Search published articles


Showing 10 results for Meta-Heuristics

M. Shahrouzi,
Volume 1, Issue 2 (6-2011)
Abstract

Meta-heuristics have already received considerable attention in various fields of engineering optimization problems. Each of them employes some key features best suited for a specific class of problems due to its type of search space and constraints. The present work develops a Pseudo-random Directional Search, PDS, for adaptive combination of such heuristic operators. It utilizes a short term memory via indirect information share between search agents and the directional search inspired by natural swarms. Treated numerical examples illustrate the PDS performance in continuous and discrete design spaces.
A. Csébfalvi,
Volume 2, Issue 1 (3-2012)
Abstract

This paper provides a test method to make a fair comparison between different heuristics in structure optimization. When statistical methods are applied to the structural optimization (namely heuristics or meta-heuristics with several tunable parameters and starting seeds), the "one problem - one result" is extremely far from the fair comparison. From statistical point of view, the minimal requirement is a so-called "small-sample" according to the fundamental elements of the theory of the experimental design and evaluation and the protocol used in the drug development processes. The viability and efficiency of the proposed statistically correct methodology is demonstrated using the well-known ten-bar truss on a set of the heuristics from the brutal-force-search up to the most sophisticated hybrid approaches.
M. Shahrouzi , A. Yousefi,
Volume 3, Issue 1 (3-2013)
Abstract

Meta-heuristics have already received considerable attention in various engineering optimization fields. As one of the most rewarding tasks, eigenvalue optimization of truss structures is concerned in this study. In the proposed problem formulation the fundamental eigenvalue is to be maximized for a constant structural weight. The optimum is searched using Particle Swarm Optimization, PSO and its variant PSOPC with Passive Congregation as a recent meta-heuristic. In order to make further improvement an additional hybrid PSO with genetic algorithm is also proposed as PSOGA with the idea of taking benefit of various movement types in the search space. A number of benchmark examples are then treated by the algorithms. Consequently, PSOGA stood superior to the others in effectiveness giving the best results while PSOPC had more efficiency and the least fit ones belonged to the Standard PSO.
R. Sheikholeslami, A. Kaveh,
Volume 3, Issue 4 (10-2013)
Abstract

This article presents a comprehensive review of chaos embedded meta-heuristic optimization algorithms and describes the evolution of this algorithms along with some improvements, their combination with various methods as well as their applications. The reported results indicate that chaos embedded algorithms may handle engineering design problems efficiently in terms of precision and convergence and, in most cases they outperform the results presented in the previous works. The main goal of this paper is to providing useful references to fundamental concepts accessible to the broad community of optimization practitioners.
A. Kaveh, P. Zakian,
Volume 5, Issue 4 (7-2015)
Abstract

This study presents shape optimization of a gravity dam imposing stability and principal stress constraints. A gravity dam is a large scale hydraulic structure consisting of huge amount of concrete material. Hence, an optimum design gives a cost-benefit structure due to the fact that small changes in shape of dam cross-section leads to large saving of concrete volume. Three recently developed meta-heuristics are utilized for optimizing the structure. These algorithms are charged system search (CSS), colliding bodies optimization (CBO) and its enhanced edition (ECBO). This article also provides useful formulations for stability analysis of gravity dams which can be extended to further researches.
S. Gholizadeh,
Volume 5, Issue 4 (7-2015)
Abstract

The present paper tackles the optimization problem of double layer grids considering nonlinear behaviour. In this paper, an efficient optimization algorithm is proposed to achieve the optimization task based on the newly developed grey wolf algorithm (GWA) termed as sequential GWA (SGWA). In the framework of SGWA, a sequence of optimization processes is implemented in which the initial population of each process is selected from the neighboring region of the best design found in the previous optimization process. This procedure is repeated until a termination criterion is met. Two illustrative examples are presented and optimization is performed by GWA and SGWA and two other meta-heuristics. The numerical results indicate that the proposed SGWA utperforms the other algorithms in finding optimal design of nonlinear double layer grids.
A. Kaveh, Y. Vazirinia,
Volume 7, Issue 3 (7-2017)
Abstract

Tower cranes are major and expensive equipment that are extensively used at building construction projects and harbors for lifting heavy objects to demand points. The tower crane locating problem to position a tower crane and supply points in a building construction site for supplying all requests in minimum time, has been raised from more than twenty years ago. This problem has already been solved by linear programming, but meta-heuristic methods spend less time to solving the problem. Hence, in this paper three newly developed meta-heuristic algorithms called CBO, ECBO, and VPS have been used to solve the tower crane locating problem. Three scenarios are studied to show the applicability and performance of these meta-heuristics.


D. Sedaghat Shayegan, A Lork, S.a.h. Hashemi,
Volume 9, Issue 3 (6-2019)
Abstract

In this paper, the optimum design of a reinforced concrete one-way ribbed slab, is presented via recently developed metaheuristic algorithm, namely, the Mouth Brooding Fish (MBF). Meta-heuristics based on evolutionary computation and swarm intelligence are outstanding examples of nature-inspired solution techniques. The MBF algorithm simulates the symbiotic interaction strategies adopted by organisms to survive and propagate in the ecosystem. This algorithm uses the movement, dispersion and protection behavior of Mouth Brooding Fish as a pattern to find the best possible answer. The cost of the system is considered to be the objective function, and the design is based on the American Concrete Institute’s ACI 318-08 standard. The performance of this algorithm is compared with harmony search (HS), colliding bodies optimization (CBO), particle swarm optimization (PSO), democratic particle swarm optimization (DPSO), charged system search (CSS) and enhanced charged system search (ECSS). The numerical results demonstrate that the MBF algorithm is able to construct very promising results and has merits in solving challenging optimization problems.
A. Kaveh, K. Biabani Hamedani,
Volume 10, Issue 1 (1-2020)
Abstract

The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for embedding graphs in the plane. The algorithms consist of Artificial Bee Colony algorithm, Big Bang-Big Crunch algorithm, Teaching-Learning-Based Optimization algorithm, Cuckoo Search algorithm, Charged System Search algorithm, Tug of War Optimization algorithm, Water Evaporation Optimization algorithm, and Vibrating Particles System algorithm. The performance of the utilized algorithms is investigated through various examples including six complete graphs and eight complete bipartite graphs. Convergence histories of the algorithms are provided to better understanding of their performance. In addition, optimum results at different stages of the optimization process are extracted to enable to compare the meta-heuristics algorithms.
M. Shahrouzi, A. Salehi,
Volume 10, Issue 1 (1-2020)
Abstract

Imperialist Competitive Algorithm, ICA is a meta-heuristic which simulates collapse of weak empires by more powerful ones that take possession of their colonies. In order to enhance performance, ICA is hybridized with proper features of Teaching-Learning-Based Optimization, TLBO. In addition, ICA walks are modified with an extra term to intensify looking for the global best solution. The number of control parameters and consequent tuning effort has been reduced in the proposed Imperialist Competitive Learner-Based Optimization, ICLBO with respect to ICA and several other methods. Efficiency and effectiveness of ICLBO is further evaluated treating a number of test functions in addition to continuous and discrete engineering problems. It is discussed and traced that balancing between exploration and exploitation is enhanced due to the proposed hybridization. Numerical results exhibit superior performance of ICLBO vs. ICA and a variety of other well-known meta-heuristics.

Page 1 from 1     

© 2020 All Rights Reserved | Iran University of Science & Technology

Designed & Developed by : Yektaweb