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@ Introduction

= The measurements techniques used for
modal testing are discussed.:

= Response measurement only
= Force and response measurement
= The 2" type of measurement
techniques Is of our concern:
= Single-point excitation( SISO/SIMO)
= Multi-point excitation (MIMO)
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Test Planning

Objective of the test
= Levels according to Dynamic Testing Agency:
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@Test Planning

= Extensive test planning iIs required
before full-scale measurement:
= Method of excitation
= Signal processing and data analysis
= Proper selection of pickup points
« Excitation location
= Suspension method
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@Quality of measured data

= Signal quality
« Sufficient strength and clarity/noise free
= Signal fidelity
= NO cross sensitivity
= Measurement repeatability
= Measurement reliability

= Measurement data consistency,
Including reciprocity
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@ Basic Measurement System

= An excitation mechanism
s A transduction mechanism
= An Analyzer

Spectrum Analyzer
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@ Basic Measurement System

s Source of excitation = Transducers
signal: = Condition Amplifiers

= Sinusoidal . Analyzers
= Periodic (with specific =

freq. content)
= Random
= Transient

= Power Amplifier
= EXxciter
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@ Structure Preparation

= Free Supports

= Grounded Support
= Loaded Support

= Perturbed Support
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@ Free Supports

= Theoretically the structure will possess 6 rigid
body modes @ O Hz.

= In practice this is provided by a soft support

= Rigid body modes are less then 10% of strain
modes

= Suspending from nodal points for minimum
Interference

= The suspension adds significant damping to the
lightly damped structures
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ﬁa%

= Suspension wires,  _
should be normal tog| . |2
the primary R U
vibration direction ‘e Ead s

= The mass and
inertia properties
can be determined
from the RBMSs.
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Free Supports

Ailr Force Shroud Payload Support Module| Molor
Adapter
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s¢bs Free Supports
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@ Grounded Support

= The structure Is fixed to the ground at selected
points.

= The base must be sufficiently rigid to provide
necessary grounding.
= Usually is employed for large structures
= Parts of power generation station
= Civil engineering structures
= Another application is simulating the operational
condition
= Turbine Blade

= Static stiffness can be obtained from low frequency
mobility measurements.
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@ Loaded Support

= The structure is connected to a simple
component with known mobility

= A specific mass

s [ he effect of added mass can be removed
analytically

= More modes are excited in a certain
frequency range compared to free suspension

= The modes of structure are quite different
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:¢bs Perturbed Support

= The data base for the structure can be
extended by repetition of modal tests for
different boundary conditions

n
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Perturbed Support
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@ Excitation of the structure

= Various devices are available for
exciting the structure:
= Contacting
Mechanical (Out-of-balance rotating masses)

Electromagnetic (Moving coil in magnetic field)
Electrohydraulic

= Non-Contacting
Magnetic excitation
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@ Electromagnetic Exciters

= Supplied input to the shaker is converted to
an alternating magnetic field acting on a
moving coill.
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@ Electromagnetic Exciters

= There is a small difference between the force
generated by the shaker and the applied
force to the structure
= The force required to accelerate the shaker
moving
= The force required to excite the structure
sharply reduces near the resonance point,

= Much smaller than the generated force in the
shaker and the inertia of the drive rod

= Vulnerable to noise or distortion
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Attachment to the structure

= Push rod or stingers:

= Applying force In
only one direction

=« Flexible drive
rod/stinger
Introduces its own
resonance into the
measurement.
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Hammer or Impactor
Excitation
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@Other excitation methods

= Step Relaxation/sudden release
= Charge/Explosive impactor
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@ Moving Support

= Corresponds to
grounded model

= Only responses are
measured

s When the mass
properties are known, '
the modal properties can N4
be calculated from Wi
measured data

Response Function Measurement
Techniques IUST ,Modal Testing Lab ,Dr H Ahmadian




Moving Support

\
b
-
|}
. B

Techniques IUST ,Modal Testing Lab ,Dr H Ahmadian

Response Function Measurement



Modal Testing

(Lecture 12)

Dr. Hamid Ahmadian

School of Mechanical Engineering
Iran University of Science and Technology
ahmadian@iust.ac.ir



@Digital Signal Processing

= Introduction

» Basics of Discrete Fourier Transform
(DFT)

= Aliasing

= Leakage

= Windowing

= Filtering

= Improving Resolution
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@ Introduction

= The measured force or

accelerometer signals L
are in time domain. T N N\
= The signals are RS

digitized by an A/D L L
converter | \M M
= And recorded as aset - l" o OLJL TR
of N discrete values R
evenly spaced in the i

period T

=
o

L=}

r = Ll
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@ Basics of DFT

= The spectral properties of the recorded
signal can be obtained using Discrete
Fourier Transform/Series (DFT/DFS):

= The DFT assumes the signal x(t) is periodic
= In the DFT there are just a discrete
number of items of data in either form

There are just N values Xx,
The Fourier Series is described by just N values
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@ Basics of DFT

X()=x(t+T)

X(t) = % +>a, cos(w,t) +b, sin(e,t)

n=1
_2m
n — ?’
2 T
a, = = Lx(t) cos(a, t)dt
b = % [X(®sin(w,bat
or

x(t)= Y X e

N=—o0

_ 1 —iw,t
Xp = jox(t)e dt
X = X:
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X, = S, > a,cos(———)+b, (@)
2 & N
2 & 2k
an — Xk C S(—)
N &= N
N-1
b, =23 x sin(ZK)
N & N
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N-1 _
Xk — Z XneZmnk/N
n=0
N-1 _
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@ Basics of DFT

= The sampling frequency:
1 N 2x 27N
fS — — : a)S e —
t. T t T

S S
Nyquist Frequency

= 1he range of frequenc ectrum:
ge of freq /yi)p/

. . 7N
fmax = T On = T
2 2 T
= The resolution of frequency spectrum:
Af =£,Aa) =2—7[
T T
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@ Basics of DFT

= There are a number of features of DF
analysis which if not properly treated,
can give rise to erroneous results:
= Aliasing

Mis-interoperating a high frequency component
as a low frequency one

= Leakage
Periodicity of the signal
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@Aliasing

= Digitizing a ‘low’
frequency signal \ 0
produces exactly the < —
same set of discrete 2
values as result from
the same process

applied to a higher @, — @
frequency signal —

S
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@Aliasing

Compare:
K sin(2z(N — )L)
sin(27zpﬁ)<:> 4 P
S|n(27zk—@
_Sin(@
N

p<NJ
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Aliasing

= The solution to the
problem is to use an
anti-aliasing filter

= Subjecting the original
signal to low pass with
sharp filter

= Filters have a finite cut-
off rate; it is necessary to
reject the spectral range
near Nayquist frequency

o> (08—1.0)%

FRF Measurement Techniques

‘Ideal” anti-aliasing filter

Frequency
Real anti-aliasing filter

Transiticn Band
N,

AN
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@ Leakage

= A direct consequence of
taking a finite length of
time history coupled with
assumption of periodicity

= Energy is leaked into a

number of spectral lines
close to the true
frequency.
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@ Leakage

= T0o avoid the leakage there are number

of scenarios:
= Increasing the record time T

= Windowing

Multiply the time record by a function that is
zero at the ends of the time record and large In
the middle, the FFT content is concentrated on

the middle of the time record
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Windowing

= Windowing involves the imposition of a
prescribed profile on the time signal prior to
performing the FT

X'(t) = w(t) x x(t)

(@, —a, cos(w,t) + a, cos(w,t) +a, cos(2a,t) 0<t<T
<t<T,
w(t) = |- a, cos(3aw,t) + a, cos(4w,t)
0 elsewhere

%
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Windowing
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Windowing
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@Windowing

Function a, a, a, a, a,
Rectangular 1 - - - -
Hanning 1 1 - - -
Raser- 1 |1.298|0.244 |0.003| -
Bessel

Flat top 1 1.933|1.286 {0.388/0.032
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@Windowing
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@Windowing

Transient does nat
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@ Improving Resolution (Zoom)

= There arises limitations of inadequate
frequency resolution

= at the lower end of the frequency range
= For lightly-damped systems
= A common solution Is to concentrate all
spectral lines into a narrow band
=« Within . -f
= Instead of O-f

Mmax
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@ /Z00m

= Method 1:
= Shifting the frequency origin of the spectrum

X(t) = Asin(wt)
X'(t) = Asin(awt) x cos(w,..t)

)t +sin(w+ o, t]

min

Ar.
— E[Sln(a)—a)

= The modified signal is then analysed in the
range of O-(f

max—fmin)
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@ Z0oom

s Method 2:

= A controlled aliasing
effect

Applying a band pass [\
filter

Because of the
aliasing phenomenon,
the frequency
component between
f, and f, will appear
aliased between 0-(f,-

f1)
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Use of Different Excitation

@Signals

= Introduction

= Stepped-Sine Testing

= Slow Sine Sweep Testing
= Periodic Excitation

= Random Excitation

= Transient Excitation
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@ Introduction

= There are three different classes of
excitation signals used:
= Periodic
= Transient
= Random
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-ﬁk Introduction

s Periodic:

- Stepped Slne 25 riodic - Pse dnrandunlﬂ
= Slow sine sweep k ’
= Periodic b I T ‘ |
1t || | I i |I ;
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Introduction

= Transient: |

= Burst sine ol
= Burst random ‘;|
= Chirp J
« Impulse  © 02| ‘|
: b s
%
‘2-'::: Sl T Sk l
. .
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ﬁk Introduction

= Random: = o

= (true) random 15
= White noise d | )
1 | r’ﬁp l!ﬂ’
fibl
'w

AR L
“ \1 ‘ﬂ M “\ i ’|' | ';
i

=
o

Ampktude
o
Bl

~—1 2 3 4
Time [8]
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@ Stepped-Sine Testing

s Classical method of FRF measurement

= TO encompass a frequency range of
Interest, the command signal frequency Is
stepped from one frequency to another

= The excitation/response(s) are measured
(amplitudes and phase(s)) .

= It IS necessary to ensure that the steady-state
condition Is attained before the measurement.
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:b: Stepped-Sine Testing
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@ Stepped-Sine Testing

= The extent of unwanted transient
response depends on:

= Proximity of excitation frequency to a
natural frequency,

»« The abruptness of the changeover from
the previous command signal to the new
one,

= The lightness of the damping of nearby
modes.
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@ Stepped-Sine Testing

= An advantage

of SFepp_ed'Sme No. point Largest Error
testing Is the between % dB
facility of taking |—""s
measurement L 30
2 10 1

where and as
they are > : 2>

y 5 0.2
required. 3 1 0.1
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@Slow Sine Sweep Testing

= Involves the use of a sweep oscillator
= Provides a sinusoidal signal

= Its frequency Is varied slowly but
continuously

= |f an excessive sweep rate Is used then
distortions of FRF plot are introduced
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@Slow Sine Sweep Testing

= One way of
checking the aad
suitability of a
sweep rate Is to
make the
measurement
twice:

= Once sweeping up

= And the 2" time
sweeping down

True Curve
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= It is possible to
prescribe an
optimum sweep rate
for a given structure
taking Iinto account
Its damping levels
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Slow Sine Sweep Testing
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s¢bs Slow Sine Sweep Testing

= Recommended sweep rate:
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@Slow Sine Sweep Testing

= ISO prescribes
maximum linear and
log sweep rate
through a resonance

aS- Linear
S, <216x (¢ .w,)*Hz/min
Log
S, <310x({fw.)  Octaves/min
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@ Periodic Excitation

s A natural extension of the sine wave
test methods:

= TO use a complex periodic input signal
which contains all the frequencies of
Interest,

= The DFT of both input and output signals

are computed and the ratio of these gives
the FRF

= Both signal have the same frequency
contents
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@ Periodic Excitation

= Two types of periodic signals are used.:

= A deterministic signal (square wave)

Some frequency components are inevitably
weak.

=« Pseudo-Random type of signal

The frequency components may be adjusted to
suit a particular requirements-such as equal
energy at each frequency,

Its period is exactly equal to the sampling time
resulting zero leakage .
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@ Random Excitation

S
: H, (@) = SfXEZ));
S, (@) =|H (@)|" Sy (@) Sff
S, (@) = H(@)S4 (@)  H,(w) = SEZ;
S, (®) = H()S,; (w) , (w;f
a Hz(a))
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@ Random Excitation

= There may be noise on one of the two
signals

= Near resonance this is likely to influence
the force signal

= At anti-resonances it Is the response signal
which will suffer
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@ Random Excitation

= H, might be a better indication near
resonances while H, is a better indication
near anti-resonances:

Hl(C{)) — Sfx(a)) HZ(C()) — Sxx(a)) g Smm (6())

S (w)+3S,,(w) | Sy (@)

Auto-spectra of noise on the output signal

Auto-spectra of noise on the input signal
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@ Random Excitation

= A closer optimum formula for the FRF is
defined as the geometric mean of the two
standard estimates

= Phase Is identical to that in the two basic
estimates

H, (@) = /H,(0)H, ()
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@ Random Excitation

= Typical measurement made using random
excitation: Tl T —

nertance

|
o
o

{dB re 1 ms™/N)
~ 0N
o o
lflkl

0 100 20C
cy (Hz)
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Random Excitation

= Detalls from previous plot around a

Fesonance.
IM H,
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@ Random Excitation

= Use of zoom spectrum analysis:
= Improving the resolution removes the major

inertance [dB re 1 me™/
: 1

source of low coherence
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= Effect of averaging:

L]
o

FRF (dB)

-60

COHERENCE

0

FRF Measurement Techniques

Random Excitation
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Transient Excitation

f(!l{
(a) {1

= The excitation
and the
response are
contained
within the

measurement o—

FREQUENCY (Hzl
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Transient Excitation

= Burst excitation signals:

= A short section of a continuous signal (sin,
random, ...) followed by a period of zero wave.

Burst Excitation 107 Respanse from Burst Excitation
= 5 ]

2.5

i |
| [
g |

2
| 1
L

=]

Amplitude

II N L
241

|||I B |
3l [

2 | 4 \ |

. : -5 i .
. 50 2 4 5] 8 4] 2 4 6 g
Time [5] Time [5]
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-;@- Transient Excitation

= Chirp excitation:

= The spectrum can be strictly controlled to be such
within frequency range of interest

Chirp Excitation Responsea from Chirp Excitation

|1 I |lI
| I A
| i N
il (11 (! -
b= kilndh 4 hphoa
BENENEN L L i =L
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| [T a.
[ i b

- ; 0015 : |
0 2 4 6 8 0 2 4 8 8

Time [8] Time [3]

FRF Measurement Techniques IUST ,Modal Testing Lab ,Dr H Ahmadian



= Impulsive excitation
by Hammer:

= Different impulsive
excitations

= Signals and spectra
for double hit case
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Transient Excitation
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@ Transient Excitation

= Impulsive excitation by Shaker:
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RESPONSE FUNCTION
@ MEASUREMENT TECHNIQUES

x 3.9 Calibration
s 3.10 Mass Cancellation
s 3.11 Rotational FRF Measurement

s 3.12 Measurement on Nonlinear
Structures

= Effects of Different Excitations
= Level Control in FRF Measurement
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@ Calibration

= In all measurement systems it Is
necessary to calibrate the equipment.

= There should be two levels of
calibration:

= Absolute calibration of individual
transducers

= The overall sensitivity of instrumentation
system
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Calibration

Calibration mass
Force gauge Accelerometer

= The overall system
calibration

= The scale factor should
be checked against
computed factor using
manufacturers stated
sensitivity

-20 -

—"bc.;{fv‘—ﬂ—w-———-——'——"—'-‘w

[£] (Voltsivolt dBre 1)

= Should be carried out e
before & after each test * =f
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Mass Cancellation

= Near resonance the actual applied force
becomes very small and is thus very prone to
Inaccuracy.

= Some applied mass is used to move
additional transducer mass

X .
o = = — required
f. =1, —m'% !
X
a,, = —— —> measured

M
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@ Mass Cancellation

s Added mass to be
cancelled and the
typical analogue S
circuit | IS8,
= At deriving point a
relation between
measured and _, =

F meas

required FRF's can =~ i A
be obtained ,, S ,-,

i

A%
\
N\
X
[
3
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@ Mass Cancellation

Re(F.) = Re(F,, ) —m"Re(X)
Im(F,) = Im(F,,) —m"* Im(X)
or
Re(l/c;)=Re(l/e,,) — M’
Im(1/ ;) =Im(1/ e, )
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@Rotaﬂonal FRF Measurement

= Measurement of rotational FRFs using two or
more transducers:

_ Xat+Xg

i** %{91‘1 . %o 7

%‘I\ GL@G 9 — QA_I_HB
‘ £ I ‘ Y \ 0o L

FRF Measurement Techniques IUST ,Modal Testing Lab ,Dr H Ahmadian




@Rotaﬂonal FRF Measurement

= Application of moment excitation

| £ d5.1'
1 I

T | X
< | X
T
< |

Mo Y

F
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Measurement on Nonlinear

@ Structures

= Many structures, especially in vicinity of
resonances, behave in a nonlinear way:

= Natural frequency varies with position
and strength of excitation

= Distorted frequency responses (near
resonances)

= Unstable or unrepeatable data

FRF Measurement Techniques IUST ,Modal Testing Lab ,Dr H Ahmadian



Measurement on Nonlinear

Structures

= Examples of
different nonlinear
system response for
different excitation
levels
= Softening effect
= Increase in damping

FRF Measurement Techniques

Mobility (dB I"E"EIT‘-Q}"N

=T 3 el

v
e
"._
a
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s FRF measurement
on nonlinear
system:

= Sinusoidal Excitation

Compatible with
theory

= Random Excitation
Linearized system

= [ransient Excitation

FRF Measurement Techniques

Effects of Different Excitations

1rns':/NJ .

Mobility (dB re

o) T

N I —

-25 | I |
1

(52}
(=3}
-3
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@ Effects of Different Excitations

= Most types of nonlinearity are amplitude
dependent:

= A linearized behaviour is observed when
the response level is kept constant

= The obtained linear model is valid for that
particular vibration level
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Level Control in FRF

@ Measurement

= Response level : ; & 4 |
control, i & B

: | -1 L T
= Best linear representation = .. - - v . v T
(non”nearities are T —— R R .
displacement dependent) | ;éf;. i

1§ L) |
= Force level control Y - I\
= Or no level control ]

o ' z 3 . 5 ] | ? 1 4 5 '] TN S R GElE
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Level Control iIn FRF
Measurement

= Inverse FRF plots for a SDOF
= Real part is expected to be liner wrt frequency squared
= Imaginary part should be linear/constant

= Any deviation from the expected behaviour can be detected
as nonlinearity in the system

A
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Level Control in FRF

@ Measurement

= Use of Hilbert transform to detect non-linearity

= The Hilbert transform express the relations between
real and imaginary parts of the Fourier Transform

6l ) ~6t (b) ]
_J $12
szr 4
o > al
> 8} ':B
= =% &k
= 4} o >
E - .1-- i 1 — =
@030 0% %0 0 o0 n &

_8f s |

24 g

3 E’-’

> 5

;L' B'f. i .

%Bh 1 i 1 1 i E_BF 4 o - 2 —_— ‘
0 40 S0 60 70 80 0 S0 60 70 60

FREQUENCY (RADS/S) _FFE{].JENCY (RADS/S!
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@ Notes: Hilbert Transform

= The Hilbert transform express the
relations between real and imaginary
parts of the Fourier Transform
« Fourier Transform is considered to map

functions of time to functions of frequency
and vice versa

« Hilbert transform map functions of time or
frequency to the same domain

FRF Measurement Techniques IUST ,Modal Testing Lab ,Dr H Ahmadian



@ Notes: Hilbert Transform
s For causal functions: h

g(t) — geven (t) + godd (t)1
g(t)/2,t>0
g(ft)/2,t<0

g(t)/2,t>0 +

Boas = g 2.t <0 #
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@ Notes: Hilbert Transform

ReG(®) = 3{Juen (1)} = 3{oq (t) x SiON(L) }
|mG(C()) = S{godd (t)} — S{geven (t) X Slgn(t)}’

. . i .
Since 3{sign(t)} = — based on convolution theorm:
T

. —1
ReG(w) =i ImG(w)*—,
T
— 1
IMG(w) = ReG(w) *—.
T
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@ Modal Parameter Extraction

= Introduction

= Preliminary checks of FRF data
= Visual checks
= Assessment of multiple-FRF data set using SVD
= Mode indicator functions

= SDOF modal analysis methods
= Peak amplitude method
= Circle fit method
= Inverse or line fit method
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Introduction

= Some of the many available procedures for
fitting a model to the measured data are
discussed:

= Their various advantages and limitations are
explained,

= No single method is best for all cases.
= This phase of the modal test procedure is

often called modal parameter extraction
or /modal analysis

Modal Parameter Extraction Methods IUST ,Modal Testing Lab ,Dr H Ahmadian



@ Introduction

= Types of modal analysis:
=« Frequency domain (of FRFs)

= Time domain (of Impulse Response
Function)

= The analysis will be performed using
= SDOF methods, and
= MODF methods.
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@ Introduction

s Another classification of methods
relates to the number of FRFs used In
the analysis:

= Single-FRF methods, and

= Multi-FRF methods:

Global methods which deals with SIMO data
sets

and Polyreference which deals with MIMO data
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@ Introduction

= Difficulty due to damping:

= In practice we are obliged to make certain
assumption about the damping model,

= Significant errors can be incurred in the
modal parameter estimates as a result of
conflict between assumed and actual
damping effects.

= Decision on the issue of real and complex
modes.
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Preliminary checks of FRF

@ data

= Low-frequency asymptotes,

= Stiffness-like characteristics for grounded
structures

= Mass-line asymptotes for free structures
= High-frequency asymptotes,
« Mass line or stiffness line

s Incidence of antiresonances

= For a point FRF there must be a resonance
after each antiresonance

Modal Parameter Extraction Methods IUST ,Modal Testing Lab ,Dr H Ahmadian




Preliminary checks of FRF

@ data

= Mode Indicator Functions:

= The Peak-Picking Method

Sum of amplitudes of all measured FRFs to
locate the resonance points
= The frequency-domain decomposition
method

Defined by the SVD of the FRF matrix
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Case Study: MODES OF A
ﬁk RAILWAY VEHICLE
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:¢bs Case Study: Test set-up
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Case Study: Sensor Locations

i 12000mm [
3ﬂ§nfnm | —— 2178mm— — 3822mm —
| & ® & [ ] &
1780mm }‘O'__ _,__.,,..,0_ .._____0___... ...O.....__ i i
_ ®& O O
i= 1 2 3 4 b

1H2 O Vertical accelerometer
Cross—secuon

) iH1

V2 V1 @ Latecalaccelerometer

@ Both lateral and vertical accelerometers

Modal Parameter Extraction Methods IUST ,Modal Testing Lab ,Dr H Ahmadian



Case Study: Sensor Locations
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s¢hs Case Study: Excitation

BT e

™ ) 3

Ll

| I ‘ |

£Sn
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@Case Study: Excitation

f & BN
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Case Study: Measurements
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@ The Peak-Picking Method

= Sum of amplitudes of all measured FRFs to
locate the resonance points

|
1

Sum of Anto Spectrums

/U

:

10 1 20 25 30

=
I'requency (I1I1=)

9

# Mode

1 2

3

4

5

6

7

8

24.67

(Hz) Frequency

2.67 4.67

5.33

8.33

12.33

13.33

14.00

16.00
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The frequency-domain
@ decomposition method

= A more advanced method consists of
computing the Singular Value
Decomposition of the spectrum matrix.

= The method is based on the fact that
the transfer function or spectrum matrix
evaluated at a certain frequency Is only
determined by neighboring modes.
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The frequency-domain
@ decomposition method

H(o)]=|Hy(@)} {Ha@)} ... {H, ()]
H(0)]=[U (o) [Z(@) ]V ()]
MIF (0)]=[Z(0)] [E(w)]

A2 e 1] Advaneed Mode Indeale

File Display Dislog Tools Mindow Help

O wesR DE@Ealnl NE R 8
omplex Mode Indicator Function

Type complex 10 4
Track History 10

Peaks auto
Curve il
Auto Sens

B Order

10°}
CI
o
=
B

ll “G's " 1 1 1 1 " 1
200 400 600 800 1000 1200 1400 1600
equency (Hz)
EHE” J

Setup | CMIF | EMIF | MAC | Mode Tracking | EnhancedFRFs | Consistency | Gicunfian
I N
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SDOF modal analysis

methods

= The SDOF assumption

(b) |
g ] ™ gw)

Real Real

" — :
J s=1 C()SZ—(()-FIUSCOSZ
A
a. (o) = _ -+
U ot - o+inof >
S£r
Aj
ay (w) = — + By

Modal Parameter Extraction Methods

~ o? —a)+lf75 : WKJM
Img
;

a ()
Real

.......
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SDOF modal analysis

@ methods

= SDOF modal analysis methods
= Peak amplitude method
= Circle fit method
= Inverse or line fit method
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SDOF modal analysis
@ methods: Peak Amplitude

= Individual resonance peaks are
detected from the FRF
= The frequency of the maximum responses

IS takes as the natural frequency of that
mode,

= The peak amplitude and the half power
points are determined,
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SDOF modal analysis

i

methods: Peak Amplitude

knowns = <

then =
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SDOF modal analysis
@ methods: Peak Amplitude

= Another estimate for \/\/\%\ T/
modal residue:

e

L.Jb i L
.

L

FaN

H| = (jmax(Re)|+|min(Re)|) "

A = nra)f(jmax(Re)Mmin(Re)\) | g) b (X

Reloc) *

‘ MX 3
Ladp
\A w \ ™
w \ MN
b
MN
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@ Modal Parameter Extraction

= Circle-fit method
= Properties of the modal circle
= Circle-fit analysis procedure
= Interpretation of damping plots
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@ Properties of the modal circle

= Assuming a system with structural damping
the basic function to deal with Is:
r Ajk
21— (% | ?) + i
w;(1- (0" lw;)+17,)
s Since the effect of modal constant iIs to scale
the size and rotate the circle, we consider:

a(w) = L
ol (1- (0’ o)) +in,)
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Properties of the modal circle

= Finding the natural frequency:

Im(cc) Im (o)
; Re loc) Re [ac)
U mio : \""‘
0
: ; B 2
tany = T >, tan(90—y) = tan(g) = I-(o/o)
1—(60/(()r) 2 ur

2 . 2 2
:wzzwf(l—nrtan(g)):dw _ I, 1-(o/ o)
2 dé 2 7,
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Properties of the modal circle

2
2 2 2
do” _ no 1+ 1-(w/ w,) N 1
dé 2 n, (sweep rate)
d (de’
=0.@ o=w, = Natural frequency
da) d9 jm L
Re __e__
dH 2 - l;.— %. :/ \‘\
> = ——— = Damping Eolx p i x,
do D=0, 7] Oy E&J ’x’ﬁ \ ;
‘Im{ocl - Im (ec) R'_E_‘E_Cl
i — 1 \ oo
:x\ :"’.'. 5" E
'; :012 ".\.5.91. :5 86
15\1!. i ?}(lii 5:{_3":5 896 Hz
i) "

rl" =0.015
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Properties of the modal circle

(

1 . 2
tan(gb) — (a)b/a)r) , ,
J 2 77r — 77 — a)a B a)b
2 r
~1 %) O
tan(Zz) = (@ /@) o? (tan(%2) + tan(2))
2 7, 2 2
fory, <2%...3% 1By j) M . \\ :
2 a)a —w § ’“}w_//» V] x\\\ ”"’ i ‘% )a
— 77I‘ = (9 b) 9 o mmﬂ;.i ) ] %\\%%‘_;WXA
o, (tan(za) + tan(zb))

whené, =6, =90

O-FITFORMODE 2
NAT. FREQUENCY (Hz) = 18550
% STRUCTURAL DAMPING = 18632
MOD CONST MAG (1/Mass) = 0.873E01
MOD CONST PHASE (o) = 32752
% RADIUS VARIATION = &£75

% DAMPING VARIATION = 11121

r

W, — W,
=1, =
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@ Properties of the modal circle

= The final property relates to the diameter of
the circle (D):

D B rAjk
jk 2
17,0,

I
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@Circle—fit analysis procedure
o "

= Select points to - pr—
be used ) |

= Fit circle,
calculate quality
of fit

s Locate natural
frequency,

x '!-.-..__"
7 | T
H " ~
rd
/
"

Reloc)
- E——

]
1 e5.94
\hf -
‘\.5‘.32 \ o
/::‘:5.396 Hz
qr:DD'lS

$5.86
\ 2
#5.88

5.90
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Circle-fit analysis procedure

= Obtain damping

estimates T . 1 o ™ [T

l' A f ™
- M Ifjl .rflll i ,J\ ,.-"l R £ \ \\c‘
g M A/ N = / .
= Calculate 34 AN WY LI N Y
E L VA " )a

multiple I -

damping
estimate and

scatter =
E )
MOD CONST PHASE (o) = 32752

s Determine modal = Ut rEson -
constant module = L
and argument.

MOD CONST MAG (1/Mass) = 0.873E-01
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Interpretation of damping
plots

= Noise may contribute
to the roughness of
the surface.

= Systematic distortions
due to:
= Leakage

= Erroneous estimates for
natural frequency

= Nonlinearity
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@Circle-ﬁt

= Minimizing the algebraic distance:
(x+a)’+(y+b)’ =R’
X*+y°+Ax+By+C =0.

_east Squares Solution :

X +y: %oy 1)1
X, +Y, X, Y, 1[|A

: ¢ :||B
XI+yEox, Y, 1]1C

n 4 J
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Circle-fit

= Minimizing the geometric distance:

(X, +a)° +(x, +b)* =R?

ru\ 2 rul\

d?=| X, =4 “H-u, |,Let U={u,;
UZJ

ku3

minZn:di(U)2
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Circle-fit

d=d +oAps...
op
min|d| ~ min|(d, +%Ap||
op
| U, — Xy U, — X, _1_
od, | VX)) =) ()’
o _ ;
8p U — Xm U, — Xm2 1
_\/(ul o Xm1)2 + (uz - Xm2)2 \/(ul - Xm1)2 + (uz B Xm2)2
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@ Circle-fit

= Least-Squares Fitting of

Circles and Ellipses By: walter

Gander, Gene H. Golub, and Rolf
Strebel

= You may find it in ftpmech.iust.ac.ir
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@ Home work 1

= Determine the modal properties of the
beam tested In the lab
= Frequency range of 0-400Hz
Natural frequencies
Damping (carpet plots)
Mode Shapes

s Due time 87/2/22
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@ Importing the ASCII files

FRF=
. 34000E-01
 BE000E-02
A3000E-02
. 30000E-01
. B1000E-01
» S9000E-01

-1
58

4
15

1z
135

[...

= = e D

o o o o

% 24-Fep-106 14:14:03
% NONE
% 24-Fep-10 14:14:03
% EXCITATIONEESFONIE
% MNONE

g0l

Lo T o T s N v |

LBZ2000E-05
« JE2000E-01
» S5000E-01
E2000E-01
10000E-01
»23000E-01

0 NOMNE 1 3 NONE 1
1 0.00000E+00 5.00000E-01  0O.00000E+00
0 NOMNE HNONE
0 NOMNE NONE
0 NOMNE NONE
0 NONE NONE
-1.73000E-01 &.08000E-01 -6.38000E-02 2.Z9000E-01
-6.17000E-03  &.3534000E-01 -2.Z25000E-02 2.83000E-01
3.0Z000E-01 5. 58000E-01 4.,29000E-01  3.53000E-01
4,29000E-01  1.84000E-01 3.97000E-01  1.33000E-01
3.32000E-01  1.31000E-01 3.51000E-01 1.4=2000E-01
J.65000E-01  1.18000E-01 3.70000E-01  1.05000E-01
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@ Importing the ASCII files

1.64000E+01  2,10000E+00 1.45000E+01 1.63000E+00 1.30000E+01 1. 34000E+00
1.15000E+01 1,15000E+00 1.08000E+01 9.63000E-01  1.00000E+01 &.35000E-01
9.33000E4+00 7.51000E-01 &.74000E+00 6.71000E-01 &.Z23000E400 6.Z2Z1l000E-01
7.79000E+00 5.67000E-01 7.40000E+00 5.41000E-01 7.06000E+00 4. 96000E-0117;
% -1

FEF=[FEF(:,1)+i*FRF{:,2) FRF{:,3)+i*FRF{:,4) FRF(:,5)+i*FRF(:,6)]:

FEF=FRF';

FEF=FEF(:); 3 Figure No. 1

9 File Edit view Insert Tools ‘Window Help

semilogqy([0:.5:400],abs (FRFI1*180/pi); NEEE KAAs B8PS
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MDOF Modal Analysis in the
@Frequency Domain (SISO)

= In some cases the SDOF approach to
modal analysis is simply inadequate or
Inappropriate:
= Closely-coupled modes,

the natural frequencies are very closely spaced,
or

which have relatively heavy damping,
= those with extremely light damping
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MDOF Modal Analysis in the
@Frequency Domain (SISO)

= One step MDOF curve fitting methods:
= Non-linear Least Squares Method
= Rational Fraction Polynomial Method

= A method particularly suited to very lightly
damped structures

= Global Modal Analysis in Frequency
Domain

= Global Rational Fraction Polynomial Method
= Global SVD Method
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Non-linear Least Squares

@ Method

- A 1 1
ij(w|):H|:Z K >t ——

r=m a)rz o a)lz T i77ra)r Kr a)le r
g =H"-H,

\ The difference between
measurement and analytical
model

: ) dE
E = .Zw'g' o 0.,  O=AAkA, @, etC
=1
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Non-linear Least Squares

@ Method

= The set of obtained equations are
nonlinear

= No direct solution (iterative procedures)
= Non-unigueness of solution
= Huge computational load
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Rational Fraction Polynomial

@ Method

H(a)):i 2

2 2 .
a o —0 +200C,

bo + bl(la)) + bz(la))2 R b2N—1(ia))2N_l

) = T aiw) +a(iw)+ta,, (i0)?
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Rational Fraction Polynomial

@ Method

Order of model is selected
L _Dyrb(io) +b,(@) +-+by (0 )"
k a0+a1(ia)k)+a.2(ia)k)2 _|_..._|_a2m(iwk)2m k

or
ey = (b + By (i) + b, (10,7 ++-+ by (i0)*™)

“H, (8, +a,(iw ) +a,(im)? + -+ +a,, (io,)"")
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Rational Fraction Polynomial

@ Method

o
G
“H AL (o) (o)’ - (o)™} a, t-a,H, (o)™

\a2m—1,
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Rational Fraction Polynomial

@ Method

= A set of linear equations using each
Individual measured FRF Is formed.

= The unknowns a; and b, are obtained
using a least square solution.

= The modal properties are extracted
from obtained coefficients a and b..

= The analysis may repeat for a different
model order.
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@ Lightly Damped Structures

= In these structures it Is easy to locate
the natural frequencies,

= Its accuracy Is equal to the frequency
resolution of the analyzer

= The damping ratio Is assumed to be
Zero.

= The modal constants are obtained using
curve fittings.
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@ Lightly Damped Structures

N

H(w) = r ’k
rlw

The natural frequencies are known

HQ)| [(@2-7)" (022" - |[:Ax
JHE@Q) | _| (@2 -03)" (02-03)" |2 A

y . . . ¢ " )
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Global Modal Analysis In
@ Frequency Domain

s SO far each measured FRF Is curve
fitted individually,

= Multi-estimates for global parameters
(natural frequencies and damping)

= Another way Is to use measured FRF
curves collectively.

= Frequency and damping characteristics
appear explicitly.
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Global Rational Fraction
@Polynomial Method

s If we take several FRF's from the same
structure then the denominator
polynomial will be the same In every case.

= A natural extension of RFP method is to
fit all n FRFs simultaneously
= 2m-1 values of a, and,
= and n(2m-1) values of b,
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@ Global SVD Method
( H,, (a))\
o)), = ")

\ H nk (a))) nx1
= (@ hllio=s )l o + R (@)
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@ Global SVD Method

tH(@)j =[@],lio—s, )lin 1 fua + R
H (@)l =[@][s Tl )[n s+ R




@ Global SVD Method

{AH (a)i )}k

4

\

:AH (C‘)i )

= H (o)}, - H(@1 )




@ Global SVD Method

= Consider data from several different frequencies
to obtain frequencies and damping:

AH (@) ], = 0], [Ag (@)].,
AH (), ), =[], [s. Jag (@),

(K, ] —s.[aH, T Jz.}=0. [2)=[0]"
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@ Global SVD Method

The eigen-problem is solved using the SVD.

= The rank of the FRF matrices and eigenvalues are

obtained.

s Then the modal constants can be recovered from:

Modal Parameter Extraction Methods

( H j, (©1) oy — 81 )_1
| Hinlo2) |Gz -s)?
LH e (012) Ind _(im L—-8)"

(w1 - sg)

(fog —s9)™

-1

(i(’)L - sm)

-1

mAjk |
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MDOF Modal Analysis in the

@Time Domain

= The basic concept: Any Impulse Response
Function can be expressed by a series of

Complex Exponentials
2N

h, ()= A’ s =, (— Co+ i\/l—g“f )

r=1

= The Complex Exponential Series contain the
eigenvalues and eigenvectors information.

= The IRF Is obtained by taking inverse Fourier
transform of the measured FRF.
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@Complex Exponential Method

A, A
FRF = o (@ Sl
() = Zla) S, Ia)—Sf

2N A
or: a;(w)= Z

2N
IRF=  h,(t)= Z‘”Ajkesrt

=
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Complex Exponential Method

@(Single FRF)

2N 2N 2N
h(t) _ Z AreSrt — hl _ Z AreSr|At _ z Arvr|
r=1 r=1 r=1

h) [1 1 - 1A
, V, V, - o Vo A
<12 — V12 V22 coe “oo V22N S E >
\hq, _qu qu quN _ kAZN,
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Complex Exponential Method

@(Smgle FRF)

qo 0 1 | Al

1 ql 131 V V V2N A2
B v h, =10, V2 V2 o VAR
\ﬂq) h ﬁq) Vq Vq VZqN_\AzN,

Z,B,h,—ZA\IZO:,BV'
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Complex Exponential Method

@(Single FRF)

s The 5 are selected to be coefficients of the
polynomial:

Po+ BN + PN +--+ BV =0.

2N
q 2N q | Z/HivjI =0
Set:q=2N=> Bh =ZAj(Zﬂiv;j:>< e
i=0 j=1 i=0 lBihi -0
1=0
2N-1
/Bihi :_th
i=0
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Complex Exponential Method

@(Smgle FRF)

Z/Bihi = 2N

i=0
ho h1 hz th—1 ,Bo \ ( th \
hl hz hs th 131 h2N+1
: : : : oo oL o\

_th—1 th h2N+1 h4N—2_ \ﬁZN—l, \h4N—1,
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Complex Exponential Method

@(Single FRF)

A :
= The values V, =€ " and A, are obtained

from:
By+ BN + BN +---+ B,V =0.

\hZN—lj

1 1
\ﬁ M@
VAV

2N-1 2N-1
V& \/2

Modal Parameter Extraction Methods

1 _KAI\
Von || A

2N-1
) V2N | \AZN,
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Complex Exponential Method

@(Single FRF)

= Implementation Procedure:
= Order of modal model is selected,

= Modal model is identified using the defined
steps In previous slides,

= FRF is regenerated from modal information
and compared with the measured FRF

= The procedure repeated using another
order for the modal model until stable
results are obtained.
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@Stabilizaﬂon Diagram

Lp-n]

DY EMEEERERR R

|
=]
]
=
-
m o

=

GEREEHYIHEEEIYRY RS OSSE

-

Bbesf— 1
i
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Global Analysis In Time Domain
@ (Ibrahim Time Domain Method)

= The basic concept Is to obtain a unique
set of modal parameters from a set of
vibration measurements:

= Scaled (mass normalized) mode shapes
when the force is known,

= Un-scaled mode shapes when the force is
not measured.
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2m
X; (1) = Zl//ireSrt
r=1

) %) - Xl(tq)_ Vi Wi 0 Waiam | | €% e o @™
X (L) X(t) o X (E,) | VYa Ve 0 Vaonm y el .. ... @%b
_Xn (tl) X, (tz) e X, (tq)_ _Wnl W " l//n,Zm_ _eSthl eSthq

X =¥ ]x[A]
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@ Ibrahim Time Domain Method
= A 2nd set of egns:

2m
X (t, +At) = Zl//iresr reah
r=1

X |= 1% j<[A]

Modal Parameter Extraction Methods IUST ,Modal Testing Lab ,Dr H Ahmadian



@ Ibrahim Time Domain Method
(Al [¥]=|¥]

X|=|¥ X[A]\

GEANy

PN
[A] X [x [X ]+
| Parameter Extraction Methods IUST ,Modal Testing Lab ,Dr H Ahmadian
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@ Ibrahim Time Domain Method

Ay, j=e"" v, |

= Eigenvectors of matrix [A] are the mode
shapes,

= The natural frequencies and damping ratios
are obtained from eigenvalues of [A].
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= The basic concept: Any Impulse Response
Function can be expressed by a series of

Complex Exponentials
2N

h ()=, A8 s =o, (— £ +iyl- ;f)

r—1
(=1

= The Complex Exponential Series contain the
eigenvalues and eigenvectors information.

= The IRF is obtained by taking inverse Fourier
transform of the measured FRF.
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Complex Exponential
Method

N
@)
Tl

N—
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ﬁCompleX Exponential Method

N A Al
FRF = (0) =y —F—+ &
j () ;iw_s iw—S;
2N A
: _ L
Or : aik(w)_;ia)—sr
2N t
IRF = h, () =) A,e"
r=1
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Complex Exponential Method

ﬁ(smgle FRF) )

h(t) _ ZAresrt — h| _ ZAresrlAt _ ZArVrI

(L ) — -

N, 1 1 --. .. 1 1( Al“
L Vi Vo o Vo || A
4 f]2 F= V12 V22 “oo oo V22N 3 E >

n _qu qu V2qN_\A2N,

Wy
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Complex Exponential Method

ﬁ(Smgle FRF)

IBO\T rqo\ rﬂO\T—l 1 1 —rAlx
131 3 181 V1 Vz V2N Az
1B, sht=1p,t vf v; VAR
\qu) \hq \ﬂq) Vq Vq quN_\AZN,

Z,B,h, _ZA [Zﬂlvjj
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Complex Exponential Method

ﬁ(Smgle FRF)

s The 5 are selected to be coefficients of the
polynomial:

Po+ BN + PN +---+ BNV =0,

2N 9 _ ZIBIVJI
Set:q= ZNSLﬁ.h.—LA(L j

= = Zﬂlhl -
zilﬂ,h =—h,,
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Complex Exponential Method

ﬁ(smgle FRF)

2N -1

Z,Bi hi — _th

i=0

| ho h1 hz
h h, h

_h2N—1 h2N h2N+l

Modal Parameter Extraction Methods

ale ) r )
hons B h,\
h,, P1 Ny
) L=—d L
h4|\|—2_ kIBZN—l, \h4|\|-1,
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Complex Exponential Method

ﬁ(Smgle FRF)

= The values V; = e*™ and A, are obtained

from:
Bo+ BN+ BN +-+ B, V" =0.
(']O\ 1 1 1_(A1\
N, \,/1 \,/2 ‘e . \"/2N A‘z
T h, = V12 V22 V22,\| X
\h2|\|_1) _V12N—1 V22N—1 . . V22NN—1_ \AQN )
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Complex Exponential Method

ﬁ(Smgle FRF)

= Implementation Procedure:
= Order of modal model is selected,

= Modal model is identified using the defined
steps in previous slides,

= FRF is regenerated from modal information
and compared with the measured FRF

= The procedure repeated using another
order for the modal model until stable
results are obtained.
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The Least Squares
Complex Exponential
Method

1:
)]
®
m

—’
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The Least Squares Complex

vl' -_—rE = - . - -

ﬁExponentlal Method (LSCE)

= The LSCE is the extension of CE to a
global procedure.

= It processes several IRF's obtained
using SIMO method.

= The coefficients 3 that provide the
solution of characteristic polynomial are
global quantities.
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The Least Squares Complex

ﬁExponentlal Method (LSC-Ev)

h h hz h2N—1_ ,Bo (th\
h1 hz h3 th 181 th +1

TR -, or [h], {8} =1{n'},

_th—1 th h2N+1 h4N—2_ \ﬁZN—l, \h4N—1,

Extending to all measured IRFs

L] ({0
hi, h's, , 4 ,
Pl o i) = = ()= i T I ) e T

WL i,
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The PolyReference
Complex Exponential
Method (PRCE)
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The PolyReference Complex

ﬁExponentlal Method (PRCE)

s Constitutes the extension of LSCE to
MIMO.

= A general and automatic way of
analyzing dynamics of a structure.

= MIMO test method overcomes the
problem of not exciting some modes as
usually happens in SIMO.
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The PolyReference Complex

ﬁExponentlal Method (PRCE)

Considering g input reference points:

2N N
hjl(t) — Z r Aj]_esrt hjl(t) _ Z r Ajlesrt
521 A = Q ¢jr¢lr N r=1
hjz(t) = ; Aj zeSrt A=Wy A j2(t) _ Z rW21 rAjleSrt
r=1 W :& . —

: rkl & : :
2N
h () = Z;‘ A e \ h,, (t) Z W, Ae’

Modal Participation factor
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The PolyReference Complex

Exponential Method (PRCE)

hj1(t) — Z r Alles !
hjz(t) = Z rWZl rAjleSrt = {hj (t)}: [\N][em]{Ajl}

hjq (t) — Z qul rAjleSt

jl(t) 1 1 1 ] _eslt 0O --- 0 11 1Aj1 )
) JZ(t)>: 1\N21 2W21 2NW21 0 eSzt O < 2Aj1
\hjq (t), _1VVq1 2Wq1 2NWq1_ 0 0 ... e%' 2N Ajl
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The PolyReference Complex

&lts Exponential Method (PRCE)

ih, (O} =W]{A|
{qj(At)}: [\/Y][V]{Ajl}

thy (LA }= W]V ] A,
5o+ AW B [BIWIV F -+ 5. W1 ) [0} Laz 2
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The PolyReference Complex

ﬁExponentlal Method (PRCE)

51, )= (AW HA,.}
'ﬂl]{h,- (A= (B, W]V]{Ajl}
ol 0= 8, JW IV T

6], (Lav) =[5 W] (A,
>[5, Iy a0} Y s, WV
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The PolyReference Complex
Exponential Method (PRCE)

5, (kat=0, [a]=[1]

8], (kat)} =~ (Lab)}

— =~
Il —
= O

?\_
Il
o

h, (0) h; (at) h, (N, =D At)|
h (At} {h, (At . (NAt)}

[[/80] [/81] [:BL—l]]

1, (L-DAD} thLatf  {h((L+N,-2)A))
[, (At} fh(+nan} b ((L+ N —DAL]]
[BT] [hj]: [h;]
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The PolyReference Complex

ﬁExponentlal Method (PRCE)

T [hj-: [hj]

Considering for each response location j=1,...,p:

B ] (] - [h]]=[] (]~ ]
_BT_ [hT]: h{=>

B, ]= [ ][, T (i, Jin, T)

Knowing the coefficient matrix [B], we must now determine [V]
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The PolyReference Complex

ﬁExponentlal Method (PRCE)

Bl AW [ 1B WV ] -+ A JW V] =[o]
> A dw]v] =0

1 k=0
A UIGRREWACO IS
O — -
0 L
L L k
S-Sl Tw-o =] D [B ]V |W, j=1{0]
0 | k=0 i
0
SV - I8l W)~ o
0
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The PolyReference Complex

ﬁExponentlal Method (PRCE)

SIAIv |-

5,1+ 18] M1 18] VF -+ 18] MW, = w
Zop=the)
B R (RS

: ..._|_[IBL_1 {ZL_l} :_Vr{ZL—l}

(21} =V, W)=, (7,
{ZL } :VrL {Wr } =V, {ZL—l}
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The PolyReference Complex

ﬁExponentlal Method (PRCE)

An standard eigenvalue problem to obtain V.

__[:BL—l] -[B.] - -[A] _['BO]_(Z Z
ORI BB

oo e m el

The eigenvetors z, correspond to W,
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The PolyReference Complex

Exponential Method (PRCE)

Modal Parameter Extraction Methods

W

W][v]l

has IN/ TE
WV

{Ajl} Oor {H ,—}

VAL k=04...,L
W]

oy

W, i,

{Ajl}: [Wv ]+ {H ,—}
= The residue calculation is repeated for
all measured points, j=1,2,...,p.

}

9

h(kAt)
h,,(k At)

i, (k At))
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The PolyReference Complex

ﬁExponentlal Method (PRCE)

= The method provide more accurate modal
representation of the structure.

= [t can determine multiple roots or closely
spaced modes.

= Shortcomings:

= Sensitive to nonlinearities and any lack of
reciprocity in frequency responses,

=« Some difficulties in analyzing structures
with more than 5% viscous damping.
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Global Analysis in Time
Domain

(Ibrahim Time Domain

Method)
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Global Analysis in Time Domain
(Ibrahim Time Domain Method)

= The basic concept is to obtain a unique
set of modal parameters from a set of
vibration measurements:

= Scaled (mass normalized) mode shapes

\Mh tho fAarco ic lrnma
V||C|| Ll |C 1VICUCOC 1O NI |UVV||,

» Un-scaled mode shapes when the force is
not measured.
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2m
X; (1) = ZWiresrt
r=1

() ) - Xl(tq)_ Yu Vi Vi et L. ... e
X (L) X)) - X (tq) | VYa YV - Vionm y e L. ... g%
| X, (t,) x (t,) -+ X (t ) iz W | e goants

X ]= [‘P]x[A]
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= A 2"d set of eqgns:

X (t, +At) = 2sziresr (t) +At)
r=1
:sz (Wiresrm )esru _ ZZm'ﬁiresrtl
r=1 r=1
X =¥ [x[A]
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@Ibrahim Time Domain Method

[Alx[¥]= ¥
X =¥ (A

X [=[¥x[a]

N\
[A] X X [X ]+
eter Extraction Methods Dr H Ahmadian, Modal Testing Lab, IUST

— [a]x[x]=(X]




@Ibrahim Time Domain Method

Ay, =",

= Eigenvectors of matrix [A] are the mode
shapes,

= The natural frequencies and damping ratios
are obtained from eigenvalues of [A].
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Derivation of Mathematical
Models

= Spatial Models (mass, stiffness, damping)
= Needs measurement of most of the modes
= Requires measurement in many DOFs

= Response Models (FRF)

= Needs measurement in frequency range of interest
= Requires measurement in selected DOFs

= Modal Models (natural frequencies and mode
shapes)
= Needs measurement of only one mode

= Requires measurement in handful of DOFs
Derivation of Mathematical Models IUST ,Modal Testing Lab ,Dr H Ahmadian



Derivation of Mathematical
Models

s Modal Models

= Requirements to construct Modal Models

= Refinement of Modal Model
Conversion to real modes

Compatibility of DOFs
= Reduction
= Expansion

= Response Models
= FRF
= Transmissibility
= Base Excitation
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Requirement to construct

@ Modal Models

= Minimum requirements
= One column in case of fixed excitation or
= One row when response is measured at a fixed point.

[Hy  Hy ... Hy o |Hyl .. H,
Hﬂl Hﬂﬂ- T Hﬂ amE HIJ' aEd H:H
1 N -

Hy Hyg ... By ...|Hg| ... Hyp

Hy Hy .. Hi .|Hjl .. H

Hy  Hyg oo By | Byl oo Hay |

b0
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Requirement to construct

@ Modal Models

= Proof:
L Xy(@)
" F(w)
X (@) o X (@) o F (w)
F(o) F(0) X (o)

...

mi—"ni

.-

I
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Requirement to construct
Modal Models

s Several additional elements of FRF or even columns
are measured to:

= Replace poor data,
= To provide checks
= Modes have not been missed

-.Hiil Hl—ﬁ s S H!I A HIJ'. — s Tn H’." ]
Az |Hg| |Fal  |Hgl . Ha |

Hy Hy .| Hy| .| By .. H,

I{j.'[ ff:;-g . fl'.'.ji- ﬂ:j“ - fj_jm .

-_Hl'll Hﬂ! . HI‘II: vua H;u-' mwa Hi‘l.!'l._
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Refinement of Modal Models

= Complex to real conversion:

= Taking the modulus of each element and
assigning a phase of 0 or 180.

= Finding a real mode with maximum projection to
the measured one:

bede
e |

= Multi point excitation (Asher’s method)

Max
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@Compaﬂbility of DOFs

= Employment of the measured modes In
updating/modification of analytical
models requires the compatibility of
DOFs.

= There are two approaches in
compatibility excursive:
= Analytical model reduction
= Expansion of measured modes
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Reduction of Analytical Model

@ (Guyan Reduction)
_K11 K12_<(X1\ _ rflw
T F = < >
K12 K22_ \X2, O

Ay, T
X, = _Kzz K12X1

— - C

X | I X |
\XZ i o — K2_21K1TZ_{X1}’ ixz i o [T ]{Xl}

<11 K12
T
<1T2 I<22 _ {Xl }
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—Q

_Ksz Kz
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2

—Q

- (Kzz -w’M 22 )_1(K1Tz — a)leTz )_

2

@Dynamic Model Reduction

Ky Kp
K

Mll M12_]{¢1}:O
_MIZ M22_ ¢2

1
K2 _szzz) (Ksz _a)leTz 1

' i34 -t

Mll MlZ

]T{m:o.
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@Expansion of Models

= In order to compare analytical model
with the measured modal data on may
expand the measured data by:

= Geometric interpolation using spline
functions

= Using analytical model spatial model
= Using analytical model modal model
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@Expansion In Spatial Domain

\

[_Kll I<12_ Z_Mll M12_]<(¢1 >:O

T - T
_K12 Kzz_ _M12 Mzz_ \¢2,

9, = _(Kzz _szzz)_l(Ksz — szsz |
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@Expansion INn Modal Domain
®=0,R’ .
ssuming Mass

Matrix 1S correct
Sol :

/

min OR-D,| st: RTR=1.

®'®,=UsVT = R=VU",
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@ Response Model

= Frequency response functions

H]=[0](2-o?) [o]

= Transmissibilities

X | | ot H
_ ¢ - T ()= i)
X" | H, (@)
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20}

30 ||

100 200 300 400 500 600 700 800

Fig. 2. Frequency response data.

Tiw) = Xi(w)/ X (o)

1 : 1 [
; ; | Ta2|
40 e TR, 1 40 T2 | 'EI 1

TS I IR B = N

T and T withk =1,...,3.

force locations

Derivation of Mathemat

Fig. 3. Transmissibilities,



@ Response Model

= The amplitude’s peaks

of the transmissibilities ¢ ¢
do not correspond with Z 2" ol 2
the resonant H i (a)) o, — @
frequencies. T jk(a)) = ¥ .

= Transmissibilities cross ki (a)) Z kr 7ir
each other at the a) a)

resonant frequencies

(becomes independent

of the location of the

Input) >

O
o ¢kr
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Base Excitation

J0E
= An application area

of transmissibility.

= Input is measured
as response at the

drive point. 0
1

{X} = {Xrel }+ Xref ) . .

\1J
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Derivation of Mathematical

@ Models

= Introduction

= Equation Error Method (Sec. 6.3.6 page 456)
= ldentification of Rod FE Model
= Parameter ldentification

= Solution of Over-determined set of Equations

s Solution of Under-determined set of
Equations

= Error Analysis
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@ Introduction

= Construction of Spatial Model from modal
data:

K=0T"'"AOD ' M=0p"'®d ", C= 'TD™
= Modal model must be complete:

= All modes must be present
= Mode shapes are measured in all DOF’s

= Measurement of complete Modal Model Is
Impractical.
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@ Introduction

= Alternative methods are required to construct
the spatial model from

= Incomplete and
= Noisy measured modes.

= The difficulty with incompleteness is removed
by reducing the number of unknowns In
spatial model.

= The noise effects are removed by averaging.
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@Equaﬂon Error Method

= We have some information regarding
the spatial model format:
= Symmetry
» Pattern of zeros

= We may incorporate these information
Into the identification procedure and
reconstruct the spatial model.
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@Equaﬂon Error Method

= In this method the eigen problem is
rearranged to obtain the spatial model:

KO - MDA =0.

|07 AT}

M

\

» The DOF’s of measurec

fK\

- =0

J

modes must be

compatible with the DOF’s of spatial model.
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@ Rearrangement Example:

—Q

_k1+k2 -k,
B _kz kz

or.

Q0 -9 _a)r2¢l
_O ¢2_¢1 0

Derivation of Mathematical Models
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|ldentification of A Rod FE

@ Model

s Consider a fixed-free rod with 77 elements.
= The mass and stiffness matrices are:

k+k, —k,
—k, k,+k, -k,

_kn—l kn—1_|_kn —kK
kK

M = diag(m,,m,,---,m, ,,m,)
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|ldentification of A Rod FE

@ Model

= The equilibrium state at modes rand s are:

(K _//l“rl\/I )¢r = 0.
(K _;LSM )¢s = 0.

= The last rows of equilibrium state equations
are:
o kn¢r,n—1 T (kn - ﬁ“rmn )¢r,n — O’
o kn¢s,n—1 T (kn o ﬁ“rmn )¢s,n =0.
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e

k., #0,m. #0 =«

|ldentification of A Rod FE

Model

_¢r,n o ¢r,n—1

¢s,n — ¥Ps.n-1

_/1¢rn_

_/1¢sn

.
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”>:O.

)

¢ (2.~
N

ky A,

mn

¢r,n B ¢r,n—1
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|ldentification of A Rod FE

@ Model

= From other rows one obtains:
kl k2 kn—l ml m2 mn—l
m. m m m m m

n

= Using total mass information /m,,1s obtained:

(0l )
Mgt = My 1 Z—I
LY
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|ldentification of A Rod FE

@ Model

= Only two modes and one natural
frequency are required to construct the
mass and stiffness matrices.

s More details can be found In:

« GML Gladwell, YM Ram, "Constructing
Finite Element Model of a Vibrating Rod”,
Journal of Sound and Vibration, 169,229-
237,1994.
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@ Parameter ldentification

= In a general case the mass and stiffness
matrices are parameterized and are
obtained by rearranging:
= Equation of motion in modal domain
« Orthogonality requirements,
= elcC.
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@ Parameter ldentification

Parameterization :
K=K(k,k,,....,k,),M =M (m;,m,,...,m ).
EOM

KO - MDA =0,0'MD = 1,0'KD = A.
Extras :

Kb,=0, D .MD,=m,I_,I

XX, Xy’...
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@ Parameter ldentification

Re—arrangement :
Ax=Db
A=A(D,D,,A),b=bA,m_.,,1,.,...)
X =X(K;,Ky,...,k.,m,m,,....m)
m=n-—x=A"
A= full rank(nxm)=<m>n—Underdeter mined

m < n — Overdeter mined
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Solution of underdetermined

@ case

min||x — X, |, ST : Ax="b

or

min|Ax[, ST : AAx =b— Ax, =b

Solution:

min(AxTAx = 2(AxT A" —b' )/1):> 2AX —2AT 1 =0.
— AA A=b=A=(AAT)'b=Ax=AT(AAT)'D
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Solution of Over-determined

@set of Equations

AX =D, m<n
Ax—-b=¢
Assume = E[s,]=0.,Elez, |= 5,0

Solution = min \gH —mine' ¢
sle=x"ATAX=2x"ATb+b'b

8(‘;;‘9) =2AT Ax—2ATh = X =(ATAJ" ATb
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@ Error Analysis

b=AxXx+¢

E (AT ATb] +E[(AT A)‘lATg]
E[x]= E[x]+ E[(ATA) ATg] |
as m— o, Ele]> 0= E[X]|=E[x]
If A—> noisy > E[AT¢]»0= E[x]# E[x]
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= The parameters to be
updated are the 10
stiffness and 6 masses

= The measured data
consists of the 1st
three natural
frequencies and mode
shapes (added with
uniformly distributed
random noise)

Derivation of Mathematical Models

@ Example:

— K
r___:-
ﬂr’f]_
T .
K3 -:;'_’_::_. K‘4 '::__ "':-::_ Kz
r — -
11{3 :F'_':":- .f'l'ifz
L‘_:- -:Z:\_it: L""-_-,.
KG = = -'L'I::_, K-
= 1 .
Jillf’_f:q_
L
K7 -:_‘_L'_Tf_} "::J Ks
r""'ﬁ f
M Mg
L L
Ky = {[1_;;;_, Ko
[
v

Figure 1. Numerical spring-mass model.
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@ Example:

= Eigenvalue equations arearrangment:

= 31 equations ( 3*6 equations for each eigenvector term, 2*6
symmetric orthogonality equations, and 1 total mass equation)

= 16 parameters and
= The terms in A and b contain noisy data.

Parameters : x = {k,,k,,...,Kq, M, m,,...,m},
EOM : KO - M®PA =0,0'MP =1,®"'KD = A.
Extras : g Mg, = m.
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Exact 1000 1250 1500 10000 1000 1000 5000 7000 1000 1000 1 0.2 0.1 1 0.1 0.1
S/N= 1041 1266 1518 10008 1006 1008 9914 -414 2035 -63 1 0.2 0.1 0.99 0.2 -0.01
100

S/N= 954 1243 1502 9844 1160 1011 -1024 21352 -83 2323 0.97 0.21 0.1 0.96 -0.02 0.28
20
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@ Reqgularized Solution

= Ahmadian, Mottershead, = &
and Friswell, | M, |
REGULARISATION he KL 2R
METHODS FOR FINITE ” = v
ELEMENT MODEL K — <1 < K
UPDATING, Mechanical ; My )
Systems and Signal < <= %
Processing (1998) ! o
12(1),47-64 Ko < . ~ Kio

Figure 1. Numerical spring—mass model.
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@ Home Work 3

= Develop a procedure to construct the
FE model of a fixed-free beam from
minimum modes.

= How many modes are required to obtain El
an m of each element?

= Add some noise to the modes and try to
reconstruct the model.

= Investigate the correlated noise effects?
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