Search published articles

Showing 3 results for Ant System

M. Shahrouzi,
Volume 1, Issue 2 (6-2011)

Meta-heuristics have already received considerable attention in various fields of engineering optimization problems. Each of them employes some key features best suited for a specific class of problems due to its type of search space and constraints. The present work develops a Pseudo-random Directional Search, PDS, for adaptive combination of such heuristic operators. It utilizes a short term memory via indirect information share between search agents and the directional search inspired by natural swarms. Treated numerical examples illustrate the PDS performance in continuous and discrete design spaces.
F. Maleki, M. Yousefikhoshbakht,
Volume 9, Issue 2 (4-2019)

The open vehicle routing problem (OVRP) is a variance of the vehicle routing problem (VRP) that has a unique character which is its open path form. This means that the vehicles are not required to return to the depot after completing service. Because this problem belongs to the NP-hard problems, many metaheuristic approaches like the ant colony optimization (ACO) have been used to solve OVRP in recent years. The versions of ACO have some shortcomings like its slow computing speed and local-convergence. Therefore, in this paper, we present an efficient hybrid elite ant system called EHEAS in which a new state transition rule, tabu search as an effective local search algorithm and a new pheromone updating rule are used for more improving solutions. These modifications avoid the premature convergence and make better solutions. Computational results on sixteen standard benchmark problem instances show that the proposed algorithm finds closely the best known solutions for most of the instances in which ten best known solutions are also found. In addition, EHEAS is comparable in terms of solution quality to the best performing published metaheuristics.
R. Kamgar, Y. Askari Dolatabad, M. R. Babadaei Samani,
Volume 9, Issue 4 (9-2019)

Nowadays, steel shear walls are used as efficient lateral-load-resistant systems due to their high lateral stiffness and carrying capacity. In this paper, the effect of substituting a shape memory alloy (SMA) material is investigated instead of using conventional steel in the shear wall. A numerical study is conducted using finite element method (FEM) by OpenSees software. For this purpose, at first, to verify the numerical simulation, the results of the experimental data are compared with those obtained from the numerical phase. Finally, the behavior of a one-bay three-story steel frame equipped with shear walls made of conventional steel, shape memory alloy and a combination of these two materials are studied when the structure is subjected to cyclic and seismic loadings. Results indicate that the use of shape memory alloy increases the maximum deformation, the yield displacement, and also the loading capacity of the structure. Also, it decreases the residual deformation of the structure and its initial stiffness. In general, using composite materials of conventional steel and shape memory alloy can reduce the maximum value of compression axial load of the column and, as a result, increase maximum rotation at the connections. In addition, the minimum and maximum values of base shear occurred in the model with 50% and 25% of Ni-Ti SMA material, respectively.

Page 1 from 1     

© 2020 All Rights Reserved | Iran University of Science & Technology

Designed & Developed by : Yektaweb