left(\frac{\partial [K]}{\partial p} + i\omega \frac{\partial [C]}{\partial p} - \omega^2 \frac{\partial [M]}{\partial p} \right) [\alpha(\omega)]$$

IUST ,Modal Testing Lab ,Dr H Ahmadian

Bounds of errors in parameter estimation

Linear eqns: Ax = bPertubation of A $(A + \Delta A)(x + \Delta x) = b$ $A\Delta x + \Delta Ax + O(\Delta^2) = 0.$ $\Delta x \approx -A^{-1}\Delta Ax$

Derivation of Mathematical Models

Bounds of errors in parameter estimation

$$\begin{split} \|\Delta x\| &= \left\|A^{-1}\Delta Ax\right\| \le \left\|A^{-1}\right\| \cdot \left\|\Delta Ax\right\| \le \left\|A^{-1}\right\| \cdot \left\|\Delta A\right\| \cdot \left\|x\right\| \\ &\Rightarrow \frac{\left\|\Delta x\right\|}{\|x\|} \le \left\|A^{-1}\right\| \cdot \left\|A\right\| \cdot \frac{\left\|\Delta A\right\|}{\|A\|} \\ &\Rightarrow \frac{\left\|\Delta x\right\|}{\|x\|} = \kappa(A) \cdot \frac{\left\|\Delta A\right\|}{\|A\|} \end{split}$$

Derivation of Mathematical Models

Bounds of errors in parameter estimation

Perturbation of b: $A(x + \Delta x) = b + \Delta b$ $A\Delta x = \Delta b \Longrightarrow \Delta x = A^{-1}\Delta b$ $\left\|\Delta x\right\| \le \left\|A^{-1}\right\| \cdot \left\|\Delta b\right\|$ $\frac{\|\Delta x\|}{\|A\| \cdot \|x\|} \le \frac{\|\Delta x\|}{\|Ax\|} \le \|A^{-1}\| \frac{\|\Delta b\|}{\|b\|}$ $\frac{\left\|\Delta x\right\|}{\left\|x\right\|} \le \left\|A^{-1}\right\| \cdot \left\|A\right\| \cdot \frac{\left\|\Delta b\right\|}{\left\|b\right\|} \Longrightarrow \frac{\left\|\Delta x\right\|}{\left\|x\right\|} \le \kappa \left(A\right) \frac{\left\|\Delta b\right\|}{\left\|b\right\|}$

Derivation of Mathematical Models

- Develop a procedure to locate a crack in a simply supported damped beam using output error strategy;
 - Using eigen-sensitivity method
 - Using FRF sensitivity method
 - The system is structurally damped:
 - non-proportional localized to the crack
 - The stiffness matrix is complex

Modal Testing (Lecture 21-1)

Dr. Hamid Ahmadian

School of Mechanical Engineering Iran University of Science and Technology ahmadian@iust.ac.ir

- Model Updating
 - To fine-tune some parameters to minimize the discrepancy between the model predictions and the measured data.
- Model Parameterization
 - Matrix updating
 - Physical parameter updating
 - Generic element models

- Finite element model updating is employed to bring the predictions of the model into agreement with experimental observations from a physical structure.
- This can be achieved provided that the measured data represent the actual behavior of the structure.
- Then accuracy of the updated model depends upon the parameters chosen for updating.

- There are basically two parameter selection strategies in the literature.
 - One approach is to select the geometric or material input data of the finite element model
 - The second strategy, in a contrast to the first, allows changes in all entries of the system matrices or a subset of them.

- The first approach is very popular:
 - it can be implemented in existing finite element codes
 - there is a readily available physical explanation for each modified term.
- But it has some drawbacks as well

Introduction

- The method is incapable of changing the mathematical "structure" of the model.
- Structural mis-modelling and omitted effects cannot be corrected.
- Errors of this type include
 - the omission of shear effects,
 - stress stiffening and coupling of bending and torsion in beams.

- The second strategy, allows the updated model to reproduce observed behavior exactly.
- But there is no guarantee that it represents a physical system and not a meaningless numerical expression that reproduces the test data.
- A common problem is the loss of positivity of system matrices.

Performance of Updating Procedures

- In this section we update the stiffness matrix of the frame structure using the various methods:
 - Matrix updating;
 - Matrix updating maintaining the pattern of zeros in the model;
 - Physical parameter updating;
 - Using generic stiffness matrices.

Frame structure and measured coordinates

Derivation of Mathematical Models

The Finite Element Model

- Consists of 28 in-plane frame elements (combination of a beam element and a rod element).
- The beam part is modeled using Euler-Bernoulli beam theory.
- The displacement vector of the element is: $\left[w_{i-1}, L\frac{dw_{i-1}}{dx}, L\theta_{i-1}, w_i, L\frac{dw_i}{dx}, L\theta_i\right]$

Derivation of Mathematical Models

Discrepancy of the FE and test results

Computed and measured natural frequencies

Mode	Natural fre	error	
No.	FE model	Measured	%
1	255.8	226.8	12.8
2	277.5	275.2	0.9
3	581.3	537.4	8.3
4	911.3	861.5	6.0
5	1049.4	974.8	8.0

Derivation of Mathematical Models

IUST ,Modal Testing Lab ,Dr H Ahmadian

$$\begin{split} & \underbrace{\text{min}}_{\phi_i^{(2)}} \left\| (K_0 - \lambda_i \mathbf{M}_0) \left\{ \begin{matrix} \boldsymbol{\phi}_i^{(1)} \\ \boldsymbol{\phi}_i^{(2)} \end{matrix} \right\} \right\| \quad i = 1, \dots, 5 \\ & \mathbf{\Phi}^T \mathbf{M}_0 \mathbf{\Phi} = \begin{bmatrix} 1 & -0.0221 & 0.0207 & 0.0133 & 0.0105 \\ 1 & 0.0036 & -0.0001 & -0.0096 \\ 1 & -0.0171 & -0.0022 \\ Sym. & 1 & 0.0064 \\ 1 \end{bmatrix} \end{split}$$

Expanding the mode shapes

- We interpreted the near-orthogonality of the modes with respect to M_o as evidence that
 - our measurements were accurate, and
 - M_o adequately represented the mass matrix of the structure.
- Having ascertained that M_o was adequate we extended them so that the extended modes would be precisely orthogonal with respect to M_o
Performance of Updating Procedures

- The model parameters are adjusted by forming an equation error function using the first three quasi-measured modes.
- We judge the performance of each method by:
 - Its ability to reproduce the first three measured modes;
 - To predict the fourth and fifth measured modes;
 - More importantly, by its ability to predict the modes of the structure when there is a design change.

Performance of Updating Procedures

- We identify the model of the test structure by an iterative procedure in which each iteration has two sub-steps:
 - use the current estimate of **K**, along with M_o to obtain Φ
 - use the obtained Φ to compute a new estimate of *K*, using the analysis described before.

min
$$\|\mathbf{M}_0^{-1/2} (\mathbf{K} - \mathbf{K}_0) \mathbf{M}_0^{-1/2} \|$$
,

subject to $\mathbf{K}\Phi = \mathbf{M}_0 \Phi \Lambda$, $\Phi^{\mathrm{T}} \mathbf{K}\Phi = \Lambda$, and $\mathbf{K} = \mathbf{K}^{\mathrm{T}}$.

The final equation in the procedure is a closed form solution for the updated stiffness matrix:

$$\mathbf{K} = \mathbf{K}_0 + \boldsymbol{\Delta} + \boldsymbol{\Delta}^T,$$
$$\boldsymbol{\Delta} = (\mathbf{I} - \mathbf{M}_0 \boldsymbol{\Phi} \boldsymbol{\Phi}^T/2) (\mathbf{M}_0 \boldsymbol{\Phi} \boldsymbol{\Lambda} - \mathbf{K}_0 \boldsymbol{\Phi}) \boldsymbol{\Phi}^T \mathbf{M}_0.$$

Derivation of Mathematical Models

Mode No.	Predicted by FEM	Baruch's Method	Measured
Rigid	0	0	0
body	0	0	0
modes	0	0	0
1	255.8	226.8	226.8
2	277.5	275.2	275.2
3	581.3	537.4	537.4
4	911.3	911.3	861.5
5	1049.4	1049.4	974.8

We notice that except for the modes used in updating, Baruch's model has the same eigen-data as the original finite element model.

$$\|\mathbf{M}_0^{-1/2} (\mathbf{K} - \mathbf{K}_0) \mathbf{M}_0^{-1/2} \|$$

= $\|\mathbf{M}_0^{-1/2} (\sum_{k=1}^{N} \lambda_k \boldsymbol{\phi}_k \boldsymbol{\phi}_k^T -$

$$= \|\mathbf{M}_{0}^{-1/2} \left(\sum_{i=1}^{i} \lambda_{i} \boldsymbol{\phi}_{i} \boldsymbol{\phi}_{i}^{T} - \lambda_{0i} \boldsymbol{\phi}_{0i} \boldsymbol{\phi}_{0i}^{T} \right) \mathbf{M}_{0}^{-1/2} \|$$
$$= \|\mathbf{V} \mathbf{A} \mathbf{V}^{T} - \mathbf{V}_{0} \mathbf{A}_{0} \mathbf{V}_{0}^{T} \| \qquad \mathbf{v}_{i} = \mathbf{M}_{0}^{1/2} \boldsymbol{\phi}_{i},$$

 $\mathbf{v}_{0i} = \mathbf{M}_0^{1/2} \boldsymbol{\phi}_{0i},$

Derivation of Mathematical Models

$$\mathbf{V} = \mathbf{V}_{0} \begin{bmatrix} \mathbf{R}_{m} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}_{N-m} \end{bmatrix},$$

min
$$\left\| \mathbf{V}_{0} \begin{bmatrix} \mathbf{R}_{m} \mathbf{\Lambda}_{m} \mathbf{R}_{m}^{T} - \mathbf{\Lambda}_{0_{m}} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}_{N-m} \mathbf{\Lambda}_{N-m} \mathbf{Q}_{N-m}^{T} - \mathbf{\Lambda}_{0_{N-m}} \end{bmatrix} \mathbf{V}_{0}^{T} \right\|.$$

$$\mathbf{Q}_{N-m} = \mathbf{I}_{N-m}$$
$$\mathbf{\Lambda}_{N-m} = \mathbf{\Lambda}_{0_{N-m}}.$$

Derivation of Mathematical Models

The updated model is consistent with the test results, and
beyond that its eigendata is the same as that of the finite element model

Matrix updating maintaining the pattern of zeros Kabe (1985)

Mode	Predicted	Changing	Changing	Measured
No.	by FEM	non-zeros	non-zeros	
			+ rigid modes	
Rigid	0	1197.6 i	0	0
body	0	456.8 i	0	0
modes	0	206.7	0	0
1	255.8	226.8	226.8	226.8
2	277.5	275.2	275.2	275.2
3	581.3	537.4	537.4	537.4
4	911.3	548.3	862.6	861.5
5	1049.4	652.0	897.6	974.8

Physical Parameter Updating

- Parameters are *EI/L³*,
 GJ/L
- The updated model has the correct definiteness properties, but is little better than the original FE model in predicting the measured frequencies.

Mode	Predicted	Physical	Measured
No.	by FEM	Parameter	
Rigid	0	0	0
body	0	0	0
modes	0	0	0
1	255.8	255.6	226.8
2	277.5	277.4	275.2
3	581.3	580.1	537.4
4	911.3	9 11 .6	86 1.5
5	1049.4	1043.2	974.8

GENERIC ELEMENT MATRICES

- Basic assumption in every updating procedure is that the order and the structure of the finite element model is correct.
- A generic element model is built by imposing all necessary conditions that the element must satisfy.

- Necessary conditions:
 - M is positive definite,
 - **K** is semi-positive definite.

$$\mathbf{K}\boldsymbol{\Phi}_{R}=\mathbf{0},\quad \boldsymbol{\Phi}_{R}^{T}\mathbf{M}\boldsymbol{\Phi}_{R}=\begin{bmatrix}\mathbf{m} & \mathbf{0}\\ \mathbf{0} & \mathbf{J}\end{bmatrix}$$

Geometric symmetry

$\mathbf{K} = \mathbf{R}^T \mathbf{K} \mathbf{R}, \quad \mathbf{M} = \mathbf{R}^T \mathbf{M} \mathbf{R}$

$$K\Phi = 0, \quad \Phi = \begin{bmatrix} 1 & 0 & 1 & 0 \\ -1/2 & 1 & 1/2 & 1 \end{bmatrix}^{T} \longrightarrow K = \begin{bmatrix} k_{ww} & k_{ww}/2 & -k_{ww} & k_{ww}/2 \\ & k_{\theta\theta} & -k_{ww}/2 & k_{ww}/2 - k_{\theta\theta} \\ & & k_{\theta\theta} & -k_{ww}/2 & k_{ww}/2 - k_{\theta\theta} \\ & & & k_{\theta\theta} & -k_{ww}/2 \\ & & & k_{\theta\theta} & -k_{ww}/2 \\ & & & & k_{\theta\theta} \end{bmatrix},$$

$$\mathbf{M} \!=\! \rho AL \! \begin{bmatrix} m_{11} & m_{12} & \frac{1}{2} - m_{11} & m_{14} \\ & m_{22} & -m_{14} & m_{24} \\ & & m_{11} & -m_{12} \\ Sym. & & & m_{22} \end{bmatrix},$$

$$m_{24} = \frac{1}{6} - \frac{m_{11}}{2} + m_{12} + m_{14} - m_{22},$$

Derivation of Mathematical Models

- -

E A generic beam element

Euler-Bernoulli beam model
$$k_{ww} = 12EI$$
, $k_{\theta\theta} = 4EI$
Timoshenko beam element $k_{ww} = EI \frac{12}{1+g} k_{\theta\theta} = EI \frac{4+g}{1+g} g = \frac{CEI}{GAL^2}$

A beam element with a crack

$$\begin{split} k_{ww} = & \frac{12EI}{1 + (1 - \nu^2)\alpha^3 F_2}, \\ k_{\theta\theta} = & \frac{EI[4 + (1 - \nu^2)(18\alpha F_1 + 2\alpha^3 F_2)]}{[1 + 6(1 - \nu^2)\alpha F_1][1 + 2(1 - \nu^2)\alpha^3 F_2]} \end{split}$$

Derivation of Mathematical Models

- Updating the stiffness matrix of the frame by modifying its eigendata.
- Each element stiffness matrix has order six and rank three:
 - The strain modes occupy the same range as their FE counterparts.
 - Symmetry of element can be preserved in modal domain.

In general, it may be defined using six parameters:

$$\mathbf{K}^{\mathbf{e}} = \mathbf{U}_{\boldsymbol{\theta}} \mathbf{R} \mathbf{\Lambda} \mathbf{R}^{T} \mathbf{U}_{0}^{T} = \mathbf{U}_{0} \begin{bmatrix} k_{11} & k_{12} & k_{13} \\ k_{22} & k_{23} \\ k_{33} \end{bmatrix} \mathbf{U}_{0}^{T},$$

where

$$\mathbf{U}_{0}^{T} = \begin{bmatrix} 0 & \alpha & 0 & 0 & -\alpha & 0 \\ 2\beta & \beta & 0 & -2\beta & \beta & 0 \\ 0 & 0 & \alpha & 0 & 0 & -\alpha \end{bmatrix}, \quad \begin{array}{c} \alpha = \sqrt{2}/2 \\ \beta = \sqrt{10}/10 \end{array}$$

Derivation of Mathematical Models

- The diagonal terms k₁₁, k₂₂ and k₃₃ represent, respectively, the effects of bending, shear and twisting modes in the element,
- The off diagonal terms, k₁₂ k₁₃ k₂₃ account for the coupling effects between these modes.
- The first strain mode of the element is symmetric, while the second and third modes are antisymmetric.
- Thus for any symmetrical frame element, i.e. not a joint element, k₁₂ and k₁₃ must be zero.

Mode	Predicted	LS	Adjusted	Measured	
No.	by FEM	Solution	Solution		
Rigid	0	0	0	D	By requiring simila
body	0	0	0	0	elements have
modes	0	0	0	0	similar models,
1	255.8	226.8	226.8	226.8	
2	277.5	275.2	275.2	275.2	
3	581.3	537.4	537.4	537.4	
4	911.3	861.9	862.5	861.5	
5	1049.4	918.8	968.3	974.8	

Derivation of Mathematical Models

Derivation of Mathematical Models

IUST ,Modal Testing Lab ,Dr H Ahmadian

Salntroducing a design change

- Adding a lumped mass at coordinate 6 and grounding the structure from this coordinate using a spring.
- This modification shifts the fourth mode of the structure below 700 Hz.
- Followings show the predictions of different models superimposed on the modified structure response.

Conclusion

- The success of updating procedures depended on the way the model parameters are selected.
- Updating the model by adjusting all the (non-zero) entries yields a model consistent with the test data, but the model may not correspond to a physical structure.
- Adjusting only the physical parameters does not produce a model consistent with the test data.
- The answer appears to lie in defining a generic model for each element and minimizing the error function by adjusting the acceptable model parameters.

Modal Testing (Lecture 22)

Dr. Hamid Ahmadian

School of Mechanical Engineering Iran University of Science and Technology ahmadian@iust.ac.ir

Coupled & Modified Structure Analysis

- Coupled & Modified Structure Analysis (Section 6.4)
 - Structural Modifications
 - Coupled Structures
 - Sub-structuring

Derivation of Mathematical Models

$$X_A = H_A(\omega) F_A, \qquad X_C = X_B = X_A,$$
$$X_B = H_B(\omega) F_B, \qquad F_C = F_B + F_A.$$
$$H_C^{-1} = H_B^{-1} + H_A^{-1} = Z_A + Z_B$$

Derivation of Mathematical Models

- Extention to the case where several DOFs involved in the coupling process,
 - No other DOFs are included in the analysis

$$\begin{split} H_{C}^{-1} &= H_{B}^{-1} + H_{A}^{-1}, \quad H_{C}^{-1} = H_{A}^{-1} \left(I + H_{A} H_{B}^{-1} \right), \\ H_{C}^{-1} &= H_{A}^{-1} \left(H_{B} + H_{A} \right) H_{B}^{-1}, \\ H_{C} &= H_{B} \left(H_{B} + H_{A} \right)^{-1} H_{A}. \end{split}$$

A more efficient formula from the numerical viewpoint.

Derivation of Mathematical Models

An appropriate form for modification applications:

$$\begin{split} H_{C} &= H_{B} \big(H_{B} + H_{A} \big)^{-1} H_{A}, \\ H_{C} &= \big(H_{A} + H_{B} - H_{A} \big) \big(H_{B} + H_{A} \big)^{-1} H_{A} \\ H_{C} &= H_{A} - H_{A} \big(H_{B} + H_{A} \big)^{-1} H_{A}. \end{split}$$

Derivation of Mathematical Models

The general case:

Derivation of Mathematical Models

FRF Methods of Coupled **Structure Analysis** $H_C^{-1} = H_B^{-1} \oplus H_A^{-1}$ $Z_{C} = Z_{A} \oplus Z_{B}$ $Z_{C} = \begin{bmatrix} Z_{\alpha\alpha}^{A} & 0 & Z_{\alpha c}^{A} \\ 0 & Z_{\beta\beta}^{B} & Z_{\beta c}^{B} \\ Z_{c\alpha}^{A} & Z_{c\beta}^{B} & Z_{cc}^{A} + Z_{cc}^{B} \end{bmatrix}$

Derivation of Mathematical Models

$$H_{C} = H_{A} - H_{A} (H_{B} + H_{A})^{-1} H_{A}.$$

$$H_{C} = \begin{bmatrix} H_{\alpha\alpha}^{A} & H_{\alpha c}^{A} & 0 \\ H_{\alpha\alpha}^{A} & H_{c c}^{A} & 0 \\ 0 & 0 & H_{\beta\beta}^{B} \end{bmatrix}$$

$$- \begin{cases} H_{\alpha c}^{A} \\ H_{c c}^{A} \\ -H_{\beta c}^{B} \end{cases} \begin{bmatrix} H_{c c}^{A} + H_{c c}^{B} \end{bmatrix}^{-1} \{ H_{c \alpha}^{A} - H_{c c}^{B} \}$$

Derivation of Mathematical Models

Derivation of Mathematical Models

Simplified Expressions for SDOF Connections

- What will be the changes to the structure's dynamic properties if a specific modification is applied at a given point?
- These situations tend to be concerned with:
 - Applications of relatively simple modifications
 - To identify the best places to introduce modifications in order to bring about desired changes to the original structure's performance.

Derivation of Mathematical Models

Simplified Expressions for SDOF Connections

Derivation of Mathematical Models

Modal Analysis of Coupled and Modified Structures

 $[M_A]_{N_A \times N_A} \{ \ddot{\mathbf{x}}_A \} + [K_A] \{ \mathbf{x}_A \} = \{ f_A \}$ $[M_B]_{N_B \times N_B} \{ \ddot{\mathbf{x}}_B \} + [K_B] \{ \mathbf{x}_B \} = \{ f_B \}$

Forces present at the connection DOFs

$$\begin{bmatrix} \mathbf{I} \end{bmatrix}_{m_A \times m_A} \left\{ \ddot{\mathbf{p}}_A \right\} + \begin{bmatrix} \omega_A^2 \\ \omega_A^2 \end{bmatrix} \left\{ \mathbf{p}_A \right\} = \begin{bmatrix} \Phi_A \end{bmatrix}_{m_A \times m_A}^T \left\{ f_A \right\}$$
$$\begin{bmatrix} \mathbf{I} \end{bmatrix}_{m_B \times m_B} \left\{ \ddot{\mathbf{p}}_B \right\} + \begin{bmatrix} \omega_B^2 \\ \omega_B^2 \end{bmatrix} \left\{ \mathbf{p}_B \right\} = \begin{bmatrix} \Phi_B \end{bmatrix}_{m_B \times m_B}^T \left\{ f_B \right\}$$

$$m_A, m_B < N_A, N_B$$

Derivation of Mathematical Models

Modal Analysis of Coupled and Modified Structures

$$\begin{bmatrix} \boldsymbol{I} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{I} \end{bmatrix} \begin{bmatrix} \ddot{\boldsymbol{p}}_{A} \\ \ddot{\boldsymbol{p}}_{B} \end{bmatrix} + \begin{bmatrix} \boldsymbol{\omega}_{A}^{2} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\omega}_{B}^{2} \end{bmatrix} \begin{bmatrix} \boldsymbol{p}_{A} \\ \boldsymbol{p}_{B} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\Phi}_{A}^{T} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\Phi}_{B}^{T} \end{bmatrix} \begin{bmatrix} \boldsymbol{f}_{A} \\ \boldsymbol{f}_{B} \end{bmatrix}$$
$$\begin{cases} \boldsymbol{f}_{A} \\ \boldsymbol{f}_{B} \end{bmatrix}_{(n_{A}+n_{B})\times 1} = \begin{bmatrix} \boldsymbol{K}_{CC} \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_{A} \\ \boldsymbol{x}_{B} \end{bmatrix} = \begin{bmatrix} \boldsymbol{K}_{CC} \end{bmatrix} \begin{bmatrix} \begin{bmatrix} \boldsymbol{\Phi}_{A} \end{bmatrix} & \boldsymbol{0} \\ \boldsymbol{0} & \begin{bmatrix} \boldsymbol{\Phi}_{B} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \boldsymbol{p}_{A} \\ \boldsymbol{p}_{B} \end{bmatrix}$$
$$\begin{bmatrix} \boldsymbol{I} \end{bmatrix} \begin{bmatrix} \ddot{\boldsymbol{p}}_{A} \\ \ddot{\boldsymbol{p}}_{B} \end{bmatrix} + \begin{pmatrix} \begin{bmatrix} \boldsymbol{\Phi}_{A}^{T} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\Phi}_{B}^{T} \end{bmatrix} \begin{bmatrix} \boldsymbol{K}_{CC} \end{bmatrix} \begin{bmatrix} \boldsymbol{\Phi}_{A} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\Phi}_{B} \end{bmatrix} + \begin{bmatrix} \boldsymbol{\omega}_{A}^{2} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\omega}_{B}^{2} \end{bmatrix} \begin{pmatrix} \boldsymbol{p}_{A} \\ \boldsymbol{p}_{B} \end{bmatrix} = \{ \boldsymbol{0} \}$$

Derivation of Mathematical Models

Modal Analysis of Coupled and Modified Structures

- One of main drawbacks of this approach is the exclusion of the higher modes,
 - the modal truncation problem
- The effect of out-of-range highfrequency modes can be approximated by residual terms which are essentially damped springs.