Search published articles


Showing 2 results for Curve Fitting

A. Farshidianfar, S. Soheili,
Volume 3, Issue 3 (9-2013)
Abstract

This paper investigates the optimized parameters of Tuned Mass Dampers (TMDs) for high-rise structures considering Soil Structure Interaction (SSI) effects. Three optimization methods, namely the ant colony optimization (ACO) technique together with artificial bee colony (ABC) and shuffled complex evolution (SCE) methods are utilized for the optimization of TMD Mass, damping coefficient and spring stiffness as the design variables. The objective is to decrease the maximum displacement of structure. The 40 story structure with three soil types is employed to design TMD for six types of far field earthquakes. The results are then utilized to obtain relations for the optimized TMD parameters with SSI effects. The relations are then applied to design TMD for the same structure with another five types of far field oscillations, and reasonable results are achieved. For further investigations, the obtained relations are utilized to design TMD for a new structure, and the reduction values are obtained for five types of earthquakes, which show acceptable results. This study improves the understanding of earthquake oscillations, and helps the designers to achieve the optimized TMD for high-rise buildings.
S. Dehghani Fordoei, S.a. Razavian Amrei, M. Eghbali, M. Sh. Nasrollah Beigi,
Volume 8, Issue 4 (10-2018)
Abstract

Vulnerability assessment of structures encounter many uncertainties like seismic excitations intensity and response of structures. The most common approach adopted to deal with these uncertainties is vulnerability assessment through fragility functions. Fragility functions exhibit the probability of exceeding a state namely performance-level as a function of seismic intensity. A common approach is finding some response points of the fragility function and then fitting a typical probability distribution like lognormal through curve fitting estimation techniques. Maximum-likelihood approach is a fitting method to find the probability distribution parameters. Performing this approach for distributions like lognormal which is defined by just two parameters are straight forward while for more complicated distribution which are based on additional characterizing parameters is not feasible, since this approach is based on minimizing an error function through classic mathematical approaches like calculating partial derivations. An applicable modification is to add an efficient optimization approach to determine maximum-likelihood function. In this article, an optimization algorithm is proposed with maximum-likelihood-estimation and the results indicate the efficiency and feasibility of future developments in finding the most appropriate fragility function.

Page 1 from 1     

© 2019 All Rights Reserved | Iran University of Science & Technology

Designed & Developed by : Yektaweb