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Modeling Graphene in the Finite-Difference
Time-Domain Method Using a
Surface Boundary Condition
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Abstract—An effective approach for finite-difference time-do-
main modeling of graphene as a conducting sheet is proposed.
First, we present a new technique for implementing a conducting
surface boundary condition in the FDTD method; then, the dis-
persive surface conductivity of graphene is imposed. Numerical
examples are presented to show the stability, accuracy, applica-
bility, and advantages of the proposed approach. Validation is
achieved by comparison with existing analytic methods.

Index Terms—Finite-difference time-domain (FDTD), graphene,
surface boundary condition.

I. INTRODUCTION

G RAPHENE, which is a planar monoatomic layer of
carbon bonded in a hexagonal structure, has recently

gained significant interest due to its potential in enabling new
technologies and addressing key technological challenges [1],
[2]. In response to electromagnetic fields, graphene behaves as
a surface with conductivity that depends on chemical doping
or external field bias [3], [4]. To understand the scattering and
wave guiding properties of graphene, Maxwell equations need
to be solved either in two-dimensional or three-dimensional
space. Analytical solutions for simple canonical problems
involving graphene layers are available; however, for most
problems, numerical solutions of Maxwell equations are in-
evitable. Vakil and Engheta [5] proposed considering graphene
sheet as a very thin layer (with thickness around 1 nm) and the
surface conductivity of graphene to be converted to volumetric
conductivity. Due to simplicity and applicability to most nu-
merical methods (particularly, applicability to most popular
commercial software tools such as CST Studio Suite [6] and
COMSOL Multiphysics [7]), the technique proposed by Vakil
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and Engheta was used in most of the published works such as
[8]–[13]. Since the space inside the graphene layer has to be
finely meshed, the solver needs significant computing memory
resources and time. Since the graphene sheet has practically
zero thickness, it can be modeled as a surface boundary condi-
tion (SBC) as was done in earlier works [14], [15]. Although
this approach is effective, its implementation is challenging
in numerical methods based on volumetric discretization and
requires special modification to the algorithm.
The finite-difference time-domain (FDTD) method is one the

most popular numerical techniques for solving Maxwell equa-
tions because of its generality, simplicity and ease of implemen-
tation, particularly when a wide range of frequency is of in-
terest [16], [17]. Modeling graphene in FDTD can be performed
in different ways with dramatic variation in the efficiency and
resource requirements of the simulation. Two approaches that
were used for modeling of graphene sheets in the FDTDmethod
are: 1) Standard FDTD method with fine enough discretization
inside the sheet [8], [9], [18], [19] and 2) Subcell FDTD ap-
proach typically used to model electrically thin material sheets
[20]. In both approaches, graphene sheets were considered as
thin layers occupying some (in the first one) or a fraction (in
the second one) of the FDTD cells while converting the sur-
face conductivity of graphene to volumetric conductivity. Since
graphene is physically one-atom-thick layer, the first approach
calls for extremely fine spatial discretization of the computa-
tional domain. In the FDTDmethod introduced by Yee [16], be-
cause of the linear relationship between the discretization steps
in space and time (related to stability), finer spatial grid needs
finer time steps. Therefore, this approach requires large memory
resources and time, and hence is impractical in most real-world
problems. The second approach, which uses the subcell FDTD
method, cannot model infinitely thin sheets, and requires spe-
cial type of PML [21].
SBCs have been implemented in the FDTD method in many

works; however, most of the earlier works considered only the
reflection from a layer in what has become known as the surface
impedance boundary condition approach [22], [23]. In 1992,
Wu and Han [24] introduced a method for implementation of
a resistive sheet boundary condition which handles both trans-
mission and reflection through an infinitesimally thin resistive
sheet, but the method suffered from instability [24], [25]. Other
approaches were introduced for modeling a thin layer of good
conductor with high loss using impedance network boundary
condition [26]–[29]; however, for an infinitesimally thin layer
these methods were fundamentally identical to the work by Wu
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Fig. 1. A 1-D FDTD cell including a conductive sheet at grid .

and Han [24]. Considering that graphene sheets are infinitesi-
mally thin and that graphene is not a good conductor (i.e., the
imaginary part of the surface conductivity of graphene is larger
than its real part), the previousmethods and approach are not ap-
plicable for modeling graphene as an SBC in the FDTDmethod.
In this paper, we propose a method for implementing an SBC

in the FDTD method without any restriction on the conduc-
tivity of the surface, thus making the method directly applicable
to modeling graphene. The graphene is considered as a zero-
thickness sheet with complex conductivity, and the approach
proposed, which is based on coupling between updating equa-
tions at both sides of the sheet, is used to implement a surface
boundary condition in the FDTD method. Full validation of the
method is presented.

II. IMPLEMENTATION OF CONDUCTING SURFACE BOUNDARY
CONDITION IN THE FDTD METHOD

A. Implementation in 1-D FDTD

We first consider the one-dimensional problem of a TEM po-
larized plane wave incident normally on a conducting sheet.
The 1-D FDTD mesh including a conductive surface is shown
in Fig. 1, where the and field components are stag-
gered one-half cell apart. A conductive surface with constant
conductivity is positioned at the spatial grid , as
shown in Fig. 1. Since a conductive material allows for the
possibility of a conduction current, we consider two magnetic
fields, and immediately to the left and right sides of
the conductive sheet boundary. Next, we discretize Faraday’s
law at the grid such that the cen-
tral difference scheme is used for the time derivative ,
and backward and forward difference schemes are used for spa-
tial derivative along the direction:

(1)

where and are the permeability of media to the left and
right sides of the interface, and , , and are the central,
backward and forward difference derivative approximations de-
fined as

(1) requires the value of at , which is not defined
in the FDTD mesh (see Fig. 1). However, using the boundary
condition at the conducting surface,

can be substituted by

(2)

where the values of the magnetic field components at time step
are approximated by the average of the field values at

and . Rearranging (1), we have

(3)

where

and are functions of the field components at time steps
and defined by

and

and

The updating equations for and can be obtained by
solving (3)

(4)

Once the updating equations at the surface are derived, one
can easily apply classical leapfrog algorithm for updating the
field values at other grids, considering that and should
be used for updating at grids and , respectively.

B. Implementation in 3-D FDTD

Fig. 2 shows a 3-D FDTD cell including a conductive surface
positioned parallel to the plane at the grid . Due
to the possibility of current and net charge at the conducting
surface, a pair of each of the tangential components of the mag-
netic field ( and ) and a pair of the normal component
of electric field are considered immediately to the bottom
and top sides of the surface. The pair associated with each field
are designated by the superscripts 1 and 2 (see Fig. 2). The
updating equations for these components can be derived in a
similar way to the 1-D case. By discretization of Faraday’s law

at ( , , ) such that the cen-
tral difference scheme is used for the time derivative and spatial
derivatives along and direction (parallel to the surface), and
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Fig. 2. A 3-D FDTD cell including a conductive sheet at grid .

the backward and forward difference schemes are used for the
spatial derivatives along direction (normal to the surface), we
have

(5)

where and are the permeability of the media to the bottom
and top sides of the interface. A pair of similar equations can be
written for and . Clearly, (5) requires at ( , ,

); however, this component is not defined at that grid
point in the FDTD cell (see Fig. 2), therefore, it is expressed
using and via the boundary condition, same as (2).
Finally, a system of equations, identical to (3), can be obtained
where and are defined as

Therefore, solving (3) gives updating equations for and
as (4). In a similar way, one can obtain updating equations

for and . Finally, and are, respectively, up-
dated by , , and using classical Yee’s algo-
rithm, i.e.,

We tested our method for stability by using different values
of . No instability was observed for . In the
simulations we set (where is di-
mension of the problem and is wave velocity in the medium)
and found that the method does not affect the CFL stability con-
dition. It should be noted that considering (4), the presented
method works if . Substituting the values of
and , we have , which is an inherent condition.

III. APPLICATION TO THE MODELING OF

GRAPHENE STRUCTURES

In the absence of magnetostatic bias and spatial dispersion,
graphene can be represented as a scalar surface conductivity

that depends on frequency , chemical poten-
tial (which can be controlled by either an applied electro-
static bias or doping), phenomenological scattering rate , and
temperature [4]. The conductivity of graphene has been com-
monly expressed by the well-known Kubo formula consisting
of two terms, , where the former is due to
the intraband contributions and the latter to the interband con-
tributions. It is shown that for the frequency below ,
where is the reduced Planck constant, the interband term is
negligible and the intraband term is dominant [3]. Considering

eV, which is a practical condition, the intraband is
the dominant term in gigahertz and terahertz regimes. can
be evaluated by Drude-like expression as in

(6)

where

is the dc conductivity, is the phenomenological
electron relaxation time, is the electron charge and is the
Boltzmann constant [3]. Similar to earlier works in the terahertz
regime, (6) is considered as the surface conductivity model of a
graphene sheet.
To implement the conductivity model [(6)] in the FDTD

method, the boundary condition at a conducting sheet can be
written in the frequency domain as

(7)

where denotes the unit vector normal to the sheet, and
are magnetic fields at two sides of the sheet, is the tan-

gential component of the electric field at the sheet, and is
the surface conductivity. By substituting (6) in (7) and con-
verting the expression from frequency domain to time domain
via , we have

By using central difference scheme for time derivative, we
obtain

The implementation into an FDTD algorithm will then
follow the steps outlined in Section II and results in field
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Fig. 3. Transmission (T) and reflection coefficients for normally incident
plane wave on a graphene layer, (a) magnitude, and (b) phase.

Fig. 4. Line source scattering by a graphene infinite sheet.

update equations identical to (4) aside for the following
substitutions:

IV. MODEL VALIDATION AND SIMULATION RESULTS

We consider a grapheme sheet of K, eV
and ps, consistent with [30]. As a first example, 1-D
FDTD technique is applied where a wideband Gaussian pulse

Fig. 5. at the observation point, indicated by cross in Fig. 4, (c) normalized
pattern of at the wavelength of m.

Fig. 6. Normalized pattern of at the wavelength of m.

is used as the source. The electric field is recorded at both sides
of the sheet and discrete Fourier transform (DFT) is used to
obtain the transmission and reflection coefficients, which are
also calculated analytically as and ,
where is the free space impedance. The comparison between
the results of our proposed FDTD algorithm and the analytic
solution is shown in Fig. 3. By setting the FDTD spatial mesh
to at 10 THz (and the time step to ),
the error between the FDTD and analytic solutions was found
to be less than 0.035% in the amplitude and less than 0.8% in
the phase, for all frequencies below 10 THz. Since the graphene
was modeled as a boundary, the size of the FDTD mesh was
chosen independently of the graphene sheet.
As a second example, we consider the 2-D problem of an in-

finite line source radiating next to an infinite graphene sheet,
as shown in Fig. 4. The problem is simulated using 75 75
cells with m with a 8-cells Berenger’s orig-
inal PML [17] to truncate the domain. To prevent reflection
from PML, graphene boundary condition is extended into the
PML such that and its corresponding subcomponent of
are updated using the graphene boundary condition proposed
here. To meet the CFL-stability condition, the time step is set to

. A normal derivative Gaussian pulse having
the waveform

A
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Fig. 7. Plane wave interaction with a periodic graphene micro-ribbon array supported by a SIO thin film, inset showing intensity of the fields long after the pulse
has passed the array for TE polarized excitation.

Fig. 8. (a) Transmission of the graphene micro-ribbon array for TE and TM
polarized incident waves. (b) Comparison between transmission of the graphene
micro-ribbon array for TM polarization with that of an infinite graphene sheet
over the same substrate.

is used for the temporal excitation of the line source, where
ps and . The values of are recorded at

observation circle depicted in Fig. 4. Fig. 5 shows the recorded
at the point depicted by cross in Fig. 4. Then DFT is used

to obtain the pattern of at the wavelength of m
which is represented in Fig. 6. A semi-analytic solution is also
obtained by approximating the grapheme sheet as a cylinder
with a radius approaching infinity [31]. Fig. 5 and Fig. 6 show
strong agreement between the FDTD results and those obtained
from the semi-analytic method. Additionally, the applicability
of classical PML to the proposed FDTD method is established
in contrast to the subcell method where a special type of PML
would be needed [21]. To test the stability of the method, the
simulation was run for 200 000 time steps (around 1 ns) without
any trace of instability.
Finally, we show the applicability of the proposed method

to simulate finite-width graphene sheets. We consider periodic

Fig. 9. Transmission of the graphene micro-ribbon array for TE polarized in-
cident waves: (a) eV, ps and different values of W/P,
(b) , ps and different values of , (c) ,

eV and different values of . In all results m.

graphene micro-ribbon arrays recently reported in [32], [33].
Fig. 7 shows graphene ribbons, infinite in and periodic in
. The computational domain consists of
cells with uniform cell size of 20 nm, and is terminated by
periodic boundary condition and PML in the and directions,
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respectively. A Gaussian waveform is used for the temporal
excitation. The values of the transmitted fields are recorded
and then DFT is used to obtain the frequency domain response.
Fig. 8(a) shows the amplitude of the transmission coefficient
for TE (magnetic field parallel to the ribbons) and TM (electric
field parallel to the ribbons) polarized incident waves. For
TM polarization, the transmission of the micro-ribbon array
is similar to that of an infinite graphene sheet [which we
calculated using our FDTD method and the analytic solution
[34], and presented in Fig. 8(b)]; however for TE polarization,
a stop band occurs around 8.35 THz due to plasmon resonance
[32], [33] which is depicted in the inset in Fig. 7. Interestingly,
in the stop band, the structure can be considered as a polarizer
[35]. As shown in Fig. 9, the stop band frequency varies by
changing W/L (see Fig. 7) and chemical potential and the
bandwidth depends on the electron relaxation time . We note
here that in [33], the numerical solution was obtained using
modal matching technique which is significantly limited in
comparison to the FDTD method, especially when the number
of graphene ribbons is finite or when using inhomogeneous
substrates or coating.

V. CONCLUSION

This paper proposed a method for FDTD modeling of
graphene. The graphene is considered as a zero-thickness
conducting sheet and a novel approach based on coupling
between updating equations at both sides of the sheet is used to
implement a surface boundary condition in the FDTD method.
Validation of the method is achieved by providing numerical
examples and comparison with results obtained using analytic
and semi-analytic solutions. Most importantly, the method
proposed here for FDTD modeling of graphene is stable,
reduces computational cost, and does not have sub-cell FDTD
restrictions.
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