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Abstract—The finite-difference time-domain (FDTD) technique
for simulating electromagnetic wave interaction with a dispersive
chiral medium is extended to include the simulation of dispersive
bianisotropic media. Due to anisotropy and frequency dispersion
of such media, the constitutive parameters are represented by
frequency-dependent tensors. The FDTD is formulated using the
Z-transform method, a conventional approach for applying FDTD
in frequency-dispersive media. Omega medium is considered
as an example of bianisotropic media, the frequency-dependent
tensors of which are based on analytical models. The extended
FDTD method is used to determine the reflection and transmission
coefficients of co- and cross-polarized electromagnetic waves from
omega slabs, illuminated by normally incident plane waves. Three
cases are simulated: 1) a slab of uniaxial omega medium with its
optical axis parallel to the propagation vector; 2) a slab of rotated
uniaxial omega medium with its optical axis not parallel to the
propagation vector; and 3) a slab of biaxial omega medium. The
results are validated by means of comparisons with analytical
solutions.

Index Terms—Bianisotropic media, chiral medium, dispersive
media, finite-difference time-domain (FDTD), omega medium,
Z-transform method.

I. INTRODUCTION

A rapidly growing research interest in the field of electro-
magnetics is the physical and electromagnetic (EM) prop-

erties of materials. Due to the need for special EM properties,
artificially structured metamaterials, such as bimedia, classified
as materials exhibiting magnetoelectric coupling, are suggested.

Bimedia are investigated for various applications such as
antenna radomes [1], [2], waveguides [3]–[5] and polariza-
tion transformers [6]. They are also studied for substrates of
microstrip antennas [7]–[10], absorbers [11], [12], backward
wave media [13], and cloaking materials [14].

In these materials, there is a coupling between electric and
magnetic fields which causes simultaneous production of elec-
tric and magnetic polarizations due to the electric or magnetic
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excitation. This phenomenon is mathematically represented by
magnetoelectric coupling tensors or coefficients in constitutive
relations which make electric and magnetic flux densities de-
pendent on both electric and magnetic fields.

Bimedia themselves are divided into biisotropic and bian-
isotropic subclasses. The properties of the former are not depen-
dent on the direction; so its constitutive parameters are scalars.
However, the latter, which exhibits different behaviors in dif-
ferent directions, has tensor constitutive parameters. Chiral and
pseudochiral omega materials are samples of biisotropic and
bianisotropic media, respectively.

Modeling EM wave interaction with bimedia is an important
problem, which has been investigated analytically and numeri-
cally. Finite-difference time-domain (FDTD) is one of the nu-
merical methods used for modeling chiral media as well as bi-
isotropic media. FDTD modeling of biisotropic media is studied
in different articles [15]–[25], in some of which the effects of
frequency dispersion are accounted for [20]–[25].

Many approaches are introduced for modeling dispersive
media using FDTD method. Several summaries of various
methods are given in [26]–[28]. Among them, the auxiliary
differential equation (ADE), the Z-transform, and the piecewise
linear recursive convolution (PLRC) approaches are widely
used and proven to be very accurate. Comparisons of their ac-
curacy and stability, given in [29] for Lorentz media, show that
the stability limits of these approaches are approximately the
same. However, the Z-transform approach has the best accuracy
near resonant frequencies and is very easy to implement.

Demir et al. [22] studied FDTD modeling of chiral media
using the Z-transform method. They incorporated the dispersive
nature of permittivity, permeability and chirality in the FDTD
formulation and provided a full dispersive model in which fre-
quency dependence of permittivity and permeability follows the
Lorentz model and that frequency dependence of chirality fol-
lows the Condon model. Their work is based on converting
frequency domain constitutive relations to Z-domain relations,
proper forms for deriving FDTD updating equations. In this
transform, backward time differences are used for time deriva-
tives in order to decouple updating equations for electric and
magnetic field components. Another FDTD model of dispersive
chiral media using transformation to Z domain was developed
by Pereda et al. [25]. In [25], Maxwell’s curl equations, firstly
expressed in Laplace domain, are directly transformed to dis-
crete-time domain. On the other hand, the constitutive relations,
also expressed in Laplace domain, are first converted to Z do-
main using Mobius transform [30]; they are then expressed in
the discrete-time domain. In this method, central differences are
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used for time derivatives to preserve the second-order accuracy
of the conventional FDTD.

Furthermore, Akyurtlu et al. introduced a FDTD method
for modeling transverse propagation through a uniaxial bian-
isotropic medium [31] called BA-FDTD. This method is based
on decomposing electric and magnetic fields into the wave-
fields. They treated the anisotropic chiral medium problem as
the sum of two problems associated with non-chiral anisotropic
media. In their simulation, an axially chiral medium as a bian-
isotropic medium with no frequency dispersion is considered.

Furthermore, omega medium is a bianisotropic medium
formed by including -shaped metal elements inside an
isotropic dielectric material. This medium is suggested by
Saadun and called pseudochiral medium [32]. When an
external electric (or magnetic) field is applied to an omega
particle, it induces an electric dipole moment parallel to its
stem and a magnetic moment orthogonal to its loop. This causes
magnetoelectric coupling in the medium. As mentioned before,
the constitutive parameters of this medium are frequency de-
pendent tensors. Several papers have introduced a number of
reliable analytical models of particles and omega medium
which have been developed and validated numerically and
experimentally [33]–[35].

In the present paper, the FDTD formulation for dispersive
chiral media using the Z-transform method [22], simply imple-
mentable and well accurate, is extended in order to include a
more general case of bianisotropic media. Omega medium is as-
sumed as an example of bianisotropic media whose frequency
dispersion model follows the forms given in [13], based on the
analytical models. In Section II, the theoretical development of
the FDTD formulation in dispersive bianisotropic media is pre-
sented. Finally, in Section III, the presented FDTD formulation
is validated by simulating the interaction of a plane wave with
an omega slab in three cases of uniaxial omega slab, rotated uni-
axial omega slab, and rotated biaxial omega slab. The analytical
solution method, given in [36], is used for validating the results.

II. THEORETICAL DEVELOPMENT

In this section, the basic theory of FDTD formulation for dis-
persive bianisotropic media is presented in two parts. Since con-
stitutive relations of media are used in deriving FDTD updating
equations, the constitutive properties of the media are described
in part A. These relations are considered in the forms suggested
by [37] for uniaxial and biaxial cases. Next, an omega medium
is studied as a sample of bianisotropic media. The frequency dis-
persion models of this medium are taken from [13]. Finally, the
effect of axes rotations of the medium is investigated. In part B,
the FDTD formulation for dispersive bianisotropic media, dis-
cussed in part A, is explained using the Z-transform method.

A. Constitutive Relations and Frequency Models

Bianisotropic media are classified as media with two proper-
ties, anisotropy and magnetoelectric coupling.

A bianisotropic medium can be made by including small
metal particles with loops and handles (like ) embedded in a
dielectric host medium. The resonant behavior of particles leads
to the frequency dispersion of the medium which makes the
constitutive parameters frequency dependent. One type of such

Fig. 1. Geometry of the omega structure: (a) a uniaxial medium with optical
axis along �� direction. (b) A biaxial medium.

materials is a pseudochiral medium (omega medium) that
can be realized as a composite with -shaped metal inclusions,
shown in Fig. 1. In Fig. 1(a), -shaped metal elements lie in
planes parallel to xz- and yz-planes (i.e., uniaxial medium)
and, in Fig. 1(b), all of these elements lie in planes parallel
to yz-plane (i.e., biaxial medium). Generally, the constitutive
relations in a reciprocal bianisotropic medium in frequency
domain can be written as [37]

(1.a)

(1.b)

where , , , and are the electric field, electric flux density,
magnetic field, and magnetic flux density, respectively. In (1), ,

, and present permittivity, permeability, and magnetoelectric
coupling frequency-dependent tensors, respectively. The super-
script stands for transpose. It is noted that due to anisotropy of
the medium, the constitutive parameters are in tensor forms and,
because of frequency dispersion, they are frequency dependent.
In the following, constitutive relations of two cases (uniaxial and
biaxial) of bianisotropic media are reviewed.

According to Fig. 1(a), in a uniaxial bianisotropic medium
in which the optical axis is along , the constitutive tensors are
given by

(2.a)

(2.b)

(2.c)

where and are the
two-dimensional (2-D) transverse symmetric and antisymmetric
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unit dyads defined in the xy-plane, respectively. Here, subscript
stands for transverse. Also, in (2.c), is a complex dimen-

sionless parameter that measures the magnetoelectric coupling

effect. Substituting (2) in (1) and considering , the
constitutive relations in a uniaxial bianisotropic medium with
optical axis along are determined by

(3.a)

(3.b)

Moreover, in a biaxial bianisotropic medium, as shown in
Fig. 1(b), the constitutive tensors are given by

(4.a)

(4.b)

(4.c)

The constitutive relations of this medium are obtained by sub-
stituting (4) in (1).

(5.a)

(5.b)

Considering an omega medium as a bianisotropic medium
and assuming the quasi-static polarization of particles in
the z-direction, the dispersion of relative normal permittivity,

, and permeability, , can be neglected [33]. The relative
transversal permittivity, , relative transversal permeability,

, and magnetoelectric coupling, , assuming low-density of
particles, are given by [13]

(6.a)

(6.b)

(6.c)

where , , and are resonant frequency, damping ratio,
and magnetoelectric coupling coefficient, respectively. In (6),
and are static relative permittivity and permeability, and
and are relative permittivity and permeability at frequencies
much larger than , respectively.

If the coordinate axes rotate by Euler angles , , and , the
constitutive tensors of the medium with respect to the rotated
coordinates, , , and can be calculated
through

(7.a)

(7.b)

(7.c)

where , , and are parameters, given in (2) and (4) for uni-
axial and biaxial media, respectively. In (7), is the rotation
matrix defined by

(8)

where , , and are Euler angles [38].
Substituting (4) and (2) in (7), the constitutive tensors of ro-

tated uniaxial and biaxial bianisotropic media are calculated by
(9) and (10), respectively, as follows:

(9.a)

(9.b)

(9.c)

(10.a)

(10.b)

(10.c)

In the following subsection, the extension of FDTD method
for simulating the wave interaction with dispersive bianisotropic
media is presented.

B. FDTD Formulation of Dispersive Bianisotropic Media

Basically, the FDTD method is based on simultaneous solu-
tions of Maxwell’s curl equations in the time domain

(11.a)

(11.b)

Two major tasks are taken in a simple FDTD formulation
of a dispersive medium: first, updating flux densities and
by decomposing and discretizing the curl equations in time and
space, and second, deriving equations in order to update fields

and using constitutive relations.
In the first step, updating equations for and are

formed by decomposing (11) into x, y, and z components
and discretizing them in time and space. For example, for the
component x, we have
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(12.a)

(12.b)

Components y and z can also be obtained in a similar way.
In the second step, the updating equations for field values

are derived using constitutive relations given in the frequency
domain (1). Since the updating equations are time-domain
relations, the frequency-domain constitutive relations (1) may
be converted to the time-domain ones. This transformation
involves convolution integrals. To avoid the time consuming
computation of convolutions, the constitutive relations are
expressed in Z domain as follows:

(13.a)

(13.b)

where is the sampling period of time discretization in Z trans-
form, and , , and are the Z transforms of the
time-domain tensors whose Fourier transforms are , ,
and , respectively. The main advantage of using Z trans-
form is that multiplications in the frequency domain are pre-
served in the Z domain. This approach is suggested by Sullivan
as “Z-transform method” for FDTD modeling of wave propaga-
tion in dispersive media [39]. In this method, determining con-
stitutive parameters in the Z domain is required. If the Z-domain
constitutive parameters are expressed in the form of

where , , , and are constants and , then
and are simply expressed by polynomials of order .
It is noticed that since in the Z domain is equivalent
to in the time domain, a simple updating algorithm
is obtained.

Given constitutive tensors in bianisotropic medium (9) and
(10) and their frequency-dependent components (6), the task is
to evaluate , , and . First, by separating the fre-

quency-dependent parts from the independent parts, the follow-
ings are concluded

(14.a)

(14.b)

where , , , , and are given by

(15.a)

(15.b)

(15.c)

(15.d)

(15.e)

In (15), , , and

in the uniaxial case, shown in Fig. 1(a) and

, , ,

, and in the biaxial case, shown in Fig. 1(b).
To convert frequency-domain relations to Z domain, the fol-

lowing relations are used [39]:

(16.a)

(16.b)

(16.c)

(16.d)

where and are constants.
Applying these transformations to (15), the Z-domain consti-

tutive tensors , , and in (13) become (17), shown
at the bottom of the next page.

The next task is to express constitutive relations in Z domain.
This is obtained by substituting (17) in (13)

(18.a)

(18.b)

where

(19.a)
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(19.b)

(19.c)

(19.d)

(19.e)

(19.f)

(19.g)

(19.h)

(19.i)

It is interesting to note that by separating z terms, s (18) can be
written as

(20.a)

(20.b)

where vectors , , , and are defined as

(21.a)

(21.b)

(21.c)

(21.d)

At this point, the Z-domain equations that yield the updating
equations for field values can be simply extracted from (20) in
the following way:

(22.a)

(22.b)

Now, the property of Z transform is
used in the derivation of updating equations of fields and .
By setting the sampling period, , equal to one-half of the time
step in FDTD [39], (22) can be written as

(23.a)

(23.b)

in discrete-time domain. Equations (23) are decomposed into x,
y, and z components and used in the FDTD formulation. For
example, for the x components of fields we have

(24.a)

(17.a)

(17.b)

(17.c)
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Fig. 2. Normal incidence of an x-polarized plane wave on a dispersive bian-
isotropic slab. (a) Uniaxial omega slab. (b) Rotated uniaxial omega slab. (c)
Rotated biaxial omega slab.

(24.b)

where and are elements of inverse matrix of

and , respectively, indexed by . The y and z components
can be obtained similarly.

According to updating (23), new values of and depend
on and calculated in the present time step and vectors
calculated in previous time steps. The values of flux density vec-
tors and are given by (12) for the component x. However,
the updating equations for vectors are required. This is ac-
complished using (21). Vectors , , , and are first
written as

(25.a)

(25.b)

(25.c)

(25.d)

By expressing the aforementioned equations in the discrete-time
domain, updating equations for vectors are simply obtained
by

(26.a)

(26.b)

(26.c)

(26.d)
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Fig. 3. 1-D FDTD cell used for modeling the bianisotropic media.

It should be noted that all of these equations must be decom-
posed into components x, y, and z in order to be used in FDTD
formulation. For example, for the x components of vectors,
the following can be presented

(27.a)

(27.b)

(27.c)

(27.d)

According to (23) and (24), the vectors and must be
calculated at points , , and

. However, the vectors and must be evaluated
at points , ,
and . As a result, all components of
the electric and magnetic fields must be known at different six
points while in a conventional Yee’s cell, each component of
a field vector is defined only at one point. For instance, the x
component of electric field is defined at . To
overcome this problem, each component of the field is defined at
five undefined points as the average of its values at neighboring
defined points. The average formulas are given in the Appendix;
for example, for the component x of the electric field.

At this point, the algorithm of FDTD is completed. The
process of the FDTD in a dispersive bianisotropic medium is
carried out in the following order:

1. Updating all components of flux vectors [using (12)];
2. Updating all components of field vectors [using (24)];
3. Defining all components of electric and magnetic field

vectors at undefined points as the average of their values
at neighboring defined points (see Appendix);

4. Updating all components of vectors [using (27)].

In the next part of the paper, this algorithm is applied to the
problem of normal incidence of electromagnetic waves, on an
omega slab in several cases of arrangement of -shaped parti-
cles in the slab.

III. FDTD SIMULATION OF NORMAL INCIDENCE ON A SLAB

OF BIANISOTROPIC MEDIUM

In this section, the presented formulation is used to simulate
plane wave normal incidence on a dispersive bianisotropic slab
in three different cases illustrated in Fig. 2. First, the slab is as-
sumed to be a uniaxial medium where the optical axis is along
the propagation vector [Fig. 2(a)]. Second, a rotated slab of uni-
axial medium where the optical axis is not along propagation
vector is considered [Fig. 2(b)]. Third, a slab of rotated biaxial
medium is simulated [Fig. 2(c)]. As a numerical example in our
simulations, a slab of omega medium is considered through the
following parameters

(28)

It is noted that with these values, constitutive tensors obey the
conditions for constitutive tensors of lossy bianisotropic media,
given in [40].

The thickness of the slab is assumed to be 10 cm (in the
direction). The 1-D FDTD computational space is 1 meter long
which consists of 1000 cells where the slab is assumed to be
located between cells 450 and 550 in the middle of computa-
tional space. A schematic of 1-D FDTD cell is presented in
Fig. 3. As noted in Section II, attendance of each component
of the electric and magnetic fields is necessary for FDTD mod-
eling of Bianisotropic media. The soft lattice truncation condi-
tions [41] are applied on both sides of computation space. Be-
cause of dispersion and bianisotropy of the medium, the time
step should be chosen short enough to avoid the instability of
FDTD method. Hence, in this paper, the time step is set to

, where is the length of cells,
is the slab thickness, and is light velocity in free space. The

choice of very small is due to the special frequency disper-
sion model (6.b). In FDTD simulations, the slab is illuminated
by an x-polarized Gaussian waveform of electromagnetic plane
wave propagating along . It is desired to transform time-do-
main results of FDTD to frequency domain and calculate the
transmission and reflection coefficients. Discrete Fourier trans-
form (DFT) is used to obtain frequency-domain data. The re-
sults of FDTD method are compared with the exact results, cal-
culated based on the analytical method presented in [36]. The
comparison of results illustrates the high accuracy of the pre-
sented FDTD method.

A. Normal Incidence on a Uniaxial Omega Slab, Propagation
Along the Optical Axis

In the first example, a slab of uniaxial omega medium with an
optical axis along is assumed which is illuminated by an x-po-
larized plane wave propagating in the direction [Fig. 2(a)]. The
constitutive relations of medium are given in (5.a) and (5.b) and
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Fig. 4. Simulation results of normal incidence of a Gaussian plane wave on
uniaxial omega slab along its optical axis. (a) Co-polarized reflected field in time
domain. (b) Co-polarized transmitted field in time domain. (c) Co-polarization
of reflection and transmission coefficients in frequency domain.

constitutive tensors and their components are given in (6) and
(28).

From (3), the bianisotropy of the medium couples the x and
y components of electric field to the y and x components of the
magnetic field, respectively. As the incident wave consists of x
and y components of electric and magnetic fields, respectively,
other components of fields, component y of the electric field
and component x of the magnetic field, do not appear. Hence,
the cross-polarizations of reflected and transmitted waves do
not exist. The FDTD simulation agrees with this statement and
cross-polarized reflection and transmission coefficients are zero.
In Fig. 4, the co-polarizations of FDTD simulation results are
shown and compared with analytical results. The comparison
shows a good agreement between the developed FDTD results
and analytic solutions. Time-domain reflected and transmitted
waves are presented in Fig. 4(a) and Fig. 4(b), respectively, and
frequency-domain reflection and transmission coefficients are
demonstrated in Fig. 4(c).

B. Normal Incidence on Rotated Uniaxial Omega Slab

In the second example, a normally incident x-polarized plane
wave propagating along the direction illuminates a slab of
uniaxial omega medium with its optical axis not parallel to the
propagation vector [Fig. 2(b)]. For this case, rotated particles
are assumed in the slab. For instance, the Euler angles are set
to , , and . The constitutive tensors
of the rotated medium are given by (9) and the parameters are
determined by (6) and (28).

Due to the effect of rotation matrix in (9.c), the magneto-
electric coupling tensor becomes a dense matrix with many
non-zero elements, resulting in a relatively strong magnetoelec-
tric coupling between all the components of electric and mag-
netic fields. Here, all components of electric and magnetic fields
appear in the slab. Due to the anisotropy of the medium,

and . Therefore, the z components of the fields may
exist in the slab and propagate along the direction. However,
these components vanish at the slab boundaries and do not prop-
agate outside the slab. In this example, the reflected and trans-
mitted waves have both co- and cross-polarizations illustrated
in Fig. 5 and Fig. 6, respectively. The FDTD results and related
analytical solutions are compared. They reveal a good accuracy
of the developed FDTD method for the dispersive bianisotropic
media.

C. Incidence on Rotated Biaxial Omega Slab

In the final example, a normal incidence of plane wave on a
slab of rotated biaxial omega medium is considered [Fig. 2(c)].
In this case, constitutive relations are given in (10) and param-
eters are defined as the previous example. Because of rotation,
as in the last example, is a dense matrix. Therefore, co- and
cross-polarizations of transmitted and reflected waves both
exist. The results of FDTD simulation and comparison with
the exact solution are provided in Fig. 7 and Fig. 8 for co- and
cross-polarizations, respectively.

IV. CONCLUSION

In this paper, the FDTD method is developed for simulating
the electromagnetic wave interaction with dispersive bian-
isotropic media. The Z-transform method is used in developing
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Fig. 5. Simulation results of co-polarized (a) reflected field. (b) Transmitted
field in time domain. (c) Reflection and transmission coefficients in frequency
domain of a rotated uniaxial omega slab illuminated by normal incidence of a
Gaussian plane wave.

the technique. Due to anisotropy of media, tensor notation is
used in the formulation of FDTD. The developed FDTD method
is applied to simulate the interaction of electromagnetic plane

Fig. 6. Simulation results of cross-polarized (a) reflected field. (b) Transmitted
field in time domain. (c) Reflection and transmission coefficients in frequency
domain of a rotated uniaxial omega slab illuminated by normal incidence of a
Gaussian plane wave.

waves with both uniaxial and biaxial omega media in order to
extract co- and cross-polarized, transmitted and reflected waves
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Fig. 7. Simulation results of co-polarized (a) reflected field. (b) Transmitted
field in time domain. (c) Reflection and transmission coefficients in frequency
domain of a rotated biaxial omega slab illuminated by normal incidence of a
Gaussian plane wave.

in time domain and reflection and transmission coefficients in
frequency domain. The numerical results of FDTD are com-
pared with analytical results and a good agreement is observed.

Fig. 8. Simulation results of cross-polarized (a) reflected field. (b) Transmitted
field in time domain. (c) Reflection and transmission coefficients in frequency
domain of a rotated biaxial omega slab illuminated by normal incidence of a
Gaussian plane wave.

APPENDIX

The component x of electric field at points ,
, ,
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, and is not defined in a Yee cell.
To define this component of the field, the same component of
the field at the neighbors is averaged as follows:

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

Other components of and fields are averaged in a similar
manner.
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