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Introduction
The measurements techniques used for 
modal testing are discussed:

Response measurement only 
Force and response measurement

The 2nd type of measurement 
techniques is of our concern:

Single-point excitation( SISO/SIMO)
Multi-point excitation (MIMO)
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Test Planning
Objective of the test

Levels according to Dynamic Testing Agency:
UpdatingOut of range 

residues
Usabe for 
validationMode ShapesDamping 

ratio
Natural 
FreqLevel

0

Only in few 
points

1

2

3

4
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Test Planning

Extensive test planning is required 
before full-scale measurement:

Method of excitation
Signal processing and data analysis
Proper selection of pickup points
Excitation location
Suspension method 
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Quality of measured data
Signal quality

Sufficient strength and clarity/noise free
Signal fidelity

No cross sensitivity
Measurement repeatability
Measurement reliability
Measurement data consistency, 
including reciprocity
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Basic Measurement System
An excitation mechanism
A transduction mechanism
An Analyzer



Dr H Ahmadian ,Modal Testing Lab ,IUST
Response Function Measurement 
Techniques

Basic Measurement System
Source of excitation 
signal:

Sinusoidal
Periodic (with specific 
freq. content)
Random
Transient

Power Amplifier
Exciter

Transducers
Condition Amplifiers
Analyzers
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Structure Preparation

Free Supports
Grounded Support
Loaded Support
Perturbed Support
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Free Supports
Theoretically the structure will possess 6 rigid 
body modes @ 0 Hz.
In practice this is provided by a soft support
Rigid body modes are less then 10% of strain 
modes

Suspending from nodal points for minimum 
interference 
The suspension adds significant damping to the 
lightly damped structures
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Free Supports
Suspension wires, 
should be normal to 
the primary 
vibration direction 
The mass and 
inertia properties 
can be determined 
from the RBMs. 
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Free Supports
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Free Supports
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Grounded Support
The structure is fixed to the ground at selected 
points.
The base must be sufficiently rigid to provide 
necessary grounding.
Usually is employed for large structures

Parts of power generation station
Civil engineering structures

Another application is simulating the operational 
condition

Turbine Blade
Static stiffness can be obtained from low frequency 
mobility measurements. 
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Loaded Support
The structure is connected to a simple 
component with known mobility

A specific mass

The effect of added mass can be removed 
analytically
More modes are excited in a certain 

frequency range compared to free suspension
The modes of structure are quite different 
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Perturbed Support
The data base for the structure can be 
extended by repetition of modal tests for 
different boundary conditions
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Perturbed Support
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Perturbed Support
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Excitation of the structure

Various devices are available for 
exciting the structure:

Contacting
Mechanical (Out-of-balance rotating masses)
Electromagnetic (Moving coil in magnetic field)
Electrohydraulic

Non-Contacting
Magnetic excitation 
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Electromagnetic Exciters
Supplied input to the shaker is converted to 
an alternating magnetic field acting on a 
moving coil.
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Electromagnetic Exciters
There is a small difference between the force 
generated by the shaker and the applied 
force to the structure

The force required to accelerate the shaker 
moving

The force required to excite the structure 
sharply reduces near the resonance point,

Much smaller than the generated force in the 
shaker and the inertia of the drive rod
Vulnerable to noise or distortion
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Attachment to the structure
Push rod or stingers:

Applying force in 
only one direction
Flexible drive 
rod/stinger 
introduces its own 
resonance into the 
measurement.



Dr H Ahmadian ,Modal Testing Lab ,IUST
Response Function Measurement 
Techniques

Support of shakers
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Support of shakers
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Hammer or Impactor
Excitation
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Other excitation methods

Step Relaxation/sudden release
Charge/Explosive impactor
….
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Moving Support
Corresponds to 
grounded model
Only responses are 
measured
When the mass 
properties are known, 
the modal properties can 
be calculated from 
measured data 
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Moving Support
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Introduction
The measured force or 
accelerometer signals 
are in time domain.
The signals are 
digitized by an A/D 
converter
And recorded as a set 
of N discrete values 
evenly spaced in the 
period T 
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Basics of DFT

The spectral properties of the recorded 
signal can be obtained using Discrete 
Fourier Transform/Series (DFT/DFS):

The DFT assumes the signal x(t) is periodic
In the DFT there are just a discrete 
number of items of data in either form

There are just N values xk

The Fourier Series is described by just N values
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Basics of DFT
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Basics of DFT
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Basics of DFT

The sampling frequency:

The range of frequency spectrum:

The resolution of frequency spectrum:
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Basics of DFT

There are a number of features of DF 
analysis which if not properly treated, 
can give rise to erroneous results:

Aliasing
Mis-interoperating a high frequency component 
as a low frequency one

Leakage
Periodicity of the signal
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Aliasing
Digitizing a ‘low’
frequency signal 
produces exactly the 
same set of discrete 
values as result from 
the same process 
applied to a higher 
frequency signal

2
sωω <

ωω −s
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Aliasing
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Aliasing
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Aliasing
The solution to the 
problem is to use an 
anti-aliasing filter

Subjecting the original 
signal to low pass with 
sharp filter
Filters have a finite cut-
off rate; it is necessary to 
reject the spectral range 
near Nayquist frequency

2
)0.108( sωω −>
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Leakage
A direct consequence of 
taking a finite length of 
time history coupled with 
assumption of periodicity
Energy is leaked into a 
number of spectral lines 
close to the true 
frequency. 
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Leakage
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Leakage

To avoid the leakage there are number 
of scenarios:

Increasing the record time T
Windowing

Multiply the time record by a function that is 
zero at the ends of the time record and large in 
the middle, the FFT content is concentrated on 
the middle of the time record
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Windowing
Windowing involves the imposition of a 
prescribed profile on the time signal prior to 
performing the FT
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Windowing
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Windowing
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Windowing

a4a3a2a1a0Function

----1Rectangular

---11Hanning

-0.0030.2441.2981Kaser-
Bessel

0.0320.3881.2861.9331Flat top
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Windowing
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Windowing
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Improving Resolution (Zoom)
There arises limitations of inadequate 
frequency resolution

at the lower end of the frequency range
For lightly-damped systems

A common solution is to concentrate all 
spectral lines into a narrow band

Within fmin-fmax

Instead of 0-fmax
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Zoom
Method 1:

Shifting the frequency origin of the spectrum

The modified signal is then analysed in the 
range of 0-(fmax-fmin)
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Zoom
Method 2:

A controlled aliasing 
effect

Applying a band pass 
filter
Because of the 
aliasing phenomenon, 
the frequency 
component between 
f1 and f2 will appear 
aliased between 0-(f2-
f1)
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Introduction
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Periodic Excitation
Random Excitation
Transient Excitation
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Introduction

There are three different classes of 
excitation signals used:

Periodic
Transient
Random
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Introduction
Periodic:

Stepped sine
Slow sine sweep
Periodic
Pseudo-random
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Introduction
Transient:

Burst sine
Burst random
Chirp
Impulse
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Introduction
Random:

(true) random
White noise
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Stepped-Sine Testing

Classical method of FRF measurement
To encompass a frequency range of 
interest, the command signal frequency is 
stepped from one frequency to another 

The excitation/response(s) are measured 
(amplitudes and phase(s)) .
It is necessary to ensure that the steady-state 
condition is attained before the measurement.
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Stepped-Sine Testing
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Stepped-Sine Testing
The extent of unwanted transient 
response depends on:

Proximity of excitation frequency to a 
natural frequency,
The abruptness of the changeover from 
the previous command signal to the new 
one,
The lightness of the damping of nearby 
modes.
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Stepped-Sine Testing
An advantage 
of stepped-sine 
testing is the 
facility of taking 
measurement 
where and as 
they are 
required.

Largest Error

dB%

No. point 
between 

HPP’s
3301

1102

0.553

0.225

0.118
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Slow Sine Sweep Testing

Involves the use of a sweep oscillator
Provides a sinusoidal signal
Its frequency is varied slowly but 
continuously

If an excessive sweep rate is used then 
distortions of FRF plot are introduced 
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Slow Sine Sweep Testing
One way of 
checking the 
suitability of a 
sweep rate is to 
make the 
measurement 
twice:

Once sweeping up
And the 2nd time 
sweeping down
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Slow Sine Sweep Testing
It is possible to 
prescribe an 
optimum sweep rate 
for a given structure 
taking into account 
its damping levels
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Slow Sine Sweep Testing
Recommended sweep rate:
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Slow Sine Sweep Testing
ISO prescribes 
maximum linear and 
log sweep rate 
through a resonance 
as:

min/)(310

min/)(216
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Periodic Excitation
A natural extension of the sine wave 
test methods:

To use a complex periodic input signal 
which contains all the frequencies of 
interest, 
The DFT of both input and output signals 
are computed and the ratio of these gives 
the FRF
Both signal have the same frequency 
contents 



Dr H Ahmadian ,Modal Testing Lab ,IUSTFRF Measurement Techniques

Periodic Excitation
Two types of periodic signals are used:

A deterministic signal (square wave)
Some frequency components are inevitably 
weak.

Pseudo-Random type of signal
The frequency components may be adjusted to 
suit a particular requirements-such as equal 
energy at each frequency,
Its period is exactly equal to the sampling time 
resulting zero leakage .
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Random Excitation

)(
)(

)(
)()(

)(
)(

)(

)()()(
)()()(

)()()(

2

12

2

1
2

ω
ωγ

ω
ωω

ω
ω

ω

ωωω

ωωω

ωωω

H
H

S
SH

S
S

H

SHS
SHS

SHS

xf

xx

ff

fx

xfxx

fffx

ffxx

=

=

=

=

=

=



Dr H Ahmadian ,Modal Testing Lab ,IUSTFRF Measurement Techniques

Random Excitation

There may be noise on one of the two 
signals

Near resonance this is likely to influence 
the force signal
At anti-resonances it is the response signal 
which will suffer  
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Random Excitation
H2 might be a better indication near 
resonances while H1 is a better indication 
near anti-resonances: 

)(
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ω
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Auto-spectra of noise on the input signal

Auto-spectra of noise on the output signal
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Random Excitation
A closer optimum formula for the FRF is 
defined as the geometric mean of the two 
standard estimates

Phase is identical to that in the two basic 
estimates 

)()()( 21 ωωω HHHv =
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Random Excitation
Typical measurement made using random 
excitation:
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Random Excitation
Details from previous plot around a 
resonance:

H1

H2



Dr H Ahmadian ,Modal Testing Lab ,IUSTFRF Measurement Techniques

Random Excitation
Use of zoom spectrum analysis:

Improving the resolution removes the major 
source of low coherence
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Random Excitation
Effect of averaging:
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Transient Excitation
The excitation 
and the 
response are 
contained 
within the 
single 
measurement
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Transient Excitation
Burst excitation signals:

A short section of a continuous signal (sin, 
random, …) followed by a period of zero wave.
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Transient Excitation
Chirp excitation:

The spectrum can be strictly controlled to be such 
within frequency range of interest 
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Transient Excitation
Impulsive excitation 
by Hammer:

Different impulsive 
excitations
Signals and spectra 
for double hit case
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Transient Excitation
Impulsive excitation by Shaker:
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3.10 Mass Cancellation
3.11 Rotational FRF Measurement
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Structures

Effects of Different Excitations
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Calibration

In all measurement systems it is 
necessary to calibrate the equipment.
There should be two levels of 
calibration:

Absolute calibration of individual 
transducers
The overall sensitivity of instrumentation 
system
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Calibration
The overall system 
calibration

The scale factor should 
be checked against 
computed factor using 
manufacturers stated 
sensitivity
Should be carried out 
before & after each test 
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Mass Cancellation
Near resonance the actual applied force 
becomes very small and is thus very prone to 
inaccuracy.
Some applied mass is used to move 
additional transducer mass
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F
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Mass Cancellation
Added mass to be 
cancelled and the 
typical analogue 
circuit
At deriving point a 
relation between 
measured and 
required FRF’s can 
be obtained
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Mass Cancellation
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Rotational FRF Measurement
Measurement of rotational FRFs using two or 
more transducers:
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Rotational FRF Measurement
Application of moment excitation

MFM
X

F
X θθ ,,,
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Measurement on Nonlinear 
Structures

Many structures, especially in vicinity of 
resonances, behave in a nonlinear way:

Natural frequency varies with position
and strength of excitation
Distorted frequency responses (near 
resonances)
Unstable or unrepeatable data  
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Measurement on Nonlinear 
Structures
Examples of 
different nonlinear 
system response for 
different excitation 
levels

Softening effect
Increase in damping
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Effects of Different Excitations
FRF measurement 
on nonlinear 
system:

Sinusoidal Excitation
Compatible with 
theory

Random Excitation
Linearized system

Transient Excitation
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Effects of Different Excitations

Most types of nonlinearity are amplitude 
dependent:

A linearized behaviour is observed when 
the response level is kept constant
The obtained linear model is valid for that 
particular vibration level
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Level Control in FRF 
Measurement
Response level 
control,

Best linear representation 
(nonlinearities are 
displacement dependent)

Force level control
Or no level control
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Level Control in FRF 
Measurement
Inverse FRF plots for a SDOF

Real part is expected to be liner wrt frequency squared
Imaginary part should be linear/constant
Any deviation from the expected behaviour can be detected 
as nonlinearity in the system



Dr H Ahmadian ,Modal Testing Lab ,IUSTFRF Measurement Techniques

Level Control in FRF 
Measurement
Use of Hilbert transform to detect non-linearity

The Hilbert transform express the relations between 
real and imaginary parts of the Fourier Transform
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Notes: Hilbert Transform

The Hilbert transform express the 
relations between real and imaginary 
parts of the Fourier Transform

Fourier Transform is considered to map 
functions of time to functions of frequency 
and vice versa
Hilbert transform map functions of time or 
frequency to the same domain
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Notes: Hilbert Transform
For causal functions: 
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Notes: Hilbert Transform
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 Modal Parameter Extraction
Introduction
Preliminary checks of FRF data

Visual checks
Assessment of multiple-FRF data set using SVD
Mode indicator functions

SDOF modal analysis methods
Peak amplitude method
Circle fit method
Inverse or line fit method  
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Introduction
Some of the many available procedures for 
fitting a model to the measured data  are 
discussed:

Their various advantages and limitations are 
explained,
No single method is best for all cases.

This phase of the modal test procedure is 
often called modal parameter extraction
or modal analysis
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Introduction

Types of modal analysis:
Frequency domain (of FRFs)
Time domain (of Impulse Response 
Function) 

The analysis will be performed using
SDOF methods, and
MODF methods.  
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Introduction

Another classification of methods 
relates to the number of FRFs used in 
the analysis:

Single-FRF methods, and
Multi-FRF methods:

Global methods which deals with SIMO data 
sets 
and Polyreference which deals with MIMO data
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Introduction
Difficulty due to damping:

In practice we are obliged to make certain 
assumption about the damping model,
Significant errors can be incurred in the 
modal parameter estimates as a result of 
conflict between assumed and actual 
damping effects.
Decision on the issue of real and complex 
modes.
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Preliminary checks of FRF 
data
Low-frequency asymptotes,

Stiffness-like characteristics for grounded 
structures
Mass-line asymptotes for free structures

High-frequency asymptotes,
Mass line or stiffness line

Incidence of antiresonances
For a point FRF there must be a resonance 
after each antiresonance
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Preliminary checks of FRF 
data

Mode Indicator Functions:
The Peak-Picking Method

Sum of amplitudes of all measured FRFs to 
locate the resonance points

The frequency-domain decomposition 
method 

Defined by the SVD of the FRF matrix
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Case Study: MODES OF A 
RAILWAY VEHICLE
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Case Study: Test set-up
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Case Study: Sensor Locations
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Case Study: Sensor Locations
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Case Study: Excitation
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Case Study: Excitation
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Case Study: Measurements
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The Peak-Picking Method
Sum of amplitudes of all measured FRFs to 
locate the resonance points

987654321Mode# 

24.6716.0014.0013.3312.338.335.334.672.67Frequency )Hz(
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The frequency-domain 
decomposition method 

A more advanced method consists of 
computing the Singular Value 
Decomposition of the spectrum matrix. 
The method is based on the fact that 
the transfer function or spectrum matrix 
evaluated at a certain frequency is only 
determined by neighboring modes.
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The frequency-domain 
decomposition method 
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SDOF modal analysis 
methods
The SDOF assumption
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SDOF modal analysis 
methods

SDOF modal analysis methods
Peak amplitude method
Circle fit method
Inverse or line fit method  
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SDOF modal analysis 
methods: Peak Amplitude

Individual resonance peaks are 
detected from the FRF

The frequency of the maximum responses 
is takes as the natural frequency of that 
mode,
The peak amplitude and the half power 
points are determined,
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SDOF modal analysis 
methods: Peak Amplitude
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SDOF modal analysis 
methods: Peak Amplitude
Another estimate for 
modal residue:
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Modal Testing
(Lecture 16)

Dr. Hamid Ahmadian
School of Mechanical Engineering

Iran University of Science and Technology
ahmadian@iust.ac.ir
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 Modal Parameter Extraction

Circle-fit method
Properties of the modal circle
Circle-fit analysis procedure
Interpretation of damping plots
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Properties of the modal circle
Assuming a system with structural damping 
the basic function to deal with is:

Since the effect of modal constant is to scale 
the size and rotate the circle, we consider: 
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Properties of the modal circle
Finding the natural frequency:
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Properties of the modal circle

Damping
d
d

frequencyNatural
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Properties of the modal circle
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Properties of the modal circle
The final property relates to the diameter of 
the circle (D):

2
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Circle-fit analysis procedure
Select points to 
be used
Fit circle, 
calculate quality 
of fit
Locate natural 
frequency, 
…
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Circle-fit analysis procedure
Obtain damping 
estimates

Calculate 
multiple 
damping 
estimate and 
scatter

Determine modal 
constant module 
and argument.
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Interpretation of damping 
plots

Noise may contribute 
to the  roughness of 
the surface.
Systematic distortions 
due to:

Leakage
Erroneous estimates for 
natural frequency
Nonlinearity
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Circle-fit 
Minimizing the algebraic distance:

.0

1

1

1
1

:
.0

)()(

22

22
2
2

2
2

11
2
1

2
1

22

222

=

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

+
+

=++++

=+++

C
B
A

yxyx

yxyx
yxyx

SolutionSquaresLeast
CByAxyx
Rbyax

nnnn

MMMM



Dr H Ahmadian ,Modal Testing Lab ,IUSTModal Parameter Extraction Methods

Circle-fit 
Minimizing the geometric distance:
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Circle-fit
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Circle-fit

Least-Squares Fitting of 
Circles and Ellipses By: Walter 
Gander, Gene H. Golub, and  Rolf 
Strebel
You may find it in ftpmech.iust.ac.ir
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Home work 1

Determine the modal properties of the 
beam tested in the lab

Frequency range of 0-400Hz
Natural frequencies
Damping (carpet plots)
Mode Shapes

Due time 87/2/22
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Importing the ASCII files
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Importing the ASCII files



Modal Testing
(Lecture 18)

Dr. Hamid Ahmadian
School of Mechanical Engineering

Iran University of Science and Technology
ahmadian@iust.ac.ir
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MDOF Modal Analysis in the 
Frequency Domain (SISO)

In some cases the SDOF approach to 
modal analysis is simply inadequate or 
inappropriate:

closely-coupled modes,
the natural frequencies are very closely spaced, 
or
which have relatively heavy damping,

those with extremely light damping
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 MDOF Modal Analysis in the 
Frequency Domain (SISO)
One step MDOF curve fitting methods:

Non-linear Least Squares Method
Rational Fraction Polynomial Method
A method particularly suited to very lightly 
damped structures

Global Modal Analysis in Frequency 
Domain

Global Rational Fraction Polynomial Method
Global SVD Method
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Non-linear Least Squares 
Method
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Non-linear Least Squares 
Method

The set of obtained equations are 
nonlinear

No direct solution (iterative procedures)
Non-uniqueness of solution
Huge computational load
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Rational Fraction Polynomial 
Method
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Rational Fraction Polynomial 
Method
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Rational Fraction Polynomial 
Method
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Rational Fraction Polynomial 
Method
A set of linear equations using each 
individual measured FRF is formed.
The unknowns ai and bi are obtained 
using a least square solution.
The modal properties are extracted 
from obtained coefficients ai and bi.
The analysis may repeat for a different 
model order.
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Lightly Damped Structures
In these structures it is easy to locate 
the natural frequencies,

Its accuracy is equal to the frequency 
resolution of the analyzer

The damping ratio is assumed to be 
zero.
The modal constants are obtained using 
curve fittings.
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Lightly Damped Structures
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Global Modal Analysis in 
Frequency Domain

So far each measured FRF is curve 
fitted individually,

Multi-estimates for global parameters 
(natural frequencies and damping) 

Another way is to use measured FRF 
curves collectively. 

Frequency and damping characteristics 
appear explicitly. 
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Global Rational Fraction 
Polynomial Method

If we take several FRF’s from the same 
structure then the denominator 
polynomial will be the same in every case.
A natural extension of RFP method is to 
fit all n FRFs simultaneously

2m-1 values of ai and,
and n(2m-1) values of bi
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Global SVD Method
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Global SVD Method
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Global SVD Method
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Global SVD Method
Consider data from several different frequencies 
to obtain frequencies and damping:
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Global SVD Method
The eigen-problem is solved using the SVD.
The rank of the FRF matrices and eigenvalues are 
obtained.
Then the modal constants can be recovered from:
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 MDOF Modal Analysis in the 
Time Domain
The basic concept: Any Impulse Response 
Function can be expressed by a series of 
Complex Exponentials

The Complex Exponential Series contain the 
eigenvalues and eigenvectors information.
The IRF is obtained by taking inverse Fourier 
transform of the measured FRF. 
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Complex Exponential Method
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Complex Exponential Method 
(Single FRF)
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Complex Exponential Method 
(Single FRF)
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Complex Exponential Method 
(Single FRF)
The     are selected to be coefficients of the 
polynomial:
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Complex Exponential Method 
(Single FRF)
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Complex Exponential Method 
(Single FRF)
The values               and Ai are obtained 
from:
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Complex Exponential Method 
(Single FRF)
Implementation Procedure:

Order of modal model is selected,
Modal model is identified using the defined 
steps in previous slides,
FRF is regenerated from modal information 
and compared with the measured FRF
The procedure repeated using another 
order for the modal model until stable 
results are obtained. 
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Stabilization Diagram
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Global Analysis in Time Domain 
(Ibrahim Time Domain Method)

The basic concept is to obtain a unique 
set of modal parameters from a set of 
vibration measurements:

Scaled (mass normalized) mode shapes 
when the force is known,
Un-scaled mode shapes when the force is 
not measured.
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Ibrahim Time Domain Method
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Ibrahim Time Domain Method
A 2nd set of eqns:
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Ibrahim Time Domain Method
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Ibrahim Time Domain Method

[ ]{ } { }r
ts

r
reA ψψ Δ=

Eigenvectors of matrix [A] are the mode 
shapes,
The natural frequencies and damping ratios 
are obtained from eigenvalues of [A].
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MDOF Modal Analysis in theMDOF Modal Analysis in the 
Time Domain
 The basic concept: Any Impulse Response 

fFunction can be expressed by a series of 
Complex Exponentials

 2
2

1
1;)( rrrr

N

r

ts
jkrjk iseAth r  



 The Complex Exponential Series contain the 
eigenvalues and eigenvectors information

1r

eigenvalues and eigenvectors information.
 The IRF is obtained by taking inverse Fourier 

transform of the measured FRF
Dr H Ahmadian, Modal Testing Lab, IUSTModal Parameter Extraction Methods

transform of the measured FRF. 



Complex Exponential 
h dMethod

(CE)(CE)
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Complex Exponential Method
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Complex Exponential MethodComplex Exponential Method 
(Single FRF)
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Complex Exponential MethodComplex Exponential Method 
(Single FRF)
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Complex Exponential MethodComplex Exponential Method 
(Single FRF)
 The     are selected to be coefficients of the i

polynomial:
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Complex Exponential MethodComplex Exponential Method 
(Single FRF)
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Complex Exponential MethodComplex Exponential Method 
(Single FRF)
 The values               and Ai are obtained 
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Complex Exponential MethodComplex Exponential Method 
(Single FRF)
 Implementation Procedure:

 Order of modal model is selected,
 Modal model is identified using the defined g

steps in previous slides,
 FRF is regenerated from modal information g

and compared with the measured FRF
 The procedure repeated using another p p g

order for the modal model until stable 
results are obtained. 
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The Least Squares q
Complex Exponential 

h dMethod

(LSCE)(LSCE)
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The Least Squares ComplexThe Least Squares Complex 
Exponential Method (LSCE)

 The LSCE is the extension of CE to a 
global procedure.

 It processes several IRF’s obtained It processes several IRF s obtained 
using SIMO method.

 The coefficients β that provide the 
solution of characteristic polynomial are p y
global quantities.
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The Least Squares ComplexThe Least Squares Complex 
Exponential Method (LSCE)
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The PolyReference ComplexThe PolyReference Complex 
Exponential Method (PRCE) 

 Constitutes the extension of LSCE to 
MIMO.

 A general and automatic way of A general and automatic way of 
analyzing dynamics of a structure.

 MIMO test method overcomes the 
problem of not exciting some modes as p g
usually happens in SIMO.
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The PolyReference ComplexThe PolyReference Complex 
Exponential Method (PRCE) 

Considering q input reference points:
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     hhB      jjT hhB
Considering for each response location j=1,…,p:
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Knowing the coefficient matrix [B], we must now determine [V] 
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An standard eigenvalue problem to obtain Vr
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 The residue calculation is repeated for 

all meas ed points j 1 2 p
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Exponential Method (PRCE) 
 The method provide more accurate modal 

frepresentation of the structure.
 It can determine multiple roots or closely 

spaced modes.
 Shortcomings:Shortcomings:

 Sensitive to nonlinearities and any lack of 
reciprocity in frequency responsesreciprocity in frequency responses,

 Some difficulties in analyzing structures 
with more than 5% viscous dampingwith more than 5% viscous damping. 
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(Ibrahim Time Domain(Ibrahim Time Domain 
Method)

Dr H Ahmadian, 
Modal Testing Lab, 
IUST

Modal Parameter Extraction 
Methods



Global Analysis in Time DomainGlobal Analysis in Time Domain 
(Ibrahim Time Domain Method)

 The basic concept is to obtain a unique 
set of modal parameters from a set of 
vibration measurements:vibration measurements:
 Scaled (mass normalized) mode shapes 

when the force is knownwhen the force is known,
 Un-scaled mode shapes when the force is 

not measurednot measured.
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Ibrahim Time Domain Method
 A 2nd set of eqns:
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f [ ] h d Eigenvectors of matrix [A] are the mode 
shapes,

 The natural frequencies and damping ratios 
are obtained from eigenvalues of [A].
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Derivation of Mathematical 
Models

Spatial Models (mass, stiffness, damping)
Needs measurement of most of the modes
Requires measurement in many DOFs

Response Models (FRF) 
Needs measurement in frequency range of interest
Requires measurement in selected DOFs

Modal Models (natural frequencies and mode 
shapes) 

Needs measurement of only one mode
Requires measurement in handful of DOFs
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 Derivation of Mathematical 
Models
Modal Models

Requirements to construct Modal Models
Refinement of Modal Model

Conversion to real modes
Compatibility of DOFs

Reduction
Expansion 

Response Models
FRF
Transmissibility
Base Excitation
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Requirement to construct 
Modal Models

Minimum requirements 
One column in case of fixed excitation or
One row when response is measured at a fixed point.



Dr H Ahmadian ,Modal Testing Lab ,IUSTDerivation of Mathematical Models

Requirement to construct 
Modal Models
Proof:
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Requirement to construct 
Modal Models
Several additional elements of FRF or even columns 
are measured to:

Replace poor data,
To provide checks
Modes have not been missed 
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Refinement of Modal Models
Complex to real conversion:

Taking the modulus of each element and 
assigning a phase of 0 or 180.
Finding a real mode with maximum projection to 
the measured one:

Multi point excitation (Asher’s method)
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Compatibility of DOFs

Employment of the measured modes in 
updating/modification of analytical 
models requires the compatibility of 
DOFs.
There are two approaches in 
compatibility excursive:

Analytical model reduction
Expansion of measured modes  
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Reduction of Analytical Model
(Guyan Reduction)
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Dynamic Model Reduction
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Expansion of Models

In order to compare analytical model 
with the measured modal data on may 
expand the measured data by:

Geometric interpolation using spline
functions
Using analytical model spatial model
Using analytical model modal model
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Expansion in Spatial Domain 
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Expansion in Modal Domain
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Response Model
Frequency response functions

Transmissibilities
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Transmissibility Plots
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Response Model
The  amplitude’s peaks 
of the transmissibilities
do not correspond with 
the resonant 
frequencies. 
Transmissibilities cross 
each other at the 
resonant frequencies 
(becomes independent 
of the location of the 
input)
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Base Excitation
An application area 
of transmissibility.
Input is measured 
as response at the 
drive point.
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Base Excitation
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Base Excitation
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Spatial Models
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 Derivation of Mathematical 
Models
Introduction
Equation Error Method (Sec. 6.3.6 page 456)

Identification of Rod FE Model
Parameter Identification

Solution of Over-determined set of Equations
Solution of Under-determined set of 
Equations
Error Analysis 
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Introduction
Construction of Spatial Model from modal 
data: 

111 ,, −−−−−− ΓΦΦ=ΦΦ=ΛΦΦ= TTT CMK
Modal model must be complete:

All modes must be present
Mode shapes are measured in all DOF’s

Measurement of complete Modal Model is 
impractical. 
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Introduction
Alternative methods are required to construct 
the spatial model from 

incomplete and 
noisy measured modes.

The difficulty with incompleteness is removed 
by reducing the number of unknowns in 
spatial model.
The noise effects are removed by averaging.
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Equation Error Method
We have some information regarding 
the spatial model format:

Symmetry
Pattern of zeros
…

We may incorporate these information 
into the identification procedure and 
reconstruct the spatial model.
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Equation Error Method
In this method the eigen problem is 
rearranged to obtain the spatial model: 
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The DOF’s of measured modes must be 
compatible with the DOF’s of spatial model.  
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Rearrangement Example:
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Identification of A Rod FE 
Model
Consider a fixed-free rod with n elements.
The mass and stiffness matrices are:
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Identification of A Rod FE 
Model
The equilibrium state at modes r and s are:
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Identification of A Rod FE 
Model
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Identification of A Rod FE 
Model
From other rows one obtains:
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Identification of A Rod FE 
Model

Only two modes and one natural 
frequency are required to construct the 
mass and stiffness matrices.
More details can be found in:

GML Gladwell, YM Ram, ”Constructing 
Finite Element Model of a Vibrating Rod”, 
Journal of Sound and Vibration, 169,229-
237,1994.
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Parameter Identification

In a general case the mass and stiffness 
matrices are parameterized and are 
obtained by rearranging:

Equation of motion in modal domain
Orthogonality requirements,
etc.
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Parameter Identification
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Parameter Identification
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Solution of underdetermined 
case
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Solution of Over-determined 
set of Equations
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Error Analysis
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Example:
The parameters to be 
updated are the 10 
stiffness and 6 masses
The measured data 
consists of the 1st 
three natural 
frequencies and mode 
shapes (added with 
uniformly distributed 
random noise)
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Example:
Eigenvalue equations arearrangment:

31 equations ( 3*6 equations for each eigenvector term, 2*6 
symmetric orthogonality equations, and 1 total mass equation)
16 parameters and 
The terms in A and b contain noisy data.
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Example

0.28-0.020.960.10.210.972323-8321352-102410111160984415021243954S/N=
20

-0.010.20.990.10.21-632035-41499141008100610008151812661041S/N=
100

0.10.110.10.2110001000700050001000100010000150012501000Exact

m6m5m4m3m2m1k10k9k8k7k6k5k4k3k2k1
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Regularized Solution
Ahmadian, Mottershead, 
and Friswell, 
REGULARISATION 
METHODS FOR FINITE 
ELEMENT MODEL 
UPDATING, Mechanical 
Systems and Signal 
Processing (1998) 
12(1),47-64
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Home Work 3

Develop a procedure to construct the 
FE model of a fixed-free beam from 
minimum modes.

How many modes are required to obtain EI 
an m of each element?
Add some noise to the modes and try to 
reconstruct the model. 
Investigate the correlated noise effects?
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